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Analytical solution for hydrogen and hydrogenic atoms (one electron)

h? Ze? 1 1 1 Schrodinger equation for the motion of one
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2uv ¥ 477807“?’& =By 1 Me T my electron relative to the nucleus
Z: atomic number

—> variable separation, radial and angular parts of wavefunctions

n=1273,4.. principal quantum number; average distance of an electron from the nucleus; energy of the
2

electron: E, « —% 2

[=0,1,..n—1 orbital (angular momentum) quantum number; magnitude of the angular momentum of the electron:
11| =/ I(lL+ DA

m=Ll-1,..,—I magnetic quantum number; (21 + 1) values; direction of the angular momentum (with
respect to an applied magnetic field, usually along z): 1, = m;h

electron configurations, identified by the shell: n = and the subshell: [
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Hydrogenic wavefunctions

—> variable separation, radial and angular parts of wavefunctions

Total wavefunction Radial part Angular part
— ~ — N
p(r, 0, $) =  R(r) x  Y(0,9)
Dominant close ~ Bridges the two Dominant far from
to the nucleus ends of the function the nucleus

e <\ A\

R(r)= rl % Epolynomial in r\) X Edecaying exponential in r}



Rn,l('r) = Np,p il-;—l_ll

Hydrogenic radial wavefunctions
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Radial wave functions (R ;)
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Hydrogenic angular wavefunctions: Spherical harmonics
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electron density angular distribution

Angular momentum

m, YLm’(O,(P)
1 \1/2
0 -
41t}
1/2
3 3\
0 — cos 6
41t}
- 1/2
+1 ¢(8—} sin O e*'®
T
- 1/2
0 [F) (3 cos’6—1)
T
= 1/2
+1 1(8—) cos Osin Qe?
T
- \172
+2 [— sin2@ e*2¢
32w /
- \1/2
0 [— (5 cos’8— 3 cos )
lém )
o 1/2
+1 -T-(g) (5 cos’6— 1)sin He*?
T
105"
+2 (?} sinZ0 cos O e ™49
|4
= 12
+3 ?(—) sin’Q e3¢

64m 7



electron density angular distribution

Angular momentum
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Atomic orbitals

Complex
wavefunctions



Atomic orbitals

Complex

. https://commons.wikimedia.org/wiki/Hydrogen_orbitals_3D
wavefunctions

https://commons.wikimedia.org/wiki/Hydrogen_orbitals_3D_real

Real wavefunctions (linear combinations)

2p 2p, 2

Px
n=2, =1,y n=2, =1, z n=2, I=1, x




Orbitals
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Electron spin

Intrinsic angular momentum of the electron
_1 : : : _ _ \/§/
s=1/, spin quantum number, magnitude : |s| = /s(s+ 1)h = > h

me =11/, spin magnetic quantum number, component along z,
magnitude: mih = +1/,h

ms=+1/2=T, mS:—l/ZZl
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Total angular momentum and spin-orbit coupling

Still only one electron

Total angular momentum:j=1+s
il = ViG + D, jz = mjh
j=1l+s, .., |l —s]|

m] =j,...—j

1z A

1 I=1,s=1/2

V'] = total angular

i — 3/2 :
momentum quantum ] 3/2 ] 1/2

number m]- =3/2,1/2,-1/2,-3/2 m]- =1/2,-1/2
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spin-orbit coupling: additional term in the hamiltonian: Vg, o« (1-8)&s,
electron energy depends on the total angular momentum

the interaction partially lifts the degeneracy of orbitals of a given subshell
(same [, different j )
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Many-electron atoms

all the electrons interact with one another, analytical solution not possible
orbital approximation - electron configuration (n, [)

Pauli exclusion principle - max two electrons per orbital

Example: Na, 11 electrons: 1s2 2s2 2p6 3s!

Filling of open subshells? For the ground state it follows the Hund’s rules

Open subshells: how are combined the orbital, spin, and total angular momenta of the electrons?
Two coupling schemes are possible:

- LS-coupling: first find L. and S, then couple them to obtain J (light elements with small spin-orbit coupling)

Total orbital angular momentum L= )1l quantum number L, and M,
Total spin momentum S=)s; quantum number S, and Mg
Total angular momentum J=L+S quantum number J, and M,

- jj-coupling: couple 1 and s of individual electrons, and then couple the j's (heavy elements, large spin-orbit coupling)
Individual total angular momentum ji=1;+s; quantum number j, and m;

Total angular momentum J= 2J; quantum number J, and M,



Energy levels in many-electron atoms

- orbitals with the same value of n but different values of [ are no longer degenerate

hydrogenic atom:
(consequence of penetration and shielding) ydrog

Z2
- spin-orbit coupling partially lifts the degeneracy of orbitals of a given subshell (same [, E, x — ﬁ
differentj )

shel: n =1 subshell: [
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X-ray data booklet, Lawrence Berkeley National Laboratory Co re |eve|s energies

https://xdb.Ibl.gov/ o o . .
Table 1-1. Electron binding energies, in electron volts, for the elements in their natural forms.

| Kis] JLizs  Lazpip Lazpsn | Mids  Ma3pin Midpsn Ma3dyz Ms3ddsn | INids  Nadpys  Nadpys

I H 136

2 He K 24 6* L M N

3 Li 54.7%

4 Be 111.5%

5B 188*

6 C 284 .2*

7N 409.9* 37.3*

8 0 543.1* 41.6%

9F 696.7*

10 Ne 870.2* 48.5% 21.7* 21.6*

11 Na 1070.8% 63.5% 30.65 30.81

27 Co 7709 925.1% 79327 778.1% 101.07 5897 5997

28 Ni 8333 1008.67 87007 8527+ 11087 68 07 6627

29 Cu 8979 1096.7% 95237 9327 122.5¢% 773% 1517

79 Au 80725 14353 13734 11919 3425 3148 2743 2291 2206 762.1% 64277 54637
80 Hg 83102 14839 14209 12284 3562 3279 2847 2385 2295 802 2% 68027 576.61
81 T1 85530 15347 14698 12658 3704 3416 2957 2485 2389 84021 72057 6095

82 Pb 88005 15861 15200 13035 3851 3554 3066 2586 2484 891 87 76197 643 5%



Core levels energies

Frequency

| | | | | | | | | | | | | | |

(waves per 0% 407 410% 10% 10" 10'" 102 10" 10" 10"% 10'® 10" 10"%10"7 10

energy of

| | | | | | | | | |
[

one photon 15 1% 167 10% 10 10™ 107 10° 107 1 10" 10° 107 10* 10° 10

2 1 - - - ‘7 <
10~ 10°10° 1 10 1010 10 10 10 107 10 10" 10 10 10
Wave'enght | | I ! I I I | I I I | | I I I
(meters)
a e
RADIO WAVES INFRARED uv HARD X RAYS
- . -

MICROWAVES SOFT X RAYS GAMM

17



Molecular orbitals

Approximate solution to the Schrodinger equation for the electrons in the field of the nuclei of the atoms forming
the molecule

Usually constructed by combining atomic atomic orbitals or hybrid orbitals from each atom of the molecule

LCAO (Linear Combination of Atomic Orbitals)

Covalent bonds (electron sharing)



H, molecule
interaction terms U
|
_R2V3 h2v§+ e? { 1 1 +’1+ 1 1 1 ! }
|RA—I‘1| |RB—I‘2| d |I‘1—I‘2| |RA—I‘2| |RB—I‘1|

H =

2m 2m 4meg

Atom A with electron 1, atom B with electron 2, at distance d

Because electrons are fermions, the total wavefunction (orbital x spin) must be antisymmetric (change sign) upon
particle exchange

Spin wavefunctions are generated by linear combinations of the 4 spin states: |mg1,ms2 ) : [T, [T), NP, )
Sa MS>
0, 0) = % (1) = [41)]  —  singlet, antisymmetric upon particle exchange
L+1) = M)
1,0) = L [[14) + [4D)] — triplet, symmetric upon particle exchange
V2
1,-1) = [

19



H, molecule

the orbital wavefunction associated with the singlet (triplet) must be symmetric (antisymmetric);
such orbital wavefunctions are obtained by different linear combinations of the products of the atomic orbitals:

Ysym(T1,T2) = % [pa(r1)pB(r2) + da(r2)pp(ri))

Paoym (F1,T2) = % 6.4(r1)$5(rs) — ba(ra)dn(r)

Combining orbital and spin wavefunctions in the appropriate way, Heitler - London
antisymmetric total wavefunctions are obtained: Calculate the molecular energy levels
for the two orbital wavefunctions:

\I’singlet — wsym(rl, 1‘2) |O, 0)
E — fw* (1'1,1'2) H (1‘1, 1‘2) dridra

Uiriplet = Yasym(r1,T2) |1, M) ~ [9*(r1,r2) ¢ (r1,12) dridrs

20




energy (arb. units)

H, molecule

—

- = exchange integral X

'-| - == Coulomb integral C
| — overlap integral S

= [ 6a)op(r2)oa(r2)on(r)dridrs
O u(r1)op(re)Uda(r1)¢p(ra)dridrs

Oa(r1)9p(ra)Ud s(r2)¢p(ry)dridry

=~ Qo
|
— —

I I I I
1 2 3 4

d interatomic distance (a,)

I
5

E = 2EH,ls + Al:;singlet/triplet

_ C(d) — X(d)
AEtriplet — 1 — S(d)

_ C(d) + X(d)
AEsinglet - 1 —I— S(d)

Etriplet > Esinglet

The energy of the system depends on the spin of the
electrons, despite of the fact that the spin does not

enter the calculation directly.
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H, molecule

10 E = 2EH,ls + AEsinglet/triplet
| _ C(d) — X(d)
0 . 0.1 0.2 ABripet = = S(d)
| | Separation d, nm
| | X
%’“ —10 AEsinglet = C(d) ha (d)
5 1+ S(d)
= |
w20 . 0.074 nm “Antibonding  triplet
272 ———%——— '—i—'——————————'——— ———————— EH,ls = —13.6eV

~30 14.5eV
—n * Bonding singlet

—40 | | |
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Simple representation of covalent bonds
Molecular orbitals

Use the sign (phase) ot the wavefunctions to indicate:
constructive interference -> localization of electrons between the atoms, bonding, lower energy

destructive interference -> depletion of electrons between the atoms, antibonding, higher energy

The different signs are typically represented by different shades / colors



H, molecule

1s

=

s isotropic orbitals - o orbitals

Destructive
interference

(c) Wave functions combined for o,

(a) Wave functions combined for o,

(d) Antibonding probability density

Constructive

interference
71 O1s
" S -

°

°
H H
(b) Bonding probability density

H (AO)

Energy scheme

1 1s
O1s
H, (MOs) H (AO)
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p orbitals directed along the interatomic axis—» o orbitals

example: p, orbitals, interatomic axis along z

X X X
np, np, c*

npz

(b) Destructive AO Overlap c” Antibonding MO
Atomic Orbitals (AOs) Molecular Orbital (MO)
X X X
] oy
|
np, np, anz

(a) Constructive AO Overlap ¢ Bonding MO

higher energy

lower energy

25



p orbitals perpendicular to the internuclear axis - 7 orbitals

example: p, orbitals, interatomic axis along z

Atomic orbitals Molecular orbitals
)|( X X
N higher energy
Z+ g — : ) )
} =7 z anti-bonding, ©*
‘ *
npy np, nnpx
Atomic orbitals Molecular orbitals

X

|

lower energy
bonding, &

b, 4

X X
| 1
np, np,

Mhp,
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atomic orbitals forming molecular orbitals can have different /

example: s and p orbitals

c* (antibonding)

atomic orbitals must have compatible

non-bonding symmetry and orientation to form
(no orbital) molecular orbitals
o bond

27



bonds involving atomic d orbitals

e S\ =\ )
s i | st (—o
- 0980 , |60 @ ., (@890
y 42 2 @ O 22 i 22 z
c “ AR v 2 LNED (& DS
j
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Hybridization

example: carbon
hybrid orbitals

perturbation of the description of 1s?2s22p? 1s22s12p’
the atomic orbitals induced by the Ground State Excited state Hybridisation
interaction with the sourronding b A A A A
atoms T L I 3
ottt 1 SP
linear combinations of atomic .
orbitals that have similar energy to 2s «H— 2s + "
produce sets of equivalent orbitals 1 unhybridised
that are properly oriented to form 2p ? 1 T | ? <« P orbital
bonds and favored in energy LA \ \ 2
A= —1——1—SP
5 A A A A [ 2 unh‘ybridised
P ' IR ' p orbitals
P4
| I

SP
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sp hybridization

fth |
the s orbital hybridize orthe samle atom

with one p orbital, | X
to give two sp hybrid
orbitals (sp?)

X
linear bond
7
y

2p sp hybrids

X X

Z
2= > D
y

Schematic representation
of hybrids shown together

example: acetylene C,H, //T'-" n,-bonding

H—C=C—H

o bond between the sp orbitals (s p,)

o bonds between sp orbitals and H 1s orbitals

7 bonds between the two p, orbitals and
between the two p, orbitals

30




sp? hybridization

the s orbital hybridize of the same atom!
with two p orbitals, A

to give three sp? hybrid y
orbitals

trigonal planar bonds

Hybrids shown

2py
together

example: ethylene C,H,

H H n-bonding
N/

/ \
H H

o bond between the sp? orbitals
o bonds between sp? orbitals and H 1s orbitals
7 bond between the p, orbitals

o-bonding

31



sp? hybridization

the s orbital hybridize with the three p orbitals,
to give four sp3 hybrid orbitals

of the same atom!

tetrahedral
geometry

2p,

Hybrids shown
together

example: ethane C,Hg

O-bonding o bond between the sp3 orbitals
o bonds between sp3 orbitals and H 1s orbitals

32



spd hybridization

these hybrid orbitals
exist as well

33



log energy

TS

Na

3S

2p
2S

1s

(@)

(b)
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4 Y
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Toward solids: energy bands

Two atoms

Separation

Very many atoms

a

'." . >
o
3s —¢— —¢— 3s O
. K cC
Isolated ' . Isolated H
Na atom Na atom
Two Na atoms
(c) Many atoms (d)
>
S S
QO o
w O W Qo -

a
Separation

a

Separation

v
band width
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Toward solids: energy bands

1D chain
H'QheSt |eV9| Of P band | wavelenght wavevector
one s orbital FuIIy antlbondlng A= - k=0
one p orbital D -
aligned along the chain p Band
Fully bondlng A=2a > k=mn/a

A

s Lowest Ievel of p band

gap nghest Ievel Qf $ band

i e —
s Band :

9(‘@@%‘%?@@0

a Energy is a function of wavevector: E (k)
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Toward solids: energy bands

1D chain
nghest Ievel of p band E
one s orbital FuIIy antlbondlng
one p orbital D P
aligned along the chain p Band !

Fully b@ndlng

A

s Lowest Ievel of p band
gap nghest Ievel Qf $ band

5 @ ﬁ'“i |

Q(‘@e@ﬁﬁ*@@ﬁ

a Energy is a function of wavevector: E (k)
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Toward solids: energy bands and density of states

1D chain

one s orbital

one p orbital
aligned along the chain

Band structure: E (k)

k-integrated = density of states (DOS) g(E)

DOS

s
a

37
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Solids: Tight-binding model

To describe the energy of electrons in solid cristals:

Wavefunctions constructed starting from atomic orbitals ¢ ()
+

Bloch theorem: ¢, (1) = exp(ik - T)u, , () with u, , (1) possessing the lattice periodicity
— Schrodinger equation can be solved even if the system is composed of a huge number of atoms (~1023 / cm3)
- energy bands: E (k)

Localized orbitals will not overlap at interatomic distances - atomic-like states
Only orbitals that have sufficient overlap between nearest neighbors will give rise to bands

The bandwidth is proportional to the transfer integral (or hopping matrix element), that reflects the ease with which
an electron can transfer from atom to atom.

This integral is related to the ovelap between wavefunctions and to the strength of the potential AU originating from
the atoms in the cristal in positions R.

Transfer integral: Y(R) = [¢*(r) AU ¢(r — R)dr

Other relevant integrals: Overlap integral: a(R) = [¢p*(r)¢p(r — R)dr
Cristal field integral: B= [¢*(r) AU ¢p(r)dr



Solids: Tight-binding model

. 1D chain distancea
B+ ZR;A() eXP(Zk . R)’Y(R) one s orbital
1+ r.oexp(tk - R)a(R)

E(K) = Eq +

simplifications / approximations:

- only nearest neighbors (NN) in the sums E(k) - Eat’s T [exp(z’ka) + exp(—z’ka)]fy(a)

- B small offset, can be neglected = Eat,s + 2'7 COS(ka)
- o small and/or does not change strongly the band

9

E(k) =FE.+ Y  exp(ik-Ryn)y(Ryn)

RNN A X—---- --------------------------------- --
4y[ | ;
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Na electronic structure

atomic Na:
1s% 252 2p% 3s!
[Ne] 3s!

energy not to scale

Binding
energy (eV)

3s 5

2p 38

28 70

Is 1080

Evacuum

3s

2s

1s

bulk




Cu electronic structure

atomic Cu:
[Ar] 3d10 4s!

energy not to scale

4s
3d

3s

2s

1s

Binding
energy (eV)

7
11

83

128

940
960

1097

8980

Evacuum

43
3d

3s

28

1s

Binding
energy (eV)

-6t0 8
2to5
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Cu band structure

Cu: fcc crystal
first Brillouin zone:
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Cu band structure and density of states (DOS)

2
Niveau de Fermi E r S\ Cu
0 - - - — — -E, — —1 0
A dS ‘
H—— e b ]
T Af a4 = . 1
~ \ o\ d3
> \ 1
% ‘\
S -6} / 1-6
M 51
S/
-8 F AAAZ -8
~10 F 1-10
8 6 4 2 O L r
Densité d’états

X K

Vecteur d’onde

Cu: fcc crystal

first Brillouin zone:
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Diamond
atomic C: 1s? 2s2 2p?

formation of four sp? hybrid orbitals

the directional character of the p orbitals is found in the sp3 orbitals = solid with covalent bonds

a Interatomic distance

insulator

Egap = 5.5 €V

44



