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Analytical solution for hydrogen and hydrogenic atoms (one electron)

𝑛 = 1, 2, 3, 4… principal quantum number; average distance of an electron from the nucleus;  energy of the 
electron:   𝐸! ∝ − ,"!

!!

𝑙 = 0, 1, …𝑛 − 1 orbital (angular momentum) quantum number; magnitude of the angular momentum of the electron:
𝐥 = 𝑙(𝑙 + 1)ℏ

𝑚# = 𝑙, 𝑙 − 1, … , −𝑙 magnetic quantum number; (2𝑙 + 1) values; direction of the angular momentum (with 
respect to an applied magnetic field, usually along z): l$ = 𝑚#ℏ

electron configurations, identified by the shell:     𝑛 = 1 2 3 4 … and the subshell:    𝑙 = 0 1 2 3 …
K    L     M    N  ... s     p    d     f     ...   

→ variable separation, radial and angular parts of wavefunctions 

Schrödinger equation for the motion of one 
electron relative to the nucleus
Z: atomic number
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Hydrogenic wavefunctions
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→ variable separation, radial and angular parts of wavefunctions 



Hydrogenic radial wavefunctions
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Radial probability 
distribution 
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𝑃!#(𝑟) = 𝑟%𝑅!#% (𝑟)
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Hydrogenic angular wavefunctions: Spherical harmonics
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Angular momentum
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𝑚# = 0 ± 1 ± 2 ± 3

𝑙 = 3

𝑙 = 2

𝑙 = 1

𝑙 = 0

electron density angular distribution 



𝑚# = 0 ± 1 ± 2 ± 3

𝑙 = 3

𝑙 = 2

𝑙 = 1

𝑙 = 0

Angular momentum
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electron density angular distribution 



Atomic orbitals
Complex 
wavefunctions
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Atomic orbitals
Complex 
wavefunctions

https://commons.wikimedia.org/wiki/Hydrogen_orbitals_3D

https://commons.wikimedia.org/wiki/Hydrogen_orbitals_3D_real

2px2pz2py

3px3pz3py

3dxz3dz23dyz3dx2-y2 3dxy

Real wavefunctions (linear combinations)
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Orbitals
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Electron spin

Intrinsic angular momentum of the electron

𝑠 = ⁄& % spin quantum number, magnitude : |𝐬| = 𝑠(𝑠 + 1)ℏ = ,' %ℏ

𝑚( = ± ⁄& % spin magnetic quantum number, component along z ,  
magnitude: 𝑚(ℏ = ± ⁄& %ℏ

𝑚( = + ⁄& % = ↑, 𝑚( = − ⁄& % = ↓
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Total angular momentum and spin-orbit coupling

Still only one electron

Total angular momentum: 𝐣 = 𝐥 + 𝐬

𝐣 = 𝑗(𝑗 + 1)ℏ, j$ = 𝑚)ℏ

j	= 𝑙 + 𝑠, … , |𝑙 − 𝑠|

𝑚) = 𝑗, …− 𝑗
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l=1, s=1/2

spin-orbit coupling: additional term in the hamiltonian: 𝑉*+ ∝ (𝐥 ⋅ 𝐬)𝜉*+

electron energy depends on the total angular momentum

the interaction partially lifts the degeneracy of orbitals of a given subshell 
(same l, different j )

𝐣

𝐥

𝐬



Many-electron atoms

all the electrons interact with one another, analytical solution not possible
orbital approximation → electron configuration (n, l) 
Pauli exclusion principle → max two electrons per orbital
Example: Na, 11 electrons:   1s2 2s2 2p6 3s1

------

Filling of open subshells? For the ground state it follows the  Hund’s rules 

Open subshells: how are combined the orbital, spin, and total angular momenta of the electrons? 
Two coupling schemes are possible:

- LS-coupling: first find 𝐋 and 𝐒, then couple them to obtain 𝐉 (light elements with small spin-orbit coupling)
Total orbital angular momentum 𝐋 = ∑ 𝐥, quantum number 𝐿, and 𝑀-
Total spin momentum 𝐒 = ∑𝐬, quantum number 𝑆, and 𝑀*
Total angular momentum J =	L	+	S quantum number 𝐽, and 𝑀.

- jj-coupling: couple l and s of individual electrons, and then couple the j’s (heavy elements, large spin-orbit coupling) 
Individual total angular momentum 𝐣, = 𝐥, + 𝐬, quantum number 𝑗, and 𝑚)
Total angular momentum 𝐉 = ∑ 𝐣, quantum number 𝐽, and 𝑀.
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Energy levels in many-electron atoms

- orbitals with the same value of n but different values of l are no longer degenerate 
(consequence of penetration and shielding)

- spin-orbit coupling partially lifts the degeneracy of orbitals of a given subshell (same l, 
different j )

shell:  𝑛 = 1 2 3 4 … subshell:    𝑙 = 0 1 2 3 …
K    L     M    N  ...       s     p    d     f     ...   
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hydrogenic atom:



L M N

Core levels energies

...

...

K

X-ray data booklet, Lawrence Berkeley National Laboratory 
https://xdb.lbl.gov/
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Core levels energies
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Molecular orbitals 

Approximate solution to the Schrödinger equation for the electrons in the field of the nuclei of the atoms forming 
the molecule

Usually constructed by combining atomic atomic orbitals or hybrid orbitals from each atom of the molecule

LCAO (Linear Combination of Atomic Orbitals)

Covalent bonds (electron sharing)
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H2 molecule 
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interaction terms U

singlet, antisymmetric upon particle exchange

triplet, symmetric upon particle exchange

Atom A with electron 1, atom B with electron 2, at distance d

Because electrons are fermions, the total wavefunction (orbital x spin) must be antisymmetric (change sign) upon 
particle exchange

Spin wavefunctions are generated by linear combinations of the 4 spin states: 



H2 molecule 

the orbital wavefunction associated with the singlet (triplet) must be symmetric (antisymmetric);
such orbital wavefunctions are obtained by different linear combinations of the products of the atomic orbitals:
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Heitler - London
Calculate the molecular energy levels 
for the two orbital wavefunctions:

Combining orbital and spin wavefunctions in the appropriate way, 
antisymmetric total wavefunctions are obtained:



H2 molecule
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𝑎/𝑑

The energy of the system depends on the spin of the 
electrons, despite of the fact that the spin does not 
enter the calculation directly.



H2 molecule
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triplet

singlet

𝑑,



Simple representation of covalent bonds
Molecular orbitals 

Use the sign (phase) ot the wavefunctions to indicate: 

constructive interference -> localization of electrons between the atoms, bonding, lower energy 

destructive interference -> depletion of electrons between the atoms, antibonding, higher energy 

The different signs are typically represented by different shades / colors 
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s isotropic orbitals → s orbitals
H2 molecule 

Energy scheme
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p orbitals directed along the interatomic axis→ s orbitals

lower energy

higher energy
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example: pz orbitals, interatomic axis along z



p orbitals perpendicular to the internuclear axis → p orbitals

higher energy
anti-bonding, p*
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example: px orbitals, interatomic axis along z

lower energy
bonding, p



atomic orbitals forming molecular orbitals can have different l
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example: s and p orbitals

atomic orbitals must have compatible 
symmetry and orientation to form 
molecular orbitals 



bonds involving atomic d orbitals
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Hybridization
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1s22s22p2 1s22s12p3

hybrid orbitals

perturbation of the description of 
the atomic orbitals induced by the 
interaction with the sourronding 
atoms

linear combinations of atomic 
orbitals that have similar energy to 
produce sets of equivalent orbitals 
that are properly oriented to form 
bonds and favored in energy

example: carbon



sp hybridization

3030

the s orbital hybridize 
with one p orbital, 
to give two sp hybrid
orbitals (sp1)

of the same atom!

s bond between the sp orbitals (s pz)
s bonds between sp orbitals and H 1s orbitals
p bonds between the two px orbitals and 

between the two py orbitals

linear bond

example: acetylene C2H2 x



sp2 hybridization

3131

the s orbital hybridize 
with two p orbitals, 
to give three sp2 hybrid 
orbitals

trigonal planar bonds

of the same atom!

s bond between the sp2 orbitals 
s bonds between sp2 orbitals and H 1s orbitals
p bond between the pz orbitals 

example: ethylene C2H4



sp3 hybridization

3232

the s orbital hybridize with the three p orbitals, 
to give four sp3 hybrid orbitals

tetrahedral 
geometry

of the same atom!

s bond between the sp3 orbitals 
s bonds between sp3 orbitals and H 1s orbitals

example: ethane C2H6



spd hybridization

3333

these hybrid orbitals
exist as well 



Toward solids: energy bands
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Toward solids: energy bands

1D chain 

one s orbital

one p orbital 
aligned along the chain

λ = ∞ → 𝑘 = 0

λ = 2𝑎 → 𝑘 = 𝜋/𝑎

λ = 2𝑎 → 𝑘 = 𝜋/𝑎

λ = ∞ → 𝑘 = 0

wavelenght wavevector

Energy is a function of wavevector: 𝐸(𝑘)
35
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Toward solids: energy bands

1D chain 

one s orbital

one p orbital 
aligned along the chain

36
Energy is a function of wavevector: 𝐸(𝑘)a

0



Toward solids: energy bands and density of states 

1D chain 

one s orbital

one p orbital 
aligned along the chain

Band structure: 𝐸 𝑘

𝑘-integrated → density of states (DOS)  𝑔 𝐸

37
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Solids: Tight-binding model 
To describe the energy of electrons in solid cristals:

Wavefunctions constructed starting from atomic orbitals 𝜙(𝒓)
+
Bloch theorem: 𝜓!,1 𝒓 = exp 𝑖𝒌 ⋅ 𝒓 𝑢!,𝒌 𝒓 with 𝑢!,𝒌 𝒓 possessing the lattice periodicity

→ Schrödinger equation can be solved even if the system is composed of a huge number of atoms (~1023 / cm3)

→ energy bands: 𝐸(𝒌)

Localized orbitals will not overlap at interatomic distances → atomic-like states
Only orbitals that have sufficient overlap between nearest neighbors will give rise to bands

The bandwidth is proportional to the transfer integral (or hopping matrix element), that reflects the ease with which 
an electron can transfer from atom to atom.  
This integral is related to the ovelap between wavefunctions and to the strength of the potential Δ𝑈 originating from 
the atoms in the cristal in positions  𝑹.  

Transfer integral:    𝛾 𝑹 = ∫𝜙∗ 𝒓 Δ𝑈 𝜙 𝒓 − 𝑹 𝑑𝒓

Other relevant integrals: Overlap integral: α 𝑹 = ∫𝜙∗ 𝒓 𝜙 𝒓 − 𝑹 𝑑𝒓
Cristal field integral: β = ∫𝜙∗ 𝒓 Δ𝑈 𝜙 𝒓 𝑑𝒓 38



Solids: Tight-binding model 
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simplifications / approximations:

- only nearest neighbors (NN) in the sums
- b small offset, can be neglected
- a small and/or does not change strongly the band

→

1D chain distance a
one s orbital



Na electronic structure

atomic Na: 
1s2 2s2 2p6 3s1

[Ne] 3s1

energy not to scale

3s 5

2p 38

2s 70

1s 1080

Evacuum

Binding 
energy (eV)

atomic bulk
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Cu electronic structure

atomic Cu: 
[Ar] 3d10 4s1

energy not to scale

4s 7
3d 11

3p 83

3s 128

2p 940
960

2s 1097

1s 8980

Evacuum

Binding 
energy (eV)

4s -6 to 8
3d 2 to 5

3p

3s

2p

2s

1s

Binding 
energy (eV)

EFermi

atomic bulk
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Cu band structure
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Cu band structure and density of states (DOS)
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Diamond 

formation of four sp3 hybrid orbitals

the directional character of the p orbitals is found in the sp3 orbitals → solid with covalent bonds
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atomic C:  1s2 2s2 2p2

insulator

Egap = 5.5 eV


