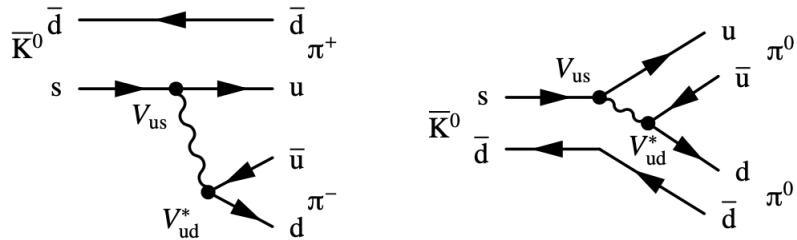


PARTICLE PHYSICS 2 : EXERCISE 6

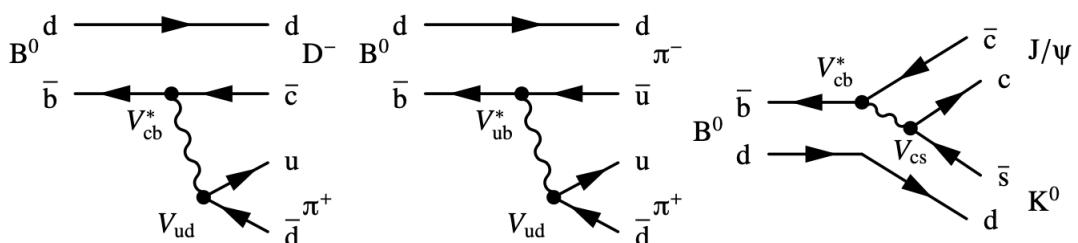
1) Kaon decays


The two lowest-order Feynman diagrams for the $K^0 \rightarrow \pi^+ \pi^-$ and $K^0 \rightarrow \pi^0 \pi^0$ decays are sketched below.

In the two flavour approximation, the matrix element for both diagrams is proportional to :

$$\mathcal{M} \propto |V_{us}| |V_{ud}| \approx \sin \theta_C \cos \theta_C.$$

The two corresponding lowest-order Feynman diagrams for the $\bar{K}^0 \rightarrow \pi^+ \pi^-$, and, $\bar{K}^0 \rightarrow \pi^0 \pi^0$ decays are sketched below.



Again, for both diagrams :

$$\mathcal{M} \propto |V_{us}| |V_{ud}| \approx \sin \theta_C \cos \theta_C.$$

2) B^0 decays

The lowest-order Feynman diagrams for the given decays are sketched below.

From consideration of the CKM elements alone the matrix elements scale as

$$\begin{aligned}\mathcal{M}(B^0 \rightarrow D^- \pi^+) : \mathcal{M}(B^0 \rightarrow \pi^+ \pi^-) : \mathcal{M}(B^0 \rightarrow J/\psi K^0) \\ = |V_{cb}| |V_{ud}| : |V_{ub}| |V_{ud}| : |V_{cb}| |V_{cs}|\end{aligned}$$

To first order the CKM matrix elements depend on the number of generations changed at the vertex. Thus the matrix elements for the decays $\mathcal{M}(B^0 \rightarrow D^- \pi^+)$ and $\mathcal{M}(B^0 \rightarrow J/\psi K^0)$, which both have one vertex at which there is no change of generation and one vertex where there is one change of generation $\bar{b} \rightarrow \bar{c}$, will be larger than that for $\mathcal{M}(B^0 \rightarrow \pi^+ \pi^-)$, which has one vertex at which there are two changes of generation $\bar{b} \rightarrow \bar{u}$. Being more quantitative, from consideration of the CKM matrix alone,

$$\begin{aligned}Br(B^0 \rightarrow D^- \pi^+) : Br(B^0 \rightarrow \pi^+ \pi^-) : Br(B^0 \rightarrow J/\psi K^0) \\ = |V_{cb}|^2 |V_{ud}|^2 : |V_{ub}|^2 |V_{ud}|^2 : |V_{cb}|^2 |V_{cs}|^2 \\ = 1.6 \times 10^{-3} : 1.5 \times 10^{-5} : 1.6 \times 10^{-3}.\end{aligned}$$

From consideration of the CKM matrix alone, one would expect the $Br(B^0 \rightarrow \pi^+ \pi^-)$ to be about 100 times smaller than for the other two decays. The observed BRs are :

$$\begin{aligned}Br^{obs}(B^0 \rightarrow D^- \pi^+) : Br^{obs}(B^0 \rightarrow \pi^+ \pi^-) : Br^{obs}(B^0 \rightarrow J/\psi K^0) \\ = 2.7 \times 10^{-3} : 5.1 \times 10^{-6} : 8.7 \times 10^{-4}.\end{aligned}$$

in reasonable agreement with the dependence from CKM matrix elements alone. A more sophisticated estimate of the BRs would account for the differences in phase space for the decays, where

$$\Gamma \propto p^* \propto \{[m_B^2 - (m_1 + m_2)^2][m_B^2 - (m_1 - m_2)^2]\}^{\frac{1}{2}}$$

Taking account the different phase space factors and scaling to the observed BR for $B^0 \rightarrow D^- \pi^+$

$$\begin{aligned}Br(B^0 \rightarrow D^- \pi^+) : Br(B^0 \rightarrow \pi^+ \pi^-) : Br(B^0 \rightarrow J/\psi K^0) \\ = |V_{cb}|^2 |V_{ud}|^2 p^* : |V_{ub}|^2 |V_{ud}|^2 p^* : |V_{cb}|^2 |V_{cs}|^2 p^* \\ = 2.7 \times 10^{-3} : 2.9 \times 10^{-5} : 2.0 \times 10^{-3}.\end{aligned}$$

The remaining differences, compared to the observed values, can be attributed to other differences in the matrix element, which includes factors accounting for the formation of the final-state mesons.

3) D^0 decays

The lowest-order Feynman diagrams for the given decays are sketched below.

On the basis of the CKM matrix alone, one would expect

$$\frac{\Gamma(D^0 \rightarrow K^+ \pi^-)}{\Gamma(D^0 \rightarrow K^- \pi^+)} \approx \frac{|V_{cd}|^2 |V_{us}|^2}{|V_{ud}|^2 |V_{cs}|^2} = \frac{0.225^2 \cdot 0.225^2}{0.974^2 \cdot 0.973^2} = 3 \times 10^{-3}$$

explaining most of the difference in the observed decay rates.

4) T meson

In each case the decay of the quark paired with the \bar{u} decays according to the largest CKM matrix element, in this case

$$t \rightarrow b \rightarrow c \rightarrow s \rightarrow u$$

and mesons can be identified as

$$W = B^-(b\bar{u}), \quad X = \bar{D}^0(c\bar{u}), \quad Y = K^-(s\bar{u}) \quad Z = \pi^0(u\bar{u})$$

The direct decay to $\pi^0\pi^0$ final state would involve a $t \rightarrow d$ decay with the CKM element $|V_{td}|^2 \sim 10^{-4}$.