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Exercise 1 : CMB radiation density

T0 = 2.73 K, and thus ρCMB,0 c2 = aT4
0 ≈ 4.2 · 10−14 J m−3 and

ρCMB,0 = 4.7 · 10−31kgm−3,

ΩCMB,0 =
8πGρCMB,0

3H2
0

≈ 2.5h−2 · 10−5

The average photon energy is 3kT = 1.13 · 10−22 J, corresponding to

n = 3.72 · 108photons per m3 ∼ 400photons per cm3.

Ωb,0 ≈ 0.022h−2 = ρb,0/ρcrit,0 corresponds to the baryon number density

nb,0 =
ρb,0

mproton
≈ 0.25baryons per m3 ≈ 2.5 · 10−7baryons per cm−3

. The baryon density in the universe is much sparser than normal things on the
earth.

Exercise 2 : Redshifting Planck’s law

In the exercise we want to show that, if the CMB in the early Universe with

scale radius R1 is described by black body spectrum uν1 =
8πν3

1
c3

1
exp(hν1/kT1)−1

then also for a later Universe with scale radius R2 the CMB remains described
by a black body uν2 =

8πν3
2

c3
1

exp(hν2/kT2)−1 .
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Figure 1. Despite the Universe’s expansion CMB spectrum remains black body

a) The number density of photons (n) decreases in expanding Universe with
increasing volume : n2 = (R1

R2
)3 · n1.

The energy of each photon (hν) also decreases with expanding Universe :
hν2 = R1

R2
hν1 (we have : λ0 = (1 + zi) · λi and Ri = (1 + zi)

−1).
Hence, the total energy density of photons in Universe U = n ∗ hν is
decreasing in expanding Universe : U2 = (R1

R2
)4 · U1

b) Knowing that, we take now our black body spectrum of the CMB at early
Universe with scale radius R1, and integrate it over whole spectral range :

U2 =

(
R1

R2

)4

· U1 →
∫

uν2dν2 =

(
R1

R2

)4 ∫
uν1dν1 (1)

U2 =
∫

uν2dν2 =

(
R1

R2

)4 ∫
uν1dν1 =

(
R1

R2

)4 ∫ 8πν3
1

c3
1

exp(hν1/kT1)− 1
dν1
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(2)

With using hν2 = R1
R2

hν1 :

U2 =
∫

uν2dν2 =
∫ (

R1

R2

)4 8πν3
2

(
R2
R1

)3

c3
1

exp(hν2
R2
R1

/kT1)− 1
dν2

R2

R1
(3)

We recognise a black body spectrum with T2 = R1
R2

T1 : :

U2 =
∫

uν2dν2 =
∫ 8πν3

2
c3

1
exp(hν2/kT2)− 1

dν2 (4)

uν2 =
8πν3

2
c3

1
exp(hν2/kT2)− 1

(5)

Indeed for t2 > t1, the CMB is still black body.
c) As shown in Figure 2 A black-body spectrum with T = 2.725 K is the best-

fit to the observed CMB spectrum. It is consistent with 2.7260 ± 0.0013 K
mentioned in the lecture as 2.725K is within the 1σ error range.

d) The CMB emission at the time of emission and today has a similar shape,
but the spectrum today is shifted to lower-energy (redshifted) due to the
expansion of the Universe as shown in Figure 3.

Exercise 3 : Clustering of galaxies

In this exercise, we want to compute the estimator of the 2-point correlation
function, starting from the number of pairs of galaxies separated by a distance
r. Finally, we plot the resulting values and analyze them.

a) If ngalaxies is the total number of galaxies, the total number of pairs is :

Nallpairs =
ngalaxies × (ngalaxies − 1)

2
. (6)

Thus,

Nobs(r) =
pairs(r)
Nallpairs

, (7)

where pairs(r) is the number of pairs of galaxies separated by a distance
r.
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Figure 2. The CMB spectra at the time of emission and today.

Figure 3. The best-fit black-body spectrum of CMB spectrum.

b) We assume that there is a point in the region dV1 and we want to com-
pute how many points are at a distance r ± ∆r, i.e. in the spherical shell of
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radius r and width ∆r. Given that the box has a finite size L, we need to as-
sume the periodic boundary conditions. This is required mostly important
for volumes dV1 that are close to the boundary, because the distance r±∆r
could be beyond the boundary. Thus, by applying the periodic boundary
conditions, we ensure that there will be a complete spherical shell, even
for those points that are close to the boundary.
Starting from the fact that Nrandom is defined as the ratio between the pairs
of points separated by a distance r ± ∆r over the total number of pairs in
the catalog, we have :

Nrandom =

∫
spherical shell ndV2dV1∫

whole box ndV2dV1
. (8)

In this formula, n is the number density of random points and it is a
constant because the points are uniformly distributed, thus it can be sim-
plified. Moreover, the integration is done only over the V2, thus dV1 can
be also simplified, resulting into :

Nrandom =

∫ r+∆r
r−∆r

∫ 2π
0

∫ π
0 s2 sin θdsdθdϕ∫ L

0

∫ L
0

∫ L
0 dxdydz

. (9)

Finally,

Nrandom(r) =
4π

3
× [(r + ∆r)3 − (r − ∆r)3]

L3 . (10)

c) Using, the two results from above and the fact that

ξ(r) =
Nobs(r)

Nrandom(r)
− 1. (11)

one can trivially compute ξ(r) and plot it.
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Nrandom and Nobs as functions of r

The 2PCF as function of r
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