

PARTICLE PHYSICS 2 : EXERCISE 5

1) KamLAND data

Use the data of Figure 1 to obtain estimates of $\sin^2(2\theta_{12})$ and $|\Delta m_{21}^2|$. In the computation, use the value $\cos^4 \theta_{13} \simeq 0.95$, derived from short-baseline reactor experiments.

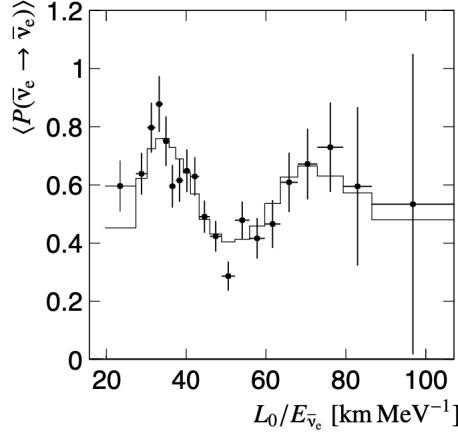


FIGURE 1 – KamLAND data showing the measured mean survival probability as a function of the measured neutrino energy divided by the flux-weighted mean distance to the reactors, L_0 . The histogram shows the expected distribution for the oscillation parameters that best describe the data.

2) MINOS data

Use the data of Figure 2 to obtain estimates of $\sin^2(2\theta_{23})$ and $|\Delta m_{32}^2|$.

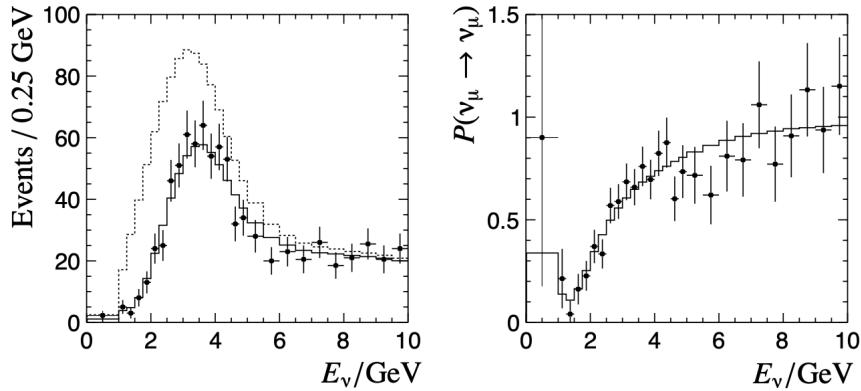


FIGURE 2 – The MINOS far detector energy spectrum compared to the unoscillated prediction and the oscillation probability as measured from the ratio of the far detector data to the unoscillated prediction.

3) The T2K experiment

The T2K experiment uses an off-axis ν_μ beam produced from $\pi^+ \rightarrow \mu^+ \nu_\mu$ decays. Consider the case where the pion has velocity β along the z -direction in the laboratory frame and a neutrino with energy E^* is produced at an angle θ^* with respect to the z' -axis in the π^+ rest frame.

1. Show that the neutrino energy in the pion rest frame is $p^* = (m_\pi^2 - m_\mu^2)/2m_\pi$.
2. Using a Lorentz transformation, show that the energy E and angle of production θ of the neutrino in the laboratory frame are

$$E = \gamma E^*(1 + \beta \cos \theta^*) \quad \text{and} \quad E \cos \theta = \gamma E^*(\cos \theta^* + \beta),$$

where $\gamma = E_\pi/m_\pi$.

3. Using the expressions for E^* and θ^* in terms of E and θ , show that

$$\gamma^2(1 - \beta \cos \theta)(1 + \beta \cos \theta^*) = 1.$$

4. In the limit $\theta \ll 1$, show that

$$E \approx 0.43 E_\pi \frac{1}{1 + \beta \gamma^2 \theta^2}$$

and therefore on-axis ($\theta = 0$) the neutrino energy spectrum follows that of the pions. Assume that $E_\nu \gg m_\pi$, such that $\gamma \gg 1$.

5. Assuming that the pions have a flat energy spectrum in the range $1 - 5$ GeV, sketch the form of the resulting neutrino energy spectrum at the T2K far detector (Super-Kamiokande), which is off-axis at $\theta = 2.5^\circ$. Given that the Super-Kamiokande detector is 295 km from the beam, explain why this angle was chosen.