

PARTICLE PHYSICS 2 : EXERCISE 1

1) Symmetries of the $\Omega^- (sss)$

In the absence of colour, the overall wavefunction has the following degrees of freedom:

$$\psi = \phi_{\text{flavour}} \chi_{\text{spin}} \eta_{\text{space}} \quad (1)$$

The overall wavefunction must be anti-symmetric under the interchange of any two quarks (since they are fermions). For the state with zero orbital angular momentum ($l = 0$), the spatial wavefunction is symmetric. The flavour wavefunction sss is clearly symmetric under the interchange of any two quarks. Therefore, the required overall anti-symmetric wavefunction would imply a totally anti-symmetric spin wavefunction. However, there is no totally anti-symmetric spin wavefunction for the combination of three spin-half particles. Hence, without an additional degree of freedom, in this case colour, the Ω^- would not exist.

2) Running couplings

The strong coupling constant runs according to:

$$\alpha_S(Q^2) = \frac{\alpha_S(Q_0^2)}{1 + B\alpha_S(Q_0^2) \ln(\frac{Q^2}{Q_0^2})} \quad (2)$$

where $B = (11N_c - 2N_f)/(12\pi)$. For $N_c = 3$ colours and $N_f = 3$ (valid at low values of $|q^2|$), $B = 27/(12\pi)$.

The strong coupling constant appears to become infinite when

$$\alpha_S(Q_0^2) \ln\left(\frac{Q_\infty^2}{Q_0^2}\right) = -\frac{12\pi}{27} \quad (3)$$

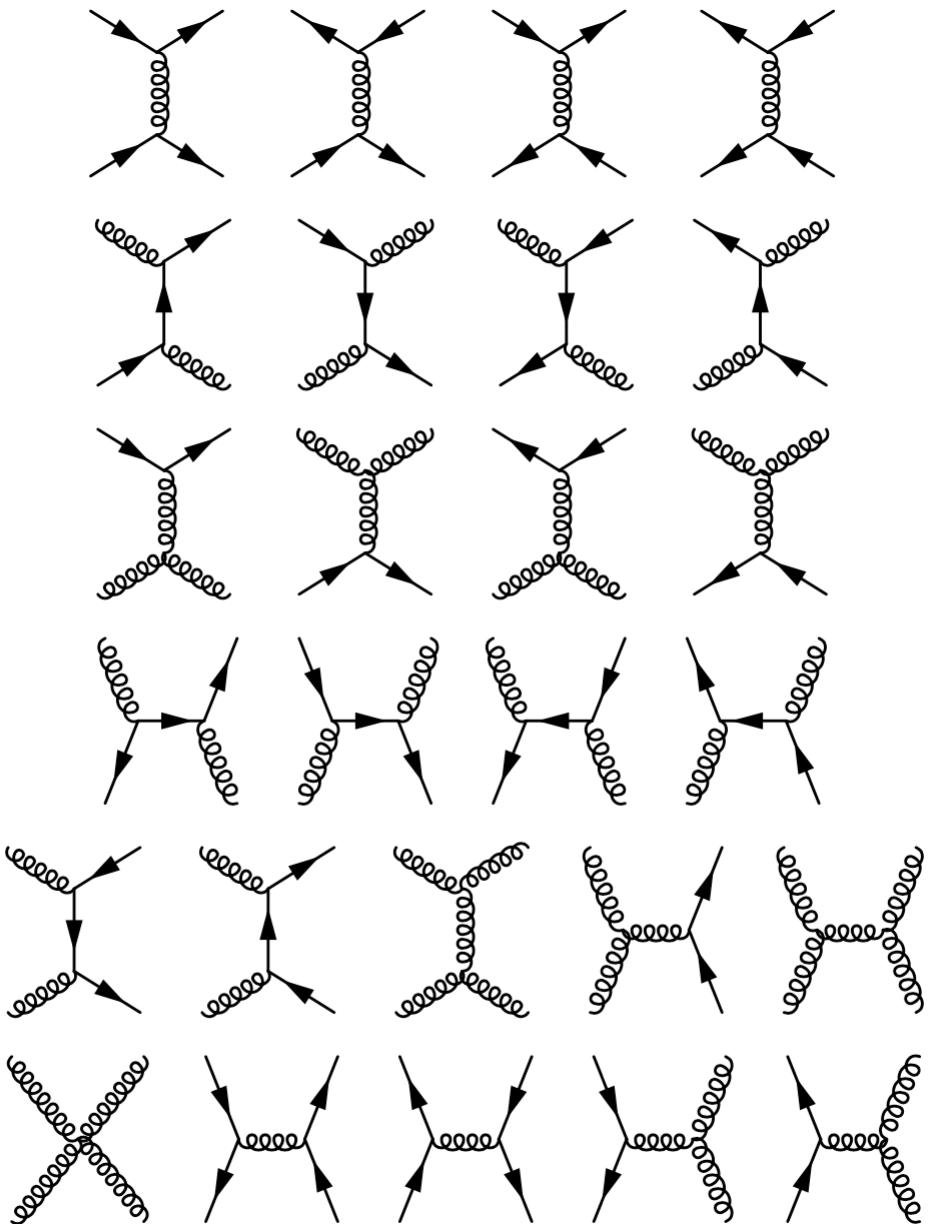
At $\sqrt{|Q_0^2|} = 10$ GeV, $\alpha_S \simeq 0.18$, and therefore α_S becomes infinite when

$$\begin{aligned} 0.18 \ln\left(\frac{Q_\infty^2}{100}\right) &= -\frac{12\pi}{27} \\ \rightarrow \frac{Q_\infty^2}{100} &= 4.3 \times 10^{-4} \\ \rightarrow Q_\infty &\approx 200 \text{ MeV} \end{aligned} \quad (4)$$

At this scale, known as Λ_{QCD} , QCD is clearly non-perturbative.

3) QCD Feynman diagrams lowest-order

There are diagrams involving: i) the scattering of quarks and antiquarks, ii) the scattering of a quark/antiquark and a gluon and iii) the scattering of gluons, where the antiquarks/quarks can either be from the valence or sea content of the proton and antiproton.



4) Drell-Yan production

The PDFs for the $\pi^+(\bar{u}\bar{d})$ can be written in terms of valence and sea quark distributions:

$$\begin{aligned} u^{\pi^+}(x) &= u_V^{\pi^+}(x) + S^{\pi^+}(x) \equiv u_V^\pi(x) + S^\pi(x) \\ \bar{d}^{\pi^+}(x) &= \bar{d}_V^{\pi^+}(x) + S^{\pi^+}(x) \equiv \bar{d}_V^\pi(x) + S^\pi(x) \\ d^{\pi^+}(x) &= S^{\pi^+}(x) \equiv S^\pi(x) \\ \bar{u}^{\pi^+}(x) &= S^{\pi^+}(x) \equiv S^\pi(x) \end{aligned} \quad (5)$$

where the symbols with a superscript π implicitly refer to the PDFs for the π^+ . Assuming isospin symmetry, e.g. the down-quark PDF in the $\pi^-(d\bar{u})$ will be identical to the up-quark PDF in the π^+ , the PDFs for the π^- are

$$\begin{aligned} u^{\pi^-}(x) &= S^{\pi^-}(x) \equiv S^\pi(x) \\ \bar{d}^{\pi^-}(x) &= S^{\pi^-}(x) \equiv S^\pi(x) \\ d^{\pi^-}(x) &= d_V^{\pi^-}(x) + S^{\pi^-}(x) \equiv u_V^\pi(x) + S^\pi(x) \\ \bar{u}^{\pi^-}(x) &= \bar{u}_V^{\pi^-}(x) + S^{\pi^-}(x) \equiv \bar{d}_V^\pi(x) + S^\pi(x) \end{aligned} \quad (6)$$

For low Q^2 Drell-Yan production annihilation of sea quarks will dominate and therefore

$$\frac{\sigma(\pi^+C \rightarrow \mu^+\mu^-C)}{\sigma(\pi^-C \rightarrow \mu^+\mu^-C)} \rightarrow 1 \quad \text{as } Q^2 \rightarrow 0 \quad (7)$$

As $Q^2 \rightarrow s$, both x_1 and x_2 tend to unity and the annihilation of valence quarks will dominate. Since $\bar{d}^{\pi^+}(x) = \bar{u}^{\pi^-}(x)$ and carbon contains an equal number of valence up- and down-quarks

$$\frac{\sigma(\pi^+C \rightarrow \mu^+\mu^-C)}{\sigma(\pi^-C \rightarrow \mu^+\mu^-C)} \rightarrow \frac{Q_d^2 \bar{d}^{\pi^+}(1) d^C(1)}{Q_u^2 \bar{u}^{\pi^-}(1) u^C(1)} \rightarrow \frac{1}{4} \quad \text{as } Q^2 \rightarrow s \quad (8)$$