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Nosé-Hoover chains: The canonical ensemble via continuous dynamics
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Nosé has derived a set of dynamical equations that can be shown to give canonically
distributed positions and momenta provided the phase space average can be taken into the
trajectory average, i.e., the system is ergodic [S. Nosé, J. Chem. Phys. 81, 511 (1984),

W. G. Hoover, Phys. Rev. A 31, 1695 (1985)]. Unfortunately, the Nosé-Hoover dynamics is
not ergodic for small or stiff systems. Here a modification of the dynamics is proposed

which includes not a single thermostat variable but a chain of variables, Nosé-Hoover chains.
The “new” dynamics gives the canonical distribution where the simple formalism fails.

In addition, the new method is easier to use than an extension [D. Kusnezov, A. Bulgac, and
W. Bauer, Ann. Phys. 204, 155 (1990)] which also gives the canonical distribution for

stiff cases.

1. INTRODUCTION

Temperature control in molecular dynamics simula-
tions (Newtonian dynamics) is essential as most experi-
mental measurements are performed at constant tempera-
ture rather than constant energy. Nosé resolved this
difficulty by deriving a dynamics from an extended Hamil-
tonian that can be shown to give canonically distributed
positions and momenta.!™ The proof, however, involves
the assumption that the dynamics itself is ergodic or, more
succinctly, that the trajectory average can be taken into the
phase space average. It has since been shown that for small
or stiff systems the dynamics is not ergodic and the correct
distributions are not generated.>> The method does, how-
ever, work extremely well in large (ergodic) systems.

In this article, a possible reason for the nonergodicity
of Nosé’s original formulation is discussed. A simple mod-
ification based on this analysis is presented and tested on
model problems. The method proposed herein succeeds
precisely where the original method fails. The present
modification has the advantage that it preserves the sim-
plicity of the original approach.

Other methods can also be used to obtain canonical
distributions on stiff systems,6‘9 some of which are varia-
tions and generalizations of the original Nosé—Hoover ap-
proach.” In the general method of Kusnezov et al., the
choice of functions and parameters is somewhat arbitrary
and the algorithm difficult to apply in complex situations
such as constant pressure simulations. The method of
Andersen which involves stochastic collisions (at intervals
some or all of the velocities are resampled according to the
Boltzman distribution) will also give the canonical ensem-
ble even in the most trivial systems.® This method has the
disadvantage that it is not a continuous dynamics with well
defined conserved quantities. Hence the same trajectory
cannot easily be reproduced by another worker from the

3In partial fulfillment of the Ph.D. in the Department of Physics, Co-
lumbia University.
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same initial conditions. The present scheme preserves the
advantages of the original Nosé~Hoover approach.

Il. METHODS

The set of dynamical equations,'™

pi=— —Pi (1)

defines Nosé-Hoover dynamics. Here p; and g; are one
dimensional variables and the variable 5, which is decou-
pled from the dynamics, is included for completeness. This
set of equations, can be shown to give the canonical distri-
bution in an ergodic system.? A proof due to Hoover uses
conservation of probability? to show that the distribution

2 P2
(V(q)+ > 2 —")} (2)

2m,-

S(2:q:ppm) CXP[

is stationary

BSR4
ql ap ap p'r] 87777

q; 9p; +8n+3p1,
aqz dp; I apn
Therefore (if the system is ergodic), f (p,q.0pm) i the
static probability distribution generated by the dynamics.
The proof is necessary but not sufficient for a general sys-
tem.>*1° In addition, it can be shown that the quantity

+f[ 0. (3)
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P, P
H' (p,a,m0,) =V (@) + Z Q+NkT77 (4)

is conserved, namely,

H' éV: 0H' OH' . OH' . +6H’ o (5
7 ) p1+ aq ‘Iz apnpn a,r] 7’_ .

This is why it is useful to include the variable 1 in Eq. (1).
In Appendix A, the extension due to Kusnezov et al. and
the method of Winkler are discussed.>”®

The proof presented above is valid only for ergodic
systems. It does not guarantee that the system is ergodic
and that the correct limiting distribution will be generated.
Indeed, in some cases, this distribution is not produced.z‘4
Let us consider how this situation can be improved. The
distribution itself has a Gaussian dependence on the parti-
cle momenta, p, as well as thermostat momenta, p,. While
the Gaussian fluctuations of p are driven with a thermostat,
there is nothing to drive the fluctuations of p,. Although
the postions and momenta (the ¢’s and p’s) are of primary
interest, if the Nosé~Hoover equations are ergodic, the sys-
tem covers the whole phase space, which includes the space
of the thermostat velocities. The fluctuations of the ther-
mostat variables which clearly occur in ergodic systems
may even be important in driving the system to fill phase
space (the dynamical equations are, of course, coupled).
This suggests thermostating p, and, by analogy, the ther-
mostat of p, plus its thermostat, etc., to form a chain.
Other methods of “shaking up” the system have also been
suggested.”’11

The “new” dynamics, the Nosé-Hoover chain method,
can be expressed as

P
Qz—ml_: =
__v@_ Py
Pi aq; Y Q’
Py,
= o = == - 6
1 0 (6)
N 2
: Di Py,
Py = E,l mi—NkT] —Pug,”
2
Dy, Dy,
p,,=[ LF l—kT]— N "IJ+1,
71 Qi1 7 Qi1
2
. pﬂM—l
‘p"M—{QM 1_kT]’

where M thermostats have been included. The 7’s are
again presented for completeness. These equations can be
shown to have the phase space distribution
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1 N 2
S(p,q,p;7) xexp {——f [V(q)+ > 2m,
M pn
+ E 2Q,“ (7)
and the conserved quantity
N p2 7-
H(panpy)=V@+ 2 5 -+ 2‘, 2Q,+NkT"‘
M
+ 2 kTn; (8)

i=2
Note that even in large systems, the addition of the extra
thermostats is relatively inexpensive as they form a simple
one dimensional chain. Only the first thermostat interacts
with NV particles.

A good choice for the thermostat masses will help the
dynamics achieve the canonical distribution.!™ If very
large masses are chosen, a distribution consistent with the
microcanonical ensemble may result. If very small masses
are chosen, the fluctuations of the momenta may be greatly

‘inhibited. In Appendix B, a short argument is presented

which suggest that the masses be taken to be @
= NkT/e* and Q; = kT/w* This choice allows the ther-
mostats to be in approximate resonance with both the sys-
tem variables (the p’s and ¢’s), which are assumed to have
fundamental frequency @, and each other. As will be
shown in the results section, the mass choice in the chain
method is much less critical than in both the simple
method? and some of the newer methods.’

The method presented above increases the size of the
phase space and thus helps make the system ergodic. There
are, however, several issues that must be examined. Con-
sider a point in phase space (q,p) with

IO
dg; h

p=0. €]

At such a point, the equations of motion for the Nosé-
Hoover chain dynamics give dg¢"/dt* = 0 for all n, which
effectively stops the dynamics of the positions and mo-
menta (Note this is equally true in Newtonian dynamics).
We call such points Hoover holes, after Hoover who first
began to look at the ergodicity of small systems in the
modified dynamics. For the dynamics to be ergodic, the
system must come infinitesimally close to the Hoover holes
without actually visiting them. Therefore, the dynamics
near the holes must be examined to be sure that the holes
can reasonably be assumed to be of measure zero.
Hoover holes associated with specific values of the
thermostat coordinates are fixed points of the entire Nosé—
Hoover chain dynamics. If a fixed point is stable, then in its
vicinity, the equations will have exponentially damped so-
lutions which will drive the system into the point. This
scenario is disastrous if an ergodic system is desired. The
stability of a fixed point can be determined by examining
the linearized equations motion about the point.!>!® The
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analysis proceeds by rewriting the Nosé~Hoover equations
as the convenient first order system

. _Pr
qi—mi ’
avV(a)
= —a—qi—Pg 1
Z ——NkT] =516 (10)

1
§j=§j [Q) 1851 —KT] =881

1
§M=-Q—; [On—183—1— KT,

where the variables §; = 7); have been introduced. The fixed
point condition for the system is then given by the set of
algebraic equations obtained from setting each of the time
derivatives on the left side of Eqs. (11) equal to zero. This
condition can be expressed as

a¥(q)
9g; “ag

2

pi=0,

5162 +a=0,

NG —a—§6;=0,
ti1—a—Eg;11=0,

5%4—1'"0‘:0’

(11)

where the mass choice, Q; = NQ and @; = @, has been in-
troduced and a=kT/Q. The linearized equations them-
selves are obtained by differentiating each quantity on the
right side of Eq. (10) with respect to each variable in the
system. The stability matrix, 4, is defined by the quantities
resulting from this differentiation evaluated at a fixed point
[i.e., a solution of Eqgs. (11)]. The eigenvalues of this ma-
trix give the stability condition of the point. If the eigen-
values all have negative real parts, then the fixed point is
purely stable. Now if the trace of a matrix is zero, the sum
of the eigenvalues is zero. If the sum of the eigenvalues is
zero, it can be concluded that either the eigenvalues are all
zero or have both positive and negative real parts. Exam-
ination of Egs. (10) and (11) and the linearized motion
shows that the there are no solutions with all eigenvalues
equal to zero, so we conclude that the latter must be true.
A proof that the trace of 4 is zero is presented in Appendix
C. Therefore, the fixed points of chain dynamics are not
purely stable. It is also significant to note that the rate of
change of the total phase space volume in the vicinity of
the fixed point is related to the trace of the stability matrix
by
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Noap ax\ Moo
2 (a a_) 2 a_j
i=1 \0D; OX; j=1 §j
N M
=X A+ E Ajyjn=Tr(4). (12)

i=1

Thus if the trace of A4 is zero, then Liouville’s theorem
(conservation of phase space volume) holds in the vicinity
of the fixed points.* This implies that the fixed points are
neither attractors or repellors.!>!> These arguments only
apply for M > 1, for M =1 or the usual Nosé—Hoover dy-
namics there are no fixed points of the total dynamics.
However, the rate of change of the total phase space vol-
ume is not everywhere zero, which suggests that the Nosé—
Hoover chain dynamics does not have an underlying
Hamiltonian structure. This fact could also be deduced
from the stability conditions on the fixed poin’cs.13 That is,
the Nosé~Hoover dynamics admit spiral fixed points which
are forbidden in Hamiltonian systems.

The preceding analysis cannot determine whether the
system is ergodic. It does, however, give indications of
when a system may not behave well in this respect. It is
included for completeness and to indicate that Nosé-
Hoover chain dynamics has some reasonable and desirable
properties. A more useful analysis would involve showing
that no periodic orbits exist in the dynamics, a periodic
orbit stability analysis. This at present can only be done
numerically. In the results section it will be shown that
Nosé-Hoover chain dynamics fills phase space for some
reasonable values of M.

The Lyapunov exponent gives a measure of the degree
of chaos present in a dynamical system.'>!*1316 [n general,
the more chaotic the dynamics of a system, the more
quickly it fills phase space. It is therefore important to
study this quantity in chain dynamics. The calculation of
Lyapunov exponents is based on dynamics cast in the ge-
neric form

I'(t)=F(T), (13)

where I'(¢) refers to a point in phase space [which for
chain dynamics is (q,p,p,)]- In the first method used to
calculated the exponents (Method I), two nearby trajecto-
ries are integrated for a small time interval 7, and the
distance between them monitored. The initial separation is
determined by

I'(0)=I(0)+41(0), (14)

where 61" (0) is a vector of norm €. After an interval 7, the
norm of |8T'(7)| is computed and saved. The vector
8" (7) is then renormalized to € and the process repeated.
The Lyapunov exponent is calculated from

4 8T(7)

A=y 2, g

In the second method (Method II), the linearized equa-
tions about the trajectory I'(#)

(15)

d
E‘SP(I) =M(1)0I'(2), (16)
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8T (t)=T exp ft M(t’)dt’]é‘l"(O) a7
0

are solved as the trajectory I'(#) evolves. Here the matrix
M is defined to be Ml_/ = (HF,/BI"J) IF=F(t)’ and T is the
time ordering operator. At time 7, 8T is renormalized and
the process repeated. The exponent is calculated from the
sum of the log of norms presented above in Eq. (15). In
general, computing the exponent by these two methods
serves as an excellent check on the results, however, it has
been shown that Method I is consistently the more reli-
able.'®

Assuming the dynamics produces the correct distribu-
tion, it is desirable to know how rapidly it samples the
distribution. A measure of this is the rate of convergence of
the time average of the potential and kinetic energy to their
ensemble averages (the p’s and ¢’s are the variables of
primary interest). Such a rate can be quantified by calcu-
lating the number of time steps necessary to obtain an error
bar or error in the mean of desired tolerance. This number
of time steps can then be compared to the number of
Monte Carlo steps needed to give the same error bar where
the Monte Carlo calculation is performed by directly sam-
pling the distribution of interest (i.e., the perfect stochastic
calculation). An efficiency can be calculated which is the
ratio of the number of time steps to the number of Monte
Carlo steps R = Syp/Smc- Thus the larger is R, the less
efficient the method where R has a lower limit of 1. The
error bars for the fime averages are calculated using the
block averaging technique!” which takes into account cor-
relations which may exist in the data. The Monte Carlo
data is uncorrelated by definition. The error bar of the
average or error in the mean is then given analytically as
the standard deviation of the quantity (averaged over the
distribution) divided by the square root of the number of
steps. The efficiency obviously depends on the method of
integration and the time step chosen to perform the dy-
namics but does give a useful measure convergence. Two
values of the efficiency are calculated, R, which measures
the convergence of the average potential energy and R,
which measures the convergence of the average kinetic en-
ergy.

The velocity Verlet integrator'® is used to integrate the
Nosé—Hoover chain equations. The position equations are
deterministic and the velocity equations are solved itera-
tively to a convergence level of 10~ 4, The model problems
studied in the next section were integrated with time steps
of Ar=0.016, Ar=0.005, Az=0.0016, and Ar=0.0005 for
systems using Q; = 10, Q; = 1, Q; = 0.1, and Q; = 0.01, re-
spectively. These choices give energy (H') conservation to
a few parts in 10°. {For reference, integrating the harmonic
oscillator [m=1,0=1,9(0) =1,0(0) =1], to the same tol-
erance requires a time step of 0.016.} A great advantage of
the chain method is that there is little or no degradation in
energy conservation upon the addition of thermstats be-
yond M=1. All runs were 1.5X 10° time steps. In the cal-
culation of the Lyapunov exponents, we compared the ex-
ponent for choices of 7 ranging from 10A¢ to 100A¢, and
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FIG. 1. (a) Density plot of the Nosé-Hoover dynamics of a harmonic
oscillator [¢(0) = 1,p(0) = 1,p,(0) = 1,@ = 11. (b) Position distribu-
tion function obtained from Nose-Hoover dynamics of a harmonic oscil-
lator (dotted line). The solid line is the exact result. (c) Velocity distri-
bution function obtained from Nosé-Hoover dynamics of a harmonic
oscillator (dotted line). The solid line is the exact result.

found good agreement between Methods I and II in this
range.

ill. RESULTS

Two systems were chosen to illustrate the new method.
The first, is a one dimensional harmonic oscillator (2
= Lo = 1,0, = 1) with initial condition [g(0)
= 0,p(0) = 1,p,(0) = 1] and kT=1. In Fig. 1, a density
map and the projected distribution functions are presented
for the usual Nosé-Hoover dynamics (M =1). The dy-
namics does not fill space. Also, if the initial conditions are
changed, (¢ = O,p = l,p,, = 10), the results are changed
(see Fig. 2). This is unacceptable as an invariant probabil-
ity distribution is desired. Similar results have been found
by others.>” The Nosé—Hoover chain dynamics, (M=2),
gives rather different results (see Fig. 3). The distribution
functions seem to be good approximations to the canonical
results and the dynamics fills space. Changes in the initial
conditions did not have an appreciable effect on the results.

J. Chem. Phys., Vol. 97, No. 4, 15 August 1992
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FIG. 2.(a) Density plot of the Nosé—Hoover dynamics of a harmonic
oscillator [g(0) = 1,p(0) = 1,p,(0) = 10,Q = 1]. (b) Position distri-
bution function obtained from Nosé-Hoover dynamics of a harmonic
oscillator (dotted line). The solid line is the exact result. (¢) Velocity
distribution function obtained from Nosé-Hoover dynamics of a har-
monic oscillator (dotted line). The solid line is the exact result.

In addition, the choice of thermostat mass is not critical in
this method unlike both the original> and some of the
newer methods.® Rather, for all the values attempted, Q
=100, M=35, 0=10, M=2, @=0.1, M=2, and @=0.01,
M =2, the canonical distribution was generated.

The Lyapunov exponents for systems containing M
==1-15 thermostats were calculated for wide variety of ini-
tial conditions (Q=1). The two methods used to obtain
the exponents (see Methods) were found to be in good
agreement as is shown in Tables I and II. In Fig. 4, the
exponents are plotted as a function of M. The exponents
become increasing large with M and around M =4,5 be-
come competitive with those determined by Kusnezov et
al. for their method.” However, the Lyapunov exponents
include information about the dynamics of thermostat
variables which are not of primary interest. In Table III,
the efficiency of chain dynamics in the convergence of the
average potential and kinetic energy is calculated for a
variety of parameters (see Sec. II). The results indicate
that the parameter set Q= 1,M =35 converges most rapidly.
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FIG. 3.(a) Density plot of the Nosé-Hoover chain dynamics (M=2,0
=1) of a harmonic oscillator [¢(0) = 1,p(0) = 1,p,(0) = 1]. (b)
Position distribution function obtained from Nosé-Hoover dynamics of a
harmonic oscillator (dotted line). The solid line is the exact result. (c¢)
Velocity distribution function obtained from Nosé-Hoover dynamics of a
harmonic oscillator (dotted line). The solid line is the exact result.

For this set, the chain method is found to be competitive
with the method of Kusnezov ezal. (@, = 1,0, = 1) for the
convergence of the potential energy (see Table III). The
average kinetic energy converges very rapidly in the latter

TABLE I. Comparison between Methods I and II of the convergence of
the Lyapunov exponent for M=4, and r=10A¢.

Steps A(Method I) A(Method II)
100 0.2983 0.2954
1000 0.2517 0.2516
2000 0.2659 0.2660
3000 0.2290 0.2293
4000 0.2196 0.2200
5000 0.2371 0.2370
6 000 0.2465 0.2460
7000 0.2391 0.2392
8 000 0.2381 0.2382
9000 0.2402 0.2402
10 000 0.2385 0.2384

J. Chem. Phys., Vol. 97, No. 4, 15 August 1992



2640

TABLE II. Comparison between Methods I and II of the convergence of
the Lyapunov exponent for M=6, and 7=10Az

Steps A(Method I) A(Method II)
100 0.4608 0.4571
1000 0.4366 0.4368
2000 0.3829 0.3832
3000 0.3359 0.3356
4 000 0.3273 0.3268
5000 0.3139 0.3129
6 000 0.2939 ~0.2936
7000 0.3025 0.3028
8 000 0.2966 0.2968
9 000 0.2997 0.2998
10 000 0.2890 0.2897

method which may be due to the use of the third power of
the momentum thermostat in the coupling term (see Ap-
pendix A). The calculated efficiency is a subjective mea-
sure that depends on the method of integration and the
time step used.

For a harmonic oscillator, the Hoover holes do not
have a pathological effect. The phase space in a harmonic
oscillator is such that p=0 can be visited when ¢540 and
vice versa, which reduces the effect of the hole particularly
on the integrated distributions [P(v) and P(q)]. To com-
plete the analysis, pairs of trajectories within a radius of
10~% about the hole were examined. Lypaonov exponents
similar to those reported in Fig. 4 for a given value of M
were obtained (Q=1). The fact that a positive exponent is
obtained implies that the holes are not attractive and seem
to 1bse of zero measure, consistent with the analysis in Sec.
1L

The second system studied is a one dimensional free
particle (Q=1). The Nosé-Hoover chain dynamics can
only give canonically distributed velocity on the half space

T T T T T i T T T T T L— T T T

|”‘||1||l||4|_114||1||||||||||1|

I|I|‘ﬁ||‘ﬁlll|lllf!lfll!llll

L
:

(@]
n
=
(@]
=
[9)]

FIG. 4. Lyapunov exponent for the chain dynamics of a harmonic oscil-
lator as a function of the number of thermostats, M (@=1).
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TABLE III. Efficiency of chain dynamics for the harmonic oscillator.?

0 M R, R,
1.0 2 230 230
1.0 5 230 110
1.0 15 230 110

10.0 5 370 370.
0.1. 5 730 70
0.01 5 2300 150

2For the method of Kusnezov et al. (Qp =1,Q0,=1),R, = 230and R,
=3.

v>0. When v=0, the dynamics stops for all times
[d"q(2)/dt" = Ofor all n]. The dynamics was never found to
stop, but neither could it pass through the Hoover hole.
(The holes seem to be of measure zero and are not attrac-
tive.) The dynamics is symmetric about the hole since the
equations of motion do not depend on the sign of v. Thus
an identical trajectory can be generated on the other half of
phase space with no cost. In Fig. 5, the velocity distribu-
tion of the free particle is presented for M =1,2,3. The
canonical distribution is recovered when M=3. As dis-
cussed in Appendix A, the functions chosen by Kusnezov
et al. for use in their method are not appropriate for this
system.

IV. DISCUSSION

The idea of thermostating the extended variable is po-
tentially quite powerful. In stiff complex systems such as
proteins, it is difficult to start near equilibrium. In such
cases, large unphysical oscillations in the temperature may
develop. It is expected that additional thermostats will ef-
fectively damp such oscillations. Similarly, oscillations can
develop in the volume in constant pressure—constant tem-

ML e s s S B s B A
I j ]
8 - i - M=3 —
I Seee-M=2
T O O -M=1 |
o Exact -
6 N
&
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4
2
0

FIG. 5. Velocity distribution function obtained from Nosé~Hoover chain
dynamics (M=1,2,3,0=1) of a free particle. The solid line is the exact
result,
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perature simulations. As the momentum of the extended
variable that drives volume is distributed canonically, it
can also be thermostated (the proof goes through straight-
forwardly). Again, this should help damp the unphysical
oscillations resulting in more stable simulations.

In summary, a modification of Nosé~Hoover dynamlcs
which we call Nosé-Hoover chain dynamics has been
shown to give a very good approximation to the canonical
ensemble even in pathological cases. The idea of thermo-
stating extended variables will likely find wide application.
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APPENDIX A

The Nosé-Hoover equations are in fact a subset of the
more general set of equations,’”’

. b
qi=;_hq(nq)Fq(pi!qi) ’

a¥(aq)
.pl=__a_q_—h (np)F (puqz)9
(A1)

. 1 y Di an(pisqi)
'flp=ap [ 2 ;Fp(pi,qi)_‘T—api— ,

1 [ ¥ ar(e)
nq Qq i=1 aqx

where F,, G,, h,, h, are arbitrary functions. These equa-
tions have the conserved quantity

H'=H(p,Q) +ngp(7]p) +quq(nq)

OF ((p»q:)
q(Pi,Qi) —kT _T'__ ’

t aF( G
+ka0 hy(n,) Z P %)
aF( fil z)
Ay () Z ———iq ] (A2)

where #; = dg)/dm, This is a powerful generalization that
can be used to generated canonical dynamics for. variety
systems (i.e., Lie algebras®’). The Nosé~Hoover equations
are generated from the specific choice Fq = h,=0and g,
= "7,,/ 2, h, = 1, F,, = p. Such a choice is more general than
it may ﬁrst appear as can seen by examining the position
dependence of the functions F, and F,. This dependence
must be consistent with the boundary condition of a given

problem. Therefore, a general purpose method must take

these functions to be independent of position. Further-
more, the proof that the dynamical system, Eq. (1), gives
rise to the canonical distribution relies on the identities,*’

OF (pnq; dH(p,
kT( q(pq)> <F(p,,q, (pq)>,

dg; dg;
aF,( A dH(p,q) (A3)
P Diq; _ e D4
kT(‘“‘_ap,. ) — (F,,<p,,q,> S ) ,

where the average is, itself, over the canonical distribution.
If the F’s are independent of position, F, must be taken to
be zero. This argument leads naturally to a Nosé~Hoover
form if the dependence of G,(p) and %,(7,) is chosen to be
linear, i.e., the simplest nontrivial choice. Chain dynamics
maintains this form. It is, however, possible to derive a
general set of equations from which chain dynamics
emerges as a specific choice of functions.

In studying simple bound problems, Kusnezov et al.
have advocated the choice, F, = q F,=p, h = Ny h
= ':73 7 With these choices the trace of the stablllty matrix 1s
zero whlch guarantees certain properties of the dynamics
in the vicinity of the fixed points (see Sec. IT). The stability
matrix of chain dynamics also has a zero trace (see Ap-
pendix C). In addition, the fixed points of chain dynamics
occur at their natural places [ p; = 0,0V (q)/dg; = 0] while
fixed points of the more complex method do not.

The equations of motion [Eq. (1)] with the choice of
functions of Kusnezov et al. are rather stiff. For a har-
monic oscillator (m=1,0=1,kT=1) integration by veloc-
ity Verlet did not conserve H’' well. In the spirit of the
iterative scheme used to integrate the Nosé-Hoover chains,
the set of first order differentials in Eq. (1) were integrated
by iterating the general form

. . dt
b(1)=b(0)+[5(0)+b(9)] 3 (A4)
to convergence. A time step of 0.001 was needed to obtain
reasonable H' conservation for the oscillator. About five
iterations were needed for convergence.

The dynamics proposed by Winkler® can be expressed

as
. _Pi
qi mi’
. W@ 2,
Di aql - 7 Di
(A5)
P
Q ’
21 ¥ p
= —— | 2 —’—(N—-)kT]
Pn N|i=1t Mi
This can be shown to have the distribution function
1 72
i3 BT ) —€X A6
f(pq.n,,vv)oc77 p|— [ P 2Q (A6)

with conserved quantity
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2

H(p,q)+2Q

—(2N—-1)kT log 9. (A7)

The variable i appears explicitly in the dynamical equa-
tions but has an “unbounded” probability distribution.
Therefore, the dynamical equations appear to be rather
poorly behaved in some regions of phase space, particularly
when 7 is small. These regions are not sampled by the
dynamics as the conserved quantity restricts phase space
such that n=exp{[H(p,q) + pL/2Q0 — EI/(2N
— 1)kT}. As E is a constant and H(p,q) and p, have
bounds (their distribution functions decay exponentially),
7 is “bounded.”{The inverse of 7 is bounded from above
by exp[(E — Vyin)/ (2N — 1)kT], where V,,;, is the glo-
bal minimum of the potential energy surface.} However, if
another thermostat is added to the dynamics, either to
control 77 or some subset of the degrees of freedom in the
system then the restriction imposed by the conserved quan-
tity is insufficient ““to bound” the thermostat positions and
avoid regions of phase space that are (numerically) unsta-
ble for the dynamics. In fact, the instability was first no-
ticed in attempts to numerically integrate a chainlike an-
satz within this formalism. The method is therefore not as
useful or flexible as the usual Nosé-Hoover construction.
Note that though there is another form of the Winkler
method with slightly different equations of motion, it has
the same difficulties as the more natural variant discussed
above.

APPENDIX B

In order to determine reasonable values for the ther-
mostat masses, a second order equation of motion is gen-
erated for each of the 7); from the time derivative of 4;

-3 024 o
7_ 0 E q my| G| oom; NkT
Nop?
—ﬁl[ '21 E—’ﬂz‘i"?z?’ls'l- [le kT]},
dz'fh 27]1 p;

G [Qz 2 ,—N"T]“Q"[le—k”]
(20 ., 1 ) ..
—772[_1‘2Q12_1‘77§+§; [Qsii—KT] —173174‘ ,

d; (204 7
2= {QJ’_ Q-2 2—KT1 === 1O} kT]]
W Q.
""’b[—!_Ql_jj_— J+1+Q [anJ kT]
~Njr17j42]s (Bl)
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1 lzﬁM—z

2 =y, [Ou—sit_s—KT]

—Qn—M‘ [Ou—amyr—2— kT 1} —Tas—1
N

22 Qu—r . 1 )
X [_——'_“7712!{+_[QM— 1Mar—1—KT] ],
Oy—1 Ou

iy [27]M_ 'ﬁi{—lQM—l}
a* | Q Ou )
These equations can be solved individually, in the limit
1; is fast compared to 7;_y and 7,4, while 7, , moves on
the same time scale. This permits us to take functions of
1;—; and 17;, equal to their average values.® The result is

[On—2M3r— —kT]|

d*1, . [2NKT 2kT| Qi 4
a7 “"7‘[ o G @™
dy; | [2kT 2kT| Qi

= 1. —-_— - ie B2
7] 7T P s el (B2)
d* 0y, . [2kT
W‘— — MM 5;{'

The choices Q; = NkT/w® and Q; = kT/w” give thermo-
stats 1 to M —1 an average “frequency” of w. This fre-
quency is calculated by averaging the 77,2 in the third order
term over the distribution function. The Mth thermostat
oscillates with frequency 2w. The arbitrary parameter o is
chosen based on the properties of potential energy surface
(phonon frequencies, etc). Several approximations have
gone into the analysis and, in fact, the choice of mass itself
violates some of the approximations. This is only meant to
give a rough estimate.

APPENDIX C

In this Appendix, a proof that the trace of the stability
matrix is zero for chain dynamics is presented. The diag-
onal elements of 4, the stability matrix, are

Aii=_§1’ i= 11N9

Awspwep=—5p J=LM, (C1)

where the {’s evaluated at a fixed point. The trace of 4 is
then

M
—Tr()=Nev+ 2 & (€2)
j= -

From the fixed point equations, Eqs. (11), it is immedi-

ately clear that {3, ; = = \/E. Solving for §s in terms of

$ar—2 in Egs. (11) and substituting into the trace gives
M—2

’ 1
—Tr(4) =N+ gz &+ \/E+—5 (E3r_o—a)

=N+ Z §,+T§M 2 (C3)
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Similarly, solving for £,,_, in terms of £,,_;, substituting
into the trace and simplifying gives
M3 1 1
— o — 2
Tr(4)=NG+ jgz o 7&* §M_3+m Crrs

(C4)

At this point, the other end of the equation is simplified.
The variable N¢, is replaced by N§; = (a + §583)/&; and
&, is replaced by &= —a/{;. Substituting into the trace
and simplifying gives

M—3
—Tr(A)—-——é‘2§3+ 2 gj—TgM—

1
+m Er—s (C5)
Now, substituting §%=a+§3§4 and simplifying gives
M—3
—Tr(d)=—— §3§4+ Z &i— \/— Cars
1
el Che—3 (C6)

Similarly, substituting £2=a+ €5 and simplifying gives

M—3
—Tr(A)———§4§5+ Z §J—T§M 3

(C7)

J—éﬁ{_

Each subsequent substitution cancels the next term in the
sum until we get to A/ —4, where

1 1
—Tr(d)= ~Z §1zl{—4§M—-3+§M—3_'£ Sas

(C8)

1
+a—\E Car_z

Inserting the usual term &4 = @ -+ § M; 3Ear—o gives

e 1, 1, 1 p
—Tr( )—_a §M—3§M—2_\/’&§M—3+a\/‘; M—3

(€9

Finally, using the fact that £;_, = (£3_3 — @)/ \Ja gives

1 1
—Tr(d)= —a—‘E Lrr—3(Gars—a) “7; 57
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1
=0, C10
+a§ S (C10)
which completes the proof.
The zero trace condition can also be used to show that
Louiville’s theorem holds in the vicinity of the fixed points.
In this region, the linearized equations hold

= Apx;, (C11)
j

where the x are a general set of variables (i.e., x represents

the p’s, ¢’s, and {’s). Now according to Liouville’s theo-

rem, the condition for incompressible phase space volume

is

> % c12
ax ( )
Now diﬁ'erentlating x; with respect to x; gives
N
2 4;=0, (C13)
i=1

which is equal to zero if the matrix, 4 is traceless. Thus the
phase space volume is conserved in the region of validity of
the equations and the fixed points are neither attractors nor
repellors.
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