

PARTICLE PHYSICS 2 : EXERCISE 11

1) Higgs potential

Explain why the Higgs potential can only contain terms with even powers of the field ϕ .

2) Covariant derivative

Show that the Lagrangian for a complex scalar field ϕ ,

$$\mathcal{L} = (D_\mu \phi)^* (D^\mu \phi),$$

with the covariant derivative $D_\mu = \partial_\mu + igB_\mu$, is invariant under local U(1) gauge transformations,

$$\phi(x) \rightarrow \phi'(x) = e^{ig\chi(x)}\phi(x),$$

provided the gauge field transforms as

$$B_\mu \rightarrow B'_\mu = B_\mu - \partial_\mu \chi(x).$$

3) Z and γ fields

From the mass matrix and its eigenvalues, show that the eigenstates in the diagonal basis are

$$A_\mu = \frac{g'W_\mu^{(3)} + g_W B_\mu}{\sqrt{g_W^2 + g'^2}} \quad \text{and} \quad Z_\mu = \frac{g_W W_\mu^{(3)} - g' B_\mu}{\sqrt{g_W^2 + g'^2}},$$

where A_μ and Z_μ correspond to the physical fields for the photon and Z.

4) HZZ coupling

By considering the interaction terms in

$$(D_\mu \phi)^\dagger (D^\mu \phi) = \frac{1}{2}(\partial_\mu h \partial^\mu h) + \frac{1}{8}g_W^2(W_\mu^{(1)} + iW_\mu^{(2)})(W^{\mu(1)} - iW^{\mu(2)})(v + h)^2 + \frac{1}{8}(g_W W_\mu^{(3)} - g' B_\mu)(g_W W^{\mu(3)} - g' B_\mu)(v + h)^2, \quad (1)$$

show that the HZZ coupling is given by

$$g_{HZZ} = \frac{1}{2} \frac{g_W}{\cos \theta_W} m_Z.$$

5) $H \rightarrow WW$

For a Higgs boson with $m_H > 2m_W$, the dominant decay mode is into two on-shell W bosons, $H \rightarrow W^+W^-$. The matrix element for this decay can be written

$$\mathcal{M} = -g_W m_W g_{\mu\nu} \xi^\mu(p_2)^* \xi^\nu(p_3)^*,$$

where p_2 and p_3 are respectively the four-momenta of the W^- and W^+ .

a) Taking p_2 to lie in the positive z -direction, consider the nine possible polarisation states of the W^+ and W^- and show that the matrix element is only non-zero when both W bosons are left-handed ($\mathcal{M}_{\downarrow\downarrow}$), both W bosons are ($\mathcal{M}_{\uparrow\uparrow}$), or both are longitudinally polarised (\mathcal{M}_{LL}).

b) Show that

$$\mathcal{M}_{\uparrow\uparrow} = \mathcal{M}_{\downarrow\downarrow} = -g_W m_W \quad \text{and} \quad \mathcal{M}_{LL} = \frac{g_W}{m_W} \left(\frac{1}{2} m_H^2 - m_W^2 \right).$$

c) Hence show that

$$\Gamma(H \rightarrow W^+ W^-) = \frac{G_F m_H^3}{8\pi\sqrt{2}} \sqrt{1 - 4\lambda^2} (1 - 4\lambda^2 + 12\lambda^4),$$

where $\lambda = m_W/m_H$.