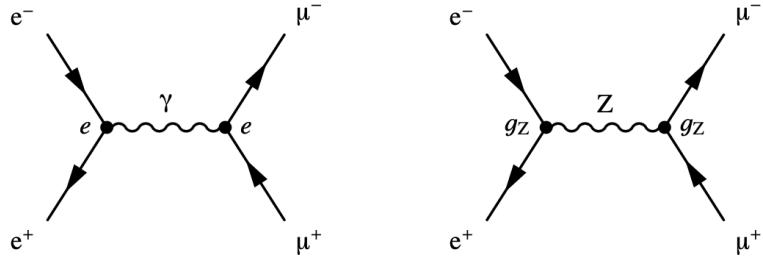


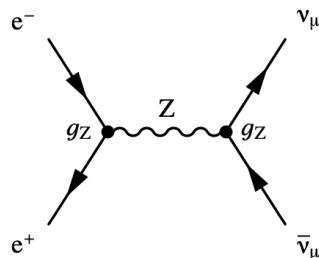
PARTICLE PHYSICS 2 : EXERCISE 8

1) Feynman diagrams

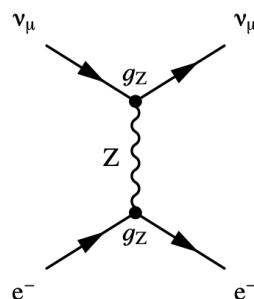
In all cases the Higgs exchange diagrams will give negligible contributions and are ignored. The two possible lowest-order diagrams for $e^+e^- \rightarrow \mu^+\mu^-$ are :



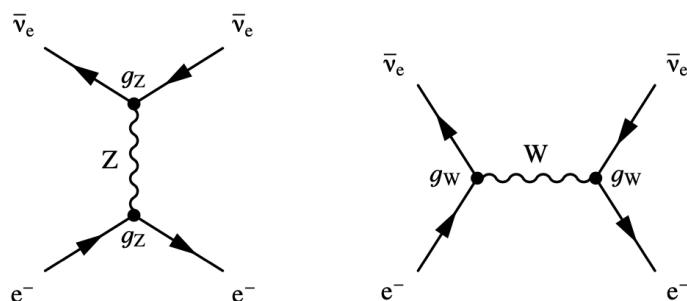
Since neutrinos are neutral, there is no QED diagram for $e^+e^- \rightarrow \nu_\mu\bar{\nu}_\mu$ but a the Z-exchange diagram is still present.



For $\nu_\mu e^- \rightarrow \nu_\mu e^-$ only the neutral current weak interaction contributes at lowest order.

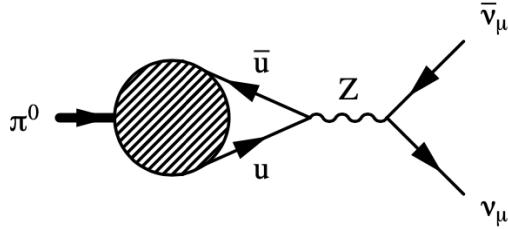


Finally, for $\bar{\nu}_e e^- \rightarrow \bar{\nu}_e e^-$ there are weak charged-current and weak neutral current diagrams.



2) π^0 decays

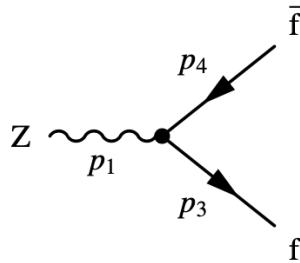
The lowest-order Feynman diagram is shown below. The general form of the neutral current vertex, $\gamma^\mu(c_V - c_A\gamma^5)$, reduces to a $V - A$ form for the coupling at $Z\nu_\mu\bar{\nu}_\mu$ vertex, and thus neutrino is produced in a LH chiral state and anti-neutrino is produced in a RH chiral state. Because neutrinos are almost massless ($E \gg m$) the chiral states effectively correspond to helicity states and thus the decay would result in a $J = 1$ final state, violating conservation of angular momentum.



3) Partial decay rate

The matrix element for the $Z \rightarrow f\bar{f}$ decay, shown below is

$$\mathcal{M}_{fi} = g_Z \epsilon_\mu^\lambda(p_1) \bar{u}(p_3) \gamma^\mu \frac{1}{2} (c_V - c_A \gamma^5) v(p_4),$$



or equivalently

$$\mathcal{M}_{fi} = g_Z \epsilon_\mu^\lambda(p_1) \bar{u}(p_3) \gamma^\mu \left[c_L \frac{1}{2} (1 - \gamma^5) + c_R \frac{1}{2} (1 + \gamma^5) \right] v(p_4),$$

where $c_V = c_L + c_R$ and $c_A = c_L - c_R$. Written in this form it should be clear that only two chiral combinations give non-zero matrix elements, and in the limit where the final-state fermions are ultra-relativistic, only two helicity combinations give non-zero matrix elements :

$$\mathcal{M}_{LR} = g_Z c_L \epsilon_\mu^\lambda(p_1) \bar{u}_\downarrow(p_3) \gamma^\mu v_\uparrow(p_4) \quad \text{and} \quad \mathcal{M}_{RL} = g_Z c_R \epsilon_\mu^\lambda(p_1) \bar{u}_\uparrow(p_3) \gamma^\mu v_\downarrow(p_4).$$

The leptonic currents with $E = m_Z/2$, are

$$j_{LR}^\mu = m_Z (0, -\cos \theta, -i, \sin \theta) \quad \text{and} \quad j_{RL}^\mu = m_Z (0, -\cos \theta, +i, \sin \theta).$$

Without loss of generality, we are free to choose the polarisation state of the Z. Here take the Z to be at rest and to be longitudinally polarised, such that

$$\epsilon_\mu = \epsilon_L^\mu = (0, 0, 0, 1).$$

In this case, the matrix elements reduce to

$$\mathcal{M}_{LR} = -g_Z c_L j_{LR}^3 = -g_Z c_L m_Z \sin \theta \quad \text{and} \quad \mathcal{M}_{RL} = -g_Z c_R j_{RL}^3 = -g_Z c_R m_Z \sin \theta$$

The total decay rate is determined by the summed matrix element squared (no need to average since we have chosen a particular initial state polarisation)

$$\langle |\mathcal{M}|^2 \rangle = |\mathcal{M}|_{LR}^2 + |\mathcal{M}|_{RL}^2 = -g_Z^2 m_Z^2 (c_L^2 + c_R^2) \sin^2 \theta.$$

Substituting this into the decay rate formula

$$\begin{aligned} \Gamma(Z \rightarrow f\bar{f}) &= \frac{p^*}{32\pi^2 m_Z^2} \int \langle |\mathcal{M}|^2 \rangle d\Omega^* \\ &= \frac{2\pi p^*}{32\pi^2 m_Z^2} g_Z^2 m_Z^2 (c_L^2 + c_R^2) \int_{-1}^1 \sin^2 \theta d(\cos \theta) \\ &= \frac{p^*}{16\pi} g_Z^2 (c_L^2 + c_R^2) \int_{-1}^1 (1 - x^2) d(x) \\ &= \frac{p^*}{12\pi} g_Z^2 (c_L^2 + c_R^2), \end{aligned} \tag{1}$$

where p is the momentum of the final state fermion in the centre-of-mass frame. If the masses of the final-state particles are neglected, $p^* = m_Z/2$, and therefore the $Z \rightarrow f\bar{f}$ decay rate is given by

$$\Gamma(Z \rightarrow f\bar{f}) = \frac{g_Z^2 m_Z}{24\pi} (c_L^2 + c_R^2) = \frac{g_Z^2 m_Z}{48} (c_V^2 + c_A^2),$$

The partial decay widths therefore depend on the sum of the squares of the vector and axial-vector couplings of the Z to the fermions. Taking into account the three colours and that the Z cannot decay to top quarks, the ratio

$$\begin{aligned} R_\mu &= \frac{\Gamma(Z \rightarrow \mu^+ \mu^-)}{\Gamma(Z \rightarrow \text{hadrons})} \\ &= \frac{\Gamma(Z \rightarrow \mu^+ \mu^-)}{9\Gamma(Z \rightarrow d\bar{d}) + 6\Gamma(Z \rightarrow u\bar{u})}. \end{aligned} \tag{2}$$

The individual partial decay widths are proportional to :

$$\mu : c_V^2 + c_A^2 = 0.2516, \quad d : c_V^2 + c_A^2 = 0.3725, \quad u : c_V^2 + c_A^2 = 0.2861,$$

and therefore

$$\begin{aligned} R_\mu &= \frac{\Gamma(Z \rightarrow \mu^+ \mu^-)}{\Gamma(Z \rightarrow \text{hadrons})} \\ &= \frac{0.2516}{9 \cdot 0.3725 + 6 \cdot 0.2861} = 0.496 \approx \frac{1}{20}. \end{aligned} \tag{3}$$