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Nose has derived a set of dynamical equations that can be shown to give canonically 
distributed positions and momenta provided the phase space average can be taken into the 
trajectory average, i.e., the system is ergodic [So Nose, J. Chem. Phys. 81, 511 (1984), 
W. G. Hoover, Phys. Rev. A 31, 1695 (1985)]. Unfortunately, the Nose-Hoover dynamics is 
not ergodic for small or stiff systems. Here a modification of the dynamics is proposed 
which includes not a single thermostat variable but a chain of variables, Nose-Hoover chains. 
The "new" dynamics gives the canonical distribution where the simple formalism fails. 
In addition, the new method is easier to use than an extension [D. Kusnezov, A. Bulgac, and 
W. Bauer, Ann. Phys. 204, 155 (1990)] which also gives the canonical distribution for 
stiff cases. 

I. INTRODUCTION same initial conditions. The present scheme preserves the 
advantages of the original Nose-Hoover approach. 

Temperature control in molecular dynamics simula­
tions (Newtonian dynamics) is essential as most experi­
mental measurements are performed at constant tempera­
ture rather than constant energy. Nose resolved this 
difficulty by deriving a dynamics from an extended Hamil­
tonian that can be shown to give canonically distributed 
positions and momenta. l-4 The proof, however, involves 
the assumption that the dynamics itself is ergodic or, more 
succinctly, that the trajectory average can be taken into the 
phase space average. It has since been shown that for small 
or stiff systems the dynamics is not ergodic and the correct 
distributions are not generated.2

,5 The method does, how­
ever, work extremely well in large (ergodic) systems. 

In this article, a possible reason for the nonergodicity 
of Nose's original formulation is discussed. A simple mod­
ification based on this analysis is presented and tested on 
model problems. The method proposed herein succeeds 
precisely where the original method fails. The present 
modification has the advantage that it preserves the sim­
plicity of the original approach. 

Other methods can also be used to obtain canonical 
distributions on stiff systems,6--9 some of which are ~aria­
tions and generalizations of the original Nose-Hoover ap­
proach.7

- 9 In the general method of Kusnezov et ai., the 
choice of functions and parameters is somewhat arbitrary 
and the algorithm difficult to apply in complex situations 
such as constant pressure simulations. The method of 
Andersen which involves stochastic collisions (at intervals 
some or all of the velocities are resampled according to the 
Boltzman distribution) will also give the canonical ensem­
ble even in the most trivial systems.6 This method has the 
disadvantage that it is not a continuous dynamics with well 
defined conserved quantities. Hence the same trajectory 
cannot easily be reproduced by another worker from the 

"In partial fulfillment of the Ph.D. in the Department of Physics, Co­
lumbia University. 

II. METHODS 

The set of dynamical equations, 1-4 

(1) 

defines Nose-Hoover dynamics. Here Pi and qi are one 
dimensional variables and the variable '1], which is decou­
pled from the dynamics, is included for completeness. This 
set of equations, can be shown to give the canonical distri­
bution in an ergodic system. 1,2 A proof due to Hoover uses 
conservation of probability2 to show that the distribution 

[ 
1 ( N P7 P~)] l(p,q,P71,'1]) o::exp -kT V(q)+ i~1 2m/2Q 

is stationary 

al N al. al. al. al. 
at +.2: aq. qi+ an.Pi+ an P71+ a'YI '1] 

1=1 1 1:'1 1:'71 ., 

[
aqi api aT] ap71] 

+1 -+-+-+- =0. aqi api a'1] ap71 

(2) 

(3) 

Therefore (if the system is ergodic), l(p,q,P71''1]) is the 
static probability distribution generated by the dynamics. 
The proof is necessary but not sufficient for a general sys­
tem.2-4,lO In addition, it can be shown that the quantity 
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N 2 2 
~ P; PTJ 

H'(p,q,7]'PTJ) = V(q) + ;~1 2m;+2Q+NkT7] (4) 

is conserved, namely, 

(5) 

This is why it is useful to include the variable 7] in Eq. (1). 
In Appendix A, the extension due to Kusnezov et al. and 
the method of Winkler are discussed.3,7,9 

The proof presented above is valid only for ergodic 
systems. It does not guarantee that the system is ergodic 
and that the correct limiting distribution will be generated. 
Indeed, in some cases, this distribution is not produced.2-4 

Let us consider how this situation can be improved. The 
distribution itself has a Gaussian dependence on the parti­
cle mome~ta, p, as well as thermostat momenta, PTJ' While 
the GauSSian fluctuations of P are driven with a thermostat, 
there is .nothing to drive the fluctuations of PTJ' Although 
the postlons and momenta (the q's and p's) are of primary 
interest, if the Nose-Hoover equations are ergodic, the sys­
tem covers the whole phase space, which includes the space 
of the thermostat velocities. The fluctuations of the ther­
mostat variables which clearly occur in ergodic systems 
may even be important in driving the system to fill phase 
space (the dynamical equations are, of course, coupled). 
This suggests thermostating PTJ and, by analogy, the ther­
mostat of PTJ plus its thermostat, etc., to form a chain. 
Other methods of "shaking up" the .system have also been 
suggested. 7-9, 11 

The "new" dynamics, the Nose-Hoover chain method , 
can be expressed as 

. P; 
q;=-, 

m; 

(6) 

where M thermostats have been included. The 7]'S are 
again presented for completeness. These equations can be 
shown to have the phase space distribution 

(7) 

and the conserved quantity 

N P~ M p2 
~ I ~ TJi 

H'(p,q,7],PTJ ) =:= V(q) + "c., -+ "c., -+NkT7] 1 
;=1 2m; i=1 2Q; 

M 

+ L kT7];. (8) 
;=2 

Note that even in large systems, the addition of the extra 
thermostats is relatively inexpensive as they form a simple 
one dimensional chain. Only the first thermostat interacts 
with N particles. 

A good choice for the thermostat masses will help the 
dynamics achieve the canonical distribution. 1

-4 If very 
large masses are chosen, a distribution consistent with the 
microcanonical ensemble may result. If very small masses 
are chosen, the fluctuations of the momenta may be greatly 
inhibited. In Appendix B, a short argument is presented 
which suggest that the masses be taken to be Q1 
= NkT/oi and Qj = kT/oi. This choice allows the ther­
mostats to be in approximate resonance with both the sys­
tem variables (thep's and q's), which are assumed to have 
fundamental frequency lU, and each other. As will be 
shown in the results section, the mass choice in the chain 
method is much less critical than in both the simple 
metllod2 and some of the newer methods.9 

The method presented above increases the size of the 
phase space and thus helps make the system ergodic. There 
are, however, several issues that must be examined. Con­
sider a point in phase space (q,p) with 

aV(q) 
--=0 aq; , 

.P;=o. (9) 

At such a point, the equations of motion for the Nose­
Hoover chain dynamics give dqn / dt' = 0 for all n, which 
effectively stops the dynamics of the positions and mo­
menta (Note this is equally true in Newtonian dynamics). 
We call such points Hoover holes, after Hoover who first 
began to look at the ergodicity of small systems in the 
modified dynamics. For the dynamics to be ergodic, the 
system must come infinitesimally close to the Hoover holes 
without actually visiting them. Therefore, the dynamics 
near the holes must be examined to be sure that the holes 
can reasonably be assumed to be of measure zero. 

Hoover holes associated with specific values of the 
thermostat coordinates are fixed points of the entire Nose­
Hoover chain dynamics. If a fixed point is stable, then in its 
vicinity, the equations will have exponentially damped so­
lutions which will drive the system into the point. This 
scenario is disastrous if an ergodic system is desired. The 
stabi?ty o.f a fixed p.oint can be determined by examining 
the lmeanzed equatIons motion about the point. 12, 13 The 
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analysis proceeds by rewriting the Nose-Hoover equations 
as the convenient first order system 

. Pi 
qi=-' 

mi 

(10) 

where the variables (;j = TJj have been introduced. The fixed 
point condition for the system is then given by the set of 
algebraic equations obtained from setting each of the time 
derivatives on the left side of Eqs. (11) equal to zero. This 
condition can be expressed as 

aV(q) 
---0 aqi - , 

Pi=O, 

{;1{;2+ a =0, 

N{;i-a-{;2{;3=0, 

{;;_l-a-{;!j+l =0, 

(;~_l-a=O, 

(11 ) 

where the mass choice, QI = NQ and Qj = Q, has been in­
troduced and a=kTIQ. The linearized equations them­
selves are obtained by differentiating each quantity on the 
right side of Eq. (10) with respect to each variable in the 
system. The stability matrix, A, is defined by the quantities 
resulting from this differentiation evaluated at a fixed point 
[Le., a solution of Eqs. (11)]. The eigenvalues of this ma­
trix give the stability condition of the point. If the eigen­
values all have negative real parts, then the fixed point is 
purely stable. Now if the trace of a matrix is zero, the sum 
of the eigenvalues is zero. If the sum of the eigenvalues is 
zero, it can be concluded that either the eigenvalues are all 
zero or have both positive and negative real parts. Exam­
ination of Eqs. (10) and (11) and the linearized motion 
shows that the there are no solutions with all eigenvalues 
equal to zero, so we conclude that the latter must be true. 
A proof that the trace of A is zero is presented in Appendix 
C. Therefore, the fixed points of chain dynamics are not 
purely stable. It is also significant to note that the rate of 
change of the total phase space volume in the vicinity of 
the fixed point is related to the trace of the stability matrix 
by 

~ (api aXl) ~ aSj 
~ -+- + ~-i= 1 api ax, j= 1 a{;j 

N M 

L Aii+ L Aj+N,j+N=Tr(A). (12) 
i=1 j=1 

Thus if the trace of A is zero, then Liouville's theorem 
(conservation of phase space volume) holds in the vicinity 
of the fixed points. 14 This implies that the fixed points are 
neither attractors or repellorsy,15 These arguments only 
apply for M> 1, for M = 1 or the usual Nose-Hoover dy­
namics there are no fixed points of the total dynamics. 
However, the rate of change of the total phase space vol­
ume is not everywhere zero, which suggests that the Nose­
Hoover chain dynamics does not have an underlying 
Hamiltonian structure. This fact could also be deduced 
from the stability conditions on the fixed points. 13 That is, 
the Nose-Hoover dynamics admit spiral fixed points which 
are forbidden in Hamiltonian systems. 

The preceding analysis cannot determine whether the 
system is ergodic. It does, however, give indications of 
when a system may not behave well in this respect. It is 
included for completeness and to indicate that Nose­
Hoover chain dynamics has some reasonable and desirable 
properties. A more useful analysis would involve showing 
that no periodic orbits exist in the dynamics, a periodic 
orbit stability analysis. This at present can only be done 
numerically. In the results section it will be shown that 
Nose-Hoover chain dynamics fills phase space for some 
reasonable values of M. 

The Lyapunov exponent gives a measure of the degree 
of chaos present in a dynamical system.12,13,15,16 In general, 
the more chaotic the dynamics of a system, the more 
quickly it fills phase space. It is therefore important to 
study this quantity in chain dynamics. The calculation of 
Lyapunov exponents is based on dynamics cast in the ge­
neric form 

r(t)=F(r), (13) 

where ret) refers to a point in phase space [which for 
chain dynamics is (q,p'P7])]. In the first method used to 
calculated the exponents (Method I), two nearby trajecto­
ries are integrated for a small time interval T, and the 
distance between them monitored. The initial separation is 
determined by 

(14) 

where or(O) is a vector of norm E. After an interval T, the 
norm of IOr(T) I is computed and saved. The vector 
or ( T) is then renormalized to € and the process repeated. 
The Lyapunov exponent is calculated from 

A=~- i 10glor/T) I. 
N,. j=1 E 

(15) 

In the second method (Method II), the linearized equa­
tions about the trajectory r(t) 

d 
dt orct) =M(t)or(t), ( 16) 
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Br(t) =Texp [ J: M(t')dt' ]Br(O) (17) 

are solved as the trajectory ret) evolves. Here the matrix 
M is defined to be Mij = (aF/ar) I r=r(t), and T is the 
time ordering operator. At time 'T, Br is renormalized and 
the process repeated. The exponent is calculated from the 
sum of the log of norms presented above in Eq. (15). In 
general, computing the exponent by these two methods 
serves as an excellent check on the results, however, it has 
been shown that Method I is consistently the more reli­
able. 16 

Assuming the dynamics produces the correct distribu­
tion, it is desirable to know how rapidly it samples the 
distribution. A measure of this is the rate of convergence of 
the time average of the potential and kinetic energy to their 
ensemble averages (the p's and q's are the variables of 
primary interest). Such a rate can be quantified by calcu­
lating the number of time steps necessary to obtain an error 
bar or error in the mean of desired tolerance. This number 
of time steps can then be compared to the number of 
Monte Carlo steps needed to give the same error bar where 
the Monte Carlo calculation is performed by directly sam­
pling the distribution of interest (i.e., the perfect stochastic 
calculation). An efficiency can be calculated which is the 
ratio of the number of time steps to the number of Monte 
Carlo steps R = SMDISMC' Thus the larger is R, the less 
efficient the method where R has a lower limit of 1. The 
error bars for the time averages are calculated using the 
block averaging technique17 which takes into account cor­
relations which may exist in the data. The Monte Carlo 
data is uncorrelated by definition. The error bar of the 
average or error in the mean is then given analytically as 
the standard deviation of the quantity (averaged over the 
distribution) divided by the square root of the number of 
steps. The efficiency obviously depends on the method of 
integration and the time step chosen to perform the dy­
namics but does give a useful measure convergence. Two 
values of the efficiency are calculated, R'l' which measures 
the convergence of the average potential energy and Rp, 
which measures the convergence of the average kinetic en­
ergy. 

The velocity Verlet integrator18 is used to integrate the 
Nose-Hoover chain equations. The position equations are 
deterministic and the velocity equations are solved itera­
tively to a convergence level of 10-14• The model problems 
studied in the next section were integrated with time steps 
of at=0.OI6, at=0.OO5, at=0.OOI6, and at=0.OOO5 for 
systems using Qi = 10, Qi = 1, Qi = 0.1, and Qi = 0.01, re­
spectively. These choices give energy (H') conservation to 
a few parts in 105

• {For reference, integrating the harmonic 
oscillator [m= I,w= I,q(O) = I,v(O) = 1], to the same tol­
erance requires a time step ofO.OI6.} A great advantage of 
the chain method is that there is little or no degradation in 
energy conservation upon the addition of thermstats be­
yond M= 1. All runs were 1.5X 106 time steps. In the cal­
culation of the Lyapunov exponents, we compared the ex­
ponent for choices of'T ranging from lOat to l00at, and 
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FIG. 1. (a) Density plot of the Nose-Hoover dynamics of a harmonic 
oscillator [q(O) = I,p(O) = I,P'1(O) = I,Q = 1]. (b) Position distribu­
tion function obtained from Nose-Hoover dynamics of a harmonic oscil­
lator (dotted line). The solid line is the exact result. (c) Velocity distri­
bution function obtained from Nose-Hoover dynamics of a harmonic 
oscillator (dotted line). The solid line is the exact result. 

found good agreement between Methods I and II in this 
range. 

III. RESULTS 

Two systems were chosen to illustrate the new method. 
The first, is a one dimensional harmonic oscillator (m 
= l,w = I,Qi = 1) with initial condition [q(O) 
= O,p(O) = I,Pl1/0) = 1] and kT= 1. In Fig. 1, a density 
map and the projected distribution functions are presented 
for the usual Nose-Hoover dynamics (M = 1). The dy­
namics does not fill space. Also, if the initial conditions are 
changed, (q = O,p = I,Pl1 = 10), the results are changed 
(see Fig. 2). This is unacceptable as an invariant probabil­
ity distribution is desired. Similar results have been found 
by others.2,7 The Nose-Hoover chain dynamics, (M=2), 
gives rather different results (see Fig. 3). The distribution 
functions seem to be good approximations to the canonical 
results and the dynamics fills space. Changes in the initial 
conditions did not have an appreciable effect on the results. 
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FIG. 2.(a) Density plot of the Nose-Hoover dynamics of a harmonic 
oscillator [q(O) = l,p(O) = I,P'1(O) = IO,Q = 1]. (b) Position distri­
bution function obtained from Nose-Hoover dynamics of a harmonic 
oscillator (dotted line). The solid line is the exact result. (c) Velocity 
distribution function obtained from Nose-Hoover dynamics of a har­
monic oscillator (dotted line). The solid line is the exact result. 

In addition, the choice of thermostat mass is not critical in 
this method unlike both the original2 and some of the 
newer methods.9 Rather, for all the values attempted, Q 
=100, M=5, Q=lO, M=2, Q=O.I, M=2, and Q=O.OI, 
M = 2, the canonical distribution was generated. 

The Lyapunov exponents for systems containing M 
=1-15 thermostats were calculated for wide variety ofini­
tial conditions (Q= 1). The two methods used to obtain 
the exponents (see Methods) were found to be in good 
agreement as is shown in Tables I and II. In Fig. 4, the 
exponents are plotted as a function of M. The exponents 
become increasing large with M and around M =4,5 be­
come competitive with those determined by Kusnezov et 
al. for their method.7 However, the Lyapunov exponents 
include information about the dynamics of thermostat 
variables which are not of primary interest. In Table III, 
the efficiency of chain dynamics in the convergence of the 
average potential and kinetic energy is calculated for a 
variety of parameters (see Sec. II). The results indicate 
that the parameter set Q= I,M = 5 converges most rapidly. 
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V 

FIG. 3.(a) Density plot of the Nose-Hoover chain dynamics (M=2,Q 
= 1) of a harmonic oscillator [q(O) = I,p(O) = I,P'1(O) = 1]. (b) 
Position distribution function obtained from Nose-Hoover dynamics of a 
harmonic oscillator (dotted line). The solid line is the exact result. (c) 
Velocity distribution function obtained from Nose-Hoover dynamics of a 
harmonic oscillator (dotted line). The solid line is the exact result. 

For this set, the chain method is found to be competitive 
with the method of Kusnezov eta!. (Qp = I,Qq = I) for the 
convergence of the potential energy (see Table III). The 
average kinetic energy converges very rapidly in the latter 

TABLE I. Comparison between Methods I and II of the convergence of 
the Lyapunov exponent for M =4, and T= lO8.t. 

Steps A,(Method I) A,(Method II) 

100 0.2983 0.2954 
1000 0.2517 0.2516 
2000 0.2659 0.2660 
3000 0.2290 0.2293 
4000 0.2196 0.2200 
5000 0.2371 0.2370 
6000 0.2465 0.2460 
7000 0.2391 0.2392 
8000 0.2381 0.2382 
9000 0.2402 0.2402 

10000 0.2385 0.2384 
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TABLE II. Comparison between Methods I and II of the convergence of 
the Lyapunov exponent for M =6, and T= lOat. 

Steps A(Method I) A(Method II) 

100 0.4608 0.4571 
1000 0.4366 0.4368 
2000 0.3829 0.3832 
3000 0.3359 0.3356 
4000 0.3273 0.3268 
5000 0.3139 0.3129 
6000 0.2939 -0.2936 
7000 0.3025 0.3028 
8000 0.2966 0.2968 
9000 0.2997 0.2998 

10000 0.2890 0.2897 

method which may be due to the use of the third power of 
the momentum thermostat in the coupling term (see Ap­
pendix A). The calculated efficiency is a subjective mea­
sure that depends on the method of integration and the 
time step used. 

For a harmonic oscillator, the Hoover holes do not 
have a pathological effect. The phase space in a harmonic 
oscillator is such that p = 0 can be visited when q~O and 
vice versa, which reduces the effect of the hole particularly 
on the integrated distributions [P(v) and P(q)]. To com­
plete the analysis, pairs of trajectories within a radius of 
10-8 about the hole were examined. Lypaonovexponents 
similar to those reported in Fig. 4 for a given value of M 
were obtained (Q= 1). The fact that a positive exponent is 
obtained implies that the holes are not attractive and seem 
to be of zero measure, consistent with the analysis in Sec. 
II.15 

The second system studied is a one dimensional free 
particle (Q= 1). The Nose-Hoover chain dynamics can 
only give canonically distributed velocity on the half space 

.5 

.4 

.3 

..< 

.2 

.1 

0 

0 5 10 15 
M 

FIG. 4. Lyapunov exponent for the chain dynamics of a harmonic oscil­
lator as a function of the number of thermostats, M (Q= 1 ). 

TABLE III. Efficiency of chain dynamics for the harmonic oscillator." 

Q M Rq Rp 

1.0 2 230 230 
1.0 5 230 110 
1.0 15 230 110 

10.0 5 370 370 
0.1 5 730 70 
0.01 5 2300 150 

"For the method of Kusnezov et af. (Qp = l,Qq = 0, Rq = 230 and Rp 
=3. 

v>O. When v=O, the dynamics stops for all times 
[dnq(t)/dt" = o for all n]. The dynamics was never found to 
stop, but neither could it pass through the Hoover hole. 
(The holes seem to be of measure zero and are not attrac­
tive.) The dynamics is symmetric about the hole since the 
equations of motion do not depend on the sign of v. Thus 
an identical trajectory can be generated on the other half of 
phase space with no cost. In Fig. 5, the velocity distribu­
tion of the free particle is presented for M = 1,2,3. The 
canonical distribution is recovered when M = 3. As dis­
cussed in Appendix A, the functions chosen by Kusnezov 
et al. for use in their method are not appropriate for this 
system. 

IV. DISCUSSION 

The idea of thermostating the extended variable is po­
tentially quite powerful. In stiff complex systems such as 
proteins, it is difficult to start near equilibrium. In such 
cases, large unphysical oscillations in the temperature may 
develop. It is expected that additional thermostats will ef­
fectively damp such oscillations. Similarly, oscillations can 
develop in the volume in constant pressure-constant tem-

.8 

.6 

.4 

.2 

o r----?, 

-2 o 
V 

----M=3 

- - - - --- M=2 
---·-------M=l 

---Exact 

2 4 

FIG. S. Velocity distribution function obtained from Nose-Hoover chain 
dynamics (M = 1,2,3,Q= I) of a free particle. The solid line is the exact 
result. 
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perature simulations. As the momentum of the extended 
variable that drives volume is distributed canonically, it 
can also be thermostated (the proof goes through straight­
forwardly). Again, this should help damp the unphysical 
oscillations resUlting in more stable simulations. 

In summary, a modification of Nose-Hoover dynamics 
which we call Nose-Hoover chain dynamics has been 
shown to give a very good approximation to the canonical 
ensemble even in pathological cases. The idea of thermo­
stating extended variables will likely find wide application. 
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APPENDIX A 

The Nose-Hoover equations are in fact a subset of the 
more general set of equations, 1,7 

(Al) 

where F rp Grp hrp hp are arbitrary functions. These equa­
tions have the conserved quantity 

(A2) 

where h/ = dg/ld'l}/. This is a powerful generalization that 
can be used to generated canonical dynamics for variety 
systems (i.e., Lie algebras3,7). The Nose-Hoover equations 
are generated from the specific choice Fq = hq = 0 and gp 
= 'I};;2, hp = 'I}, Fp = p. Such a choice is more general than 
it may first appear as can seen by examining the position 
dependence of the functions Fq and Fp' This dependence 
must be consistent with the boundary condition of a given 
problem. Therefore, a general purpose method must take 

these functions to be independent of position. Further­
more, the proof that the dynamical system, Eq. (1), gives 
rise to the canonical distribution relies on the identities,3,7 

(A3) 
kT / 8Fp(hQi) ) = / F ( . .) 8H(p,q) ) 

\ 8Pi \ P PI,ql 8Pi ' 

where the average is, itself, over the canonical distribution. 
If the Fs are independent of position, Fq must be taken to 
be zero. This argument leads naturally to a Nose-Hoover 
form if the dependence of Gip) and hi'l}p) is chosen to be 
linear, i.e., the simplest nontrivial choice. Chain dynamics 
maintains this form. It is, however, possible to derive a 
general set of equations from which chain dynamics 
emerges as a specific choice of functions. 

In studying simple bound problems, Kusnezov et al. 
have advocated the choice, Fq = q3, Fp = p, hq = 71q' hp 
= 71;.7 With these choices the trace of the stability matrix is 
zero which guarantees certain properties of the dynamics 
in the vicinity of the fixed points (see Sec. II). The stability 
matrix of chain dynamics also has a zero trace (see Ap­
pendix C). In addition, the fixed points of chain dynamics 
occur at their natural places [Pi = 0,8V(q)/8qi = 0] while 
fixed points of the more complex method do not. 

The equations of motion [Eq. (1)] with the choice of 
functions of Kusnezov et al. are rather stiff. For a har­
monic oscillator (m= 1,cu= 1,kT= 1) integration by veloc­
ity VerIet did not conserve H' well. In the spirit of the 
iterative scheme used to integrate the Nose-Hoover chains, 
the set of first order differentials in Eq. (1) were integrated 
by iterating the general form 

. . dt 
b(t) =b(O) + [b(O) +b(t)] 2" (A4) 

to convergence. A time step of 0.001 was needed to obtain 
reasonable H' conservation for the oscillator. About five 
iterations were needed for convergence. 

The dynamics proposed by Winkler9 can be expressed 
as 

(A5) 

PTJ= -~ [ ~ p~ - (N -!)kT]. 
71 i=1 mi 

This can be shown to have the distribution function 

1 { 1 [ N p~ P~ ] } 
f(p,q,PTJ,71) cc7jexp -kT V(q)+ i~1 2m/2Q (A6) 

with conserved quantity 

J. Chern. Phys., Vol. 97, No.4, 15 August 1992 



2642 Martyna, Klein, and Tuckerman: Nose-Hoover chains 

p2 
H'=H(P,q)+2Q-(2N -1)kTlog Tf. (A7) 

The variable Tf appears explicitly in the dynamical equa­
tions but has an "unbounded" probability distribution. 
Therefore, the dynamical equations appear to be rather 
poorly behaved in some regions of phase space, particularly 
when Tf is small. These regions are not sampled by the 
dynamics as the conserved quantity restricts phase space 
such that Tf==exp{[H(p,q) + p;I2Q - E]/(2N 
- 1)kT}. As E is a constant and H(p,q) and PT/ have 
bounds (their distribution functions decay exponentially), 
Tf is "bounded."{The inverse of Tf is bounded from above 
by exp[(E - Vrnin )/(2N - 1)kT], where Vmin is the glo­
bal minimum of the potential energy surface.} However, if 
another thermostat is added to the dynamics, either to 
control Tf or some subset of the degrees of freedom in the 
system then the restriction imposed by the conserved quan­
tity is insufficient "to bound" the thermostat positions and 
avoid regions of phase space that are (numerically) unsta­
ble for the dynamics. In fact, the instability was first no­
ticed in attempts to numerically integrate a chainlike an­
satz within this formalism. The method is therefore not as 
useful or flexible as the usual Nose-Hoover construction. 
Note that though there is another form of the Winkler 
method with slightly different equations of motion, it has 
the same difficulties as the more natural variant discussed 
above. 

APPENDIX B 

In order to determine reasonable values for the ther­
mostat masses, a second order equation of motion is gen­
erated for each of the iJj from the time derivative of 1Jj 

(Bl) 

cfliJM-l 
dr {

2iJM - 2 '2 
-Q [QM-3TfM_3- kT] 

M-I 

TfM [ '2 k}' --Q QM-2TfM-2- T] -TfM-l 
M-l 

{ 2iJ~-2QM-2 '2 1 '2 } 
X QM-l TfM+ Q)QM-ITfM_I-kT] , 

d
2
iJM = {2iJM- 1 [Q '2 -kT]} _. {2iJ~_IQM_l} 

dr QM M-2TfM-2 TfM QM . 

These equations can be solved individually, in the limit 
Tfi is fast compared to Tfi-l and Tfi+l> while Tfi+2 moves on 
the same time scale. This permits us to take functions of 
Tfi-I and Tfi+l equal to their average values.3 The result is 

cfliJl . [2NkT 2kT] Ql'3 
dr = -Tfl ~- Q2 - Q2 Tfl' 

cfliJj = _iJj[2kT _ 2kT]_ Qj-l iJ~, 
--;[iZ Qj Qj+ 1 Qj+ 1 J 

(B2) 

d
2
iJM . [2kT] ---;p.-= -TfM QM . 

The choices Ql = NkT / ui and Qj = kT / ui give thermo­
stats I to M - I an average "frequency" of (i). This fre­
quency is calculated by averaging the iJ; in the third order 
term over the distribution function. The Mth thermostat 
oscillates with frequency 2(i). The arbitrary parameter (i) is 
chosen based on the properties of potential energy surface 
(phonon frequencies, etc). Several approximations have 
gone into the analysis and, in fact, the choice of mass itself 
violates some of the approximations. This is only meant to 
give a rough estimate. 

APPENDIX C 

In this Appendix, a proof that the trace of the stability 
matrix is zero for chain dynamics is presented. The diag­
onal elements of A, the stability matrix, are 

Aii=-Sl> i=I,N, 

(el) 

where the s's evaluated at a fixed point. The trace of A is 
then 

M 

-Tr(A)=Nst + L Si (e2) 
j=2 

From the fixed point equations, Eqs. (11), it is immedi­
ately clear that SM-l = ± jc;.. Solving for SM in terms of 
SM -2 in Eqs. (11) and substituting into the trace gives 

M-2 1 
-Tr(A)=Nst + j~2 Sj+ jc;.+ .[ci (S~_2-a) 

M-2 1 

=Ns1+ j~2 Sj+TaS~-2' (e3) 
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Similarly, solving for ~M-2 in terms of ~M-3' substituting 
into the trace and simplifying gives 

M-3 1 1 
-Tr(A)=N~I+ l: ~j-T~t--3+-:::-r:=~M-3' 

j=2 va ava 
(C4) 

At this point, the other end of the equation is simplified. 
The variable N~1 is replaced by Nbl = (a + b2b3)/bl and 
b2 is replaced by b2= -a1bf' Substituting into the trace 
and simplifying gives 

1 M-3 1 
- Tr(A) = -- b~b3 + l: bj-L bt--3 

a j=3 Va 

1 
+ C ~M-3' (C5) 

ava 

Now, substituting ~~=a+~3~4 and simplifying gives 

1 M-3 1 
- Tr(A) = -- ~~~4 + l: ~j- C ~t--3 

a j=4 Va 

1 
+-=-:---r ~M-3' (C6) 

ava 

Similarly, substituting b~=a+b4~5 and simplifying gives 

1 M-3 1 
-Tr(A)=--bib5+ l: bj-Lbt--3 

a j=5 va 
1 

+ C ~M-3' (C7) 
ava 

Each subsequent substitution cancels the next term in the 
sum until we get to M -4, where 

1 2 1 2 
-Tr(A)=--bM-4~M-3+bM-3-TbM-3 

a Va 

1 
+~~M-3' 

ava 
(C8) 

Inserting the usual term ~M-4 = a + ~M-3~M-2 gives 

12 12 1".4 
-Tr(A)=--bM_3bM_2- CbM-3+ C!>M-3' 

a Va aVa 
(C9) 

Finally, using the fact that bM-2 = (bM-3 - a)1 ragives 

12212 
-Tr(A)=-~bM_3(bM_3-a)-LbM_3 

aVa va 

1 
+-:::-7':': ~M - 3 = 0, 

aVa 

which completes the proof. 

(ClO) 

The zero trace condition can also be used to show that 
Louiville's theorem holds in the vicinity of the fixed points. 
In this region, the linearized equations hold 

x;= l: A;J'j, (ell) 
j 

where the x are a general set of variables (i.e., x represents 
the p's, q's, and ~'s). Now according to Liouville's theo­
rem, the condition for incompressible phase space volume 
is 

~ ax; 
£.. --0 
;=1 ax;- . 

Now differentiating x; with respect to Xi gives 
N 

L Au=O, 
i=1 

(C12) 

(C13) 

which is equal to zero if the matrix, A is traceless. Thus the 
phase space volume is conserved in the region of validity of 
the equations and the fixed points are neither attractors nor 
repellors. 
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