

Astrophysics V Observational Cosmology

Sheet 3: Solutions

Prof. Jean-Paul Kneib

Teaching assistants: Dr. Rafaella Gsponer, Dr. Antoine Rocher,
Mathilde Guitton, Shengyu He, Ashutosh Mishra & Aurélien Verdier

Laboratoire d'astrophysique <http://lastro.epfl.ch>
Ecole Polytechnique Fédérale de Lausanne, Spring Semester 2025

Exercise 1 : CMB radiation density

$T_0 = 2.73$ K, and thus $\rho_{\text{CMB},0} c^2 = a T_0^4 \approx 4.2 \cdot 10^{-14} \text{ J m}^{-3}$ and

$$\rho_{\text{CMB},0} = 4.7 \cdot 10^{-31} \text{ kg m}^{-3},$$

$$\Omega_{\text{CMB},0} = \frac{8\pi G \rho_{\text{CMB},0}}{3H_0^2} \approx 2.5 h^{-2} \cdot 10^{-5}$$

The average photon energy is $3kT = 1.13 \cdot 10^{-22}$ J, corresponding to

$$n = 3.72 \cdot 10^8 \text{ photons per m}^3 \sim 400 \text{ photons per cm}^3.$$

$\Omega_{b,0} \approx 0.022 h^{-2} = \rho_{b,0} / \rho_{\text{crit},0}$ corresponds to the baryon number density

$$n_{b,0} = \frac{\rho_{b,0}}{m_{\text{proton}}} \approx 0.25 \text{ baryons per m}^3 \approx 2.5 \cdot 10^{-7} \text{ baryons per cm}^{-3}$$

. The baryon density in the universe is much sparser than normal things on the earth.

Exercise 2 : Redshifting Planck's law

In the exercise we want to show that, if the CMB in the early Universe with scale radius R_1 is described by black body spectrum $u_{\nu 1} = \frac{8\pi\nu_1^3}{c^3} \frac{1}{\exp(h\nu_1/kT_1)-1}$ then also for a later Universe with scale radius R_2 the CMB remains described by a black body $u_{\nu 2} = \frac{8\pi\nu_2^3}{c^3} \frac{1}{\exp(h\nu_2/kT_2)-1}$.

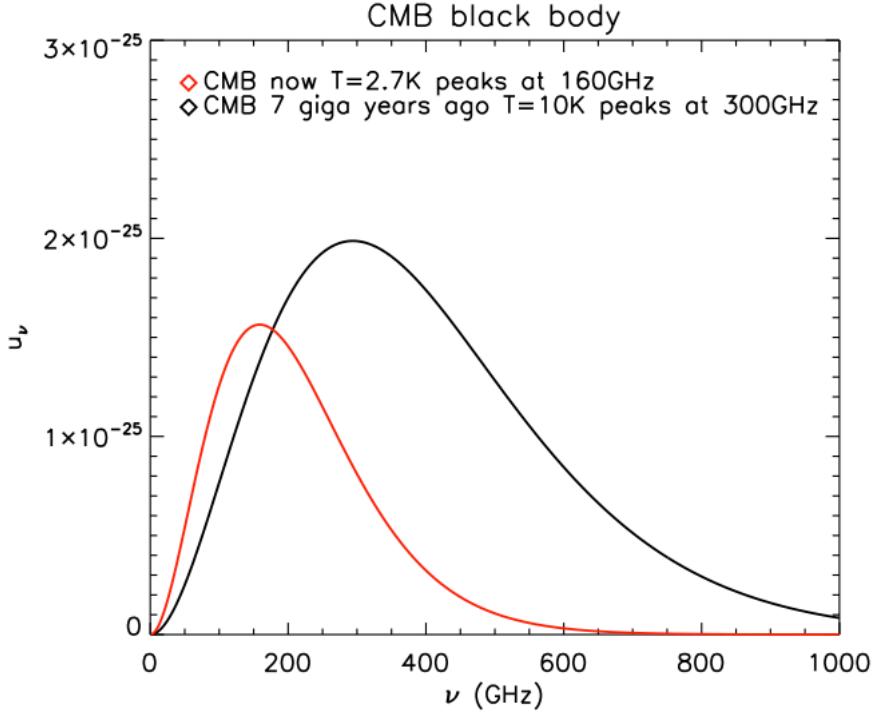


Figure 1. Despite the Universe's expansion CMB spectrum remains black body

a) The number density of photons (n) decreases in expanding Universe with increasing volume : $n_2 = \left(\frac{R_1}{R_2}\right)^3 \cdot n_1$.
 The energy of each photon ($h\nu$) also decreases with expanding Universe : $h\nu_2 = \frac{R_1}{R_2}h\nu_1$ (we have : $\lambda_0 = (1 + z_i) \cdot \lambda_i$ and $R_i = (1 + z_i)^{-1}$).
 Hence, the total energy density of photons in Universe $U = n * h\nu$ is decreasing in expanding Universe : $U_2 = \left(\frac{R_1}{R_2}\right)^4 \cdot U_1$

b) Knowing that, we take now our black body spectrum of the CMB at early Universe with scale radius R_1 , and integrate it over whole spectral range :

$$U_2 = \left(\frac{R_1}{R_2}\right)^4 \cdot U_1 \rightarrow \int u_{\nu 2} d\nu_2 = \left(\frac{R_1}{R_2}\right)^4 \int u_{\nu 1} d\nu_1 \quad (1)$$

$$U_2 = \int u_{\nu 2} d\nu_2 = \left(\frac{R_1}{R_2}\right)^4 \int u_{\nu 1} d\nu_1 = \left(\frac{R_1}{R_2}\right)^4 \int \frac{8\pi\nu_1^3}{c^3} \frac{1}{\exp(h\nu_1/kT_1) - 1} d\nu_1$$

(2)

With using $h\nu_2 = \frac{R_1}{R_2}h\nu_1$:

$$U_2 = \int u_{\nu_2} d\nu_2 = \int \left(\frac{R_1}{R_2}\right)^4 \frac{8\pi\nu_2^3 \left(\frac{R_2}{R_1}\right)^3}{c^3} \frac{1}{\exp(h\nu_2 \frac{R_2}{R_1}/kT_1) - 1} d\nu_2 \frac{R_2}{R_1} \quad (3)$$

We recognise a black body spectrum with $T_2 = \frac{R_1}{R_2}T_1$:

$$U_2 = \int u_{\nu_2} d\nu_2 = \int \frac{8\pi\nu_2^3}{c^3} \frac{1}{\exp(h\nu_2/kT_2) - 1} d\nu_2 \quad (4)$$

$$u_{\nu_2} = \frac{8\pi\nu_2^3}{c^3} \frac{1}{\exp(h\nu_2/kT_2) - 1} \quad (5)$$

Indeed for $t_2 > t_1$, the CMB is still black body.

- c) As shown in Figure 2 A black-body spectrum with $T = 2.725$ K is the best-fit to the observed CMB spectrum. It is consistent with 2.7260 ± 0.0013 K mentioned in the lecture as 2.725K is within the 1σ error range.
- d) The CMB emission at the time of emission and today has a similar shape, but the spectrum today is shifted to lower-energy (redshifted) due to the expansion of the Universe as shown in Figure 3.

Exercise 3 : Clustering of galaxies

In this exercise, we want to compute the estimator of the 2-point correlation function, starting from the number of pairs of galaxies separated by a distance r . Finally, we plot the resulting values and analyze them.

- a) If n_{galaxies} is the total number of galaxies, the total number of pairs is :

$$N_{\text{allpairs}} = \frac{n_{\text{galaxies}} \times (n_{\text{galaxies}} - 1)}{2}. \quad (6)$$

Thus,

$$N_{\text{obs}}(r) = \frac{\text{pairs}(r)}{N_{\text{allpairs}}}, \quad (7)$$

where $\text{pairs}(r)$ is the number of pairs of galaxies separated by a distance r .

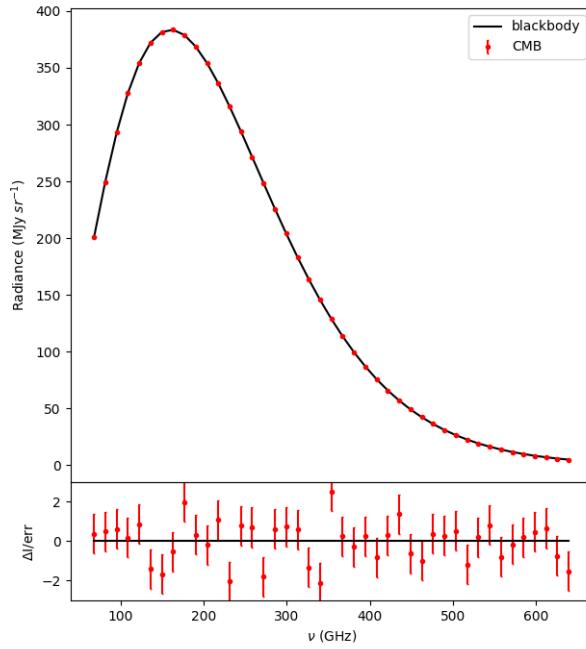


Figure 2. The CMB spectra at the time of emission and today.

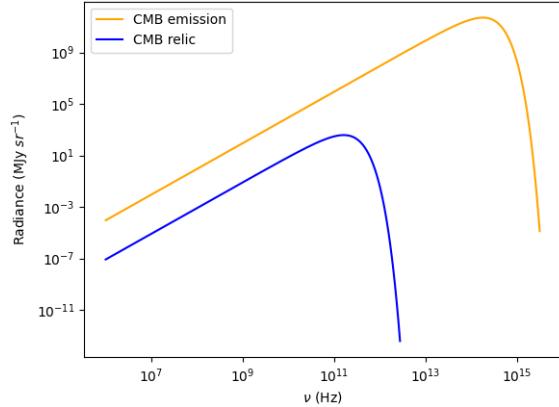


Figure 3. The best-fit black-body spectrum of CMB spectrum.

b) We assume that there is a point in the region dV_1 and we want to compute how many points are at a distance $r \pm \Delta r$, i.e. in the spherical shell of

radius r and width Δr . Given that the box has a finite size L , we need to assume the periodic boundary conditions. This is required mostly important for volumes dV_1 that are close to the boundary, because the distance $r \pm \Delta r$ could be beyond the boundary. Thus, by applying the periodic boundary conditions, we ensure that there will be a complete spherical shell, even for those points that are close to the boundary.

Starting from the fact that N_{random} is defined as the ratio between the pairs of points separated by a distance $r \pm \Delta r$ over the total number of pairs in the catalog, we have :

$$N_{\text{random}} = \frac{\int_{\text{spherical shell}} \bar{n} dV_2 dV_1}{\int_{\text{whole box}} \bar{n} dV_2 dV_1}. \quad (8)$$

In this formula, \bar{n} is the number density of random points and it is a constant because the points are uniformly distributed, thus it can be simplified. Moreover, the integration is done only over the V_2 , thus dV_1 can be also simplified, resulting into :

$$N_{\text{random}} = \frac{\int_{r-\Delta r}^{r+\Delta r} \int_0^{2\pi} \int_0^\pi s^2 \sin \theta ds d\theta d\phi}{\int_0^L \int_0^L \int_0^L dx dy dz}. \quad (9)$$

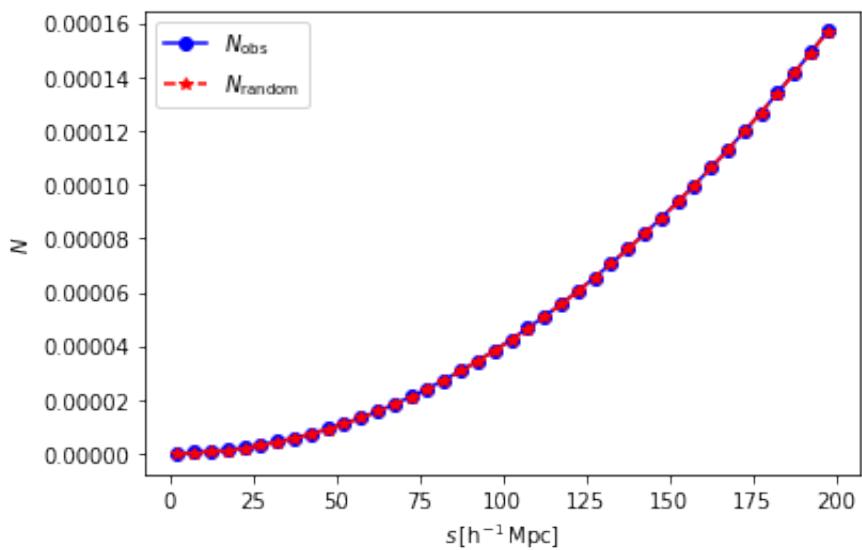
Finally,

$$N_{\text{random}}(r) = \frac{4\pi}{3} \times \frac{[(r + \Delta r)^3 - (r - \Delta r)^3]}{L^3}. \quad (10)$$

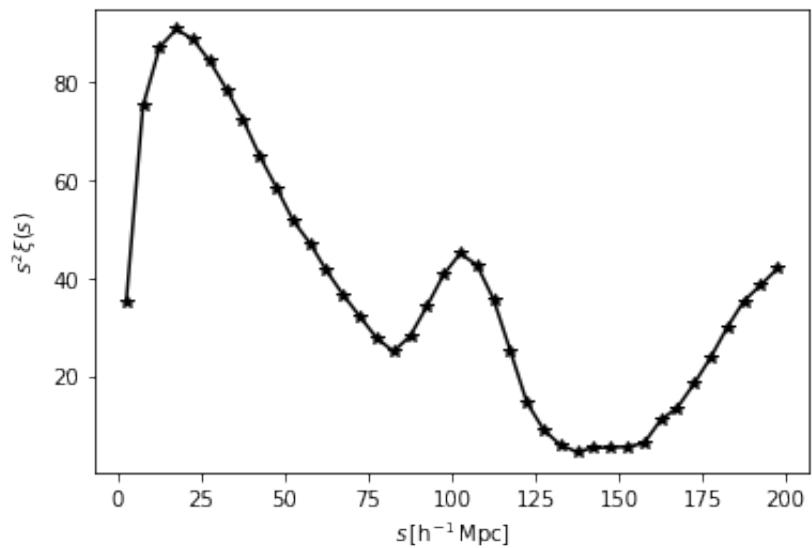
c) Using, the two results from above and the fact that

$$\xi(r) = \frac{N_{\text{obs}}(r)}{N_{\text{random}}(r)} - 1. \quad (11)$$

one can trivially compute $\xi(r)$ and plot it.



N_{random} and N_{obs} as functions of r



The 2PCF as function of r