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Exercise 1 : CMB radiation density

Tp = 2.73 K, and thus pcmpp 2 = aTy ~4.2-1074 Jm~% and
ocMBo = 4.7 - 103 kgm 3,

8mGpcmB0

S A~ 25021070
3H}

Qcmpo =

The average photon energy is 3kT = 1.13 - 10722 ], corresponding to

n = 3.72 - 108photons per m> ~ 400photons per cm?.

Oy ~ 0.022h72 = py, 0/ Perito corresponds to the baryon number density

PFb,0
Mproton

~ 0.25baryons per m®> = 2.5 - 10~ ’baryons per cm >

Ny =

. The baryon density in the universe is much sparser than normal things on the
earth.

Exercise 2 : Redshifting Planck’s law

In the exercise we want to show that, if the CMB in the early Universe with
87v3 1

3 exp(hvy /kTy)—1
then also for a later Universe with scale radius R, the CMB remains described
87tv3 1

3 exp(hvy/kTp)—1"

scale radius R; is described by black body spectrum u,; =

by a black body u,, =
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Figure 1. Despite the Universe’s expansion CMB spectrum remains black body

a) The number density of photons (1) decreases in expanding Universe with
increasing volume : n; = (%)3 - ny.
The energy of each photon (hv) also decreases with expanding Universe :
hvy, = %hvl (we have: Ay = (1 +Zi) -Ajand R; = (1 + Zi)fl).
Hence, the total energy density of photons in Universe U = n * hv is
decreasing in expanding Universe : U, = (%)4 Uy

b) Knowing that, we take now our black body spectrum of the CMB at early
Universe with scale radius R;, and integrate it over whole spectral range :

R\ 4 R\ 4
U = <R_1> Uy — /Mude2 = (R—l) /uuldl/l 1)
2 2

_ _(Ri\* _ (R\* r8m 1
Uz—/uvzdvz— (R_z) /uﬂdvl B (R_2> / c3 exp(hvl/le)—ldV1
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(2)

With using hvp = %hvl :

3
483 (R
U = /Mu2d1/2 = / (&> : ER1> Rl dV2& 3)
R c exp(hvag2 /kT1) =1 "R

We recognise a black body spectrum with T, = %Tl D

873 1
U2 B /uV2dV2 - / C3 exp(hVZ/sz) — 1d1/2 (4)

- 873 1
2T T3 exp(hn/kT) — 1

()

Indeed for t, > t1, the CMB is still black body.

c) Asshown in Figure 2 A black-body spectrum with T = 2.725 K is the best-
tit to the observed CMB spectrum. It is consistent with 2.7260 £ 0.0013 K
mentioned in the lecture as 2.725K is within the 1o error range.

d) The CMB emission at the time of emission and today has a similar shape,
but the spectrum today is shifted to lower-energy (redshifted) due to the
expansion of the Universe as shown in Figure 3.

Exercise 3 : Clustering of galaxies

In this exercise, we want to compute the estimator of the 2-point correlation
function, starting from the number of pairs of galaxies separated by a distance
r. Finally, we plot the resulting values and analyze them.

a) If Ngalaxies 1S the total number of galaxies, the total number of pairs is :

Ngalaxies X (Mgalaxies — 1)
galaxies galaxies
Nallpairs = ) . (6)

Thus,

airs(r
Noss (1) = 2050, %
allpairs

where pairs(r) is the number of pairs of galaxies separated by a distance
r.
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Figure 2. The CMB spectra at the time of emission and today.
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Figure 3. The best-fit black-body spectrum of CMB spectrum.

b) We assume that there is a point in the region dV; and we want to com-
pute how many points are at a distance r &= Ar, i.e. in the spherical shell of
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radius r and width Ar. Given that the box has a finite size L, we need to as-
sume the periodic boundary conditions. This is required mostly important
for volumes dV; that are close to the boundary, because the distance r += Ar
could be beyond the boundary. Thus, by applying the periodic boundary
conditions, we ensure that there will be a complete spherical shell, even
for those points that are close to the boundary.

Starting from the fact that Nyangom is defined as the ratio between the pairs
of points separated by a distance r &= Ar over the total number of pairs in
the catalog, we have :

N . f spherical shell ndV>dVvy -
random — — .
fwhole box ndV,dVv;

In this formula, 77 is the number density of random points and it is a
constant because the points are uniformly distributed, thus it can be sim-
plified. Moreover, the integration is done only over the V5, thus dV; can
be also simplified, resulting into :

AT 27 [T 52 5in 0dsdfd¢p

Nrandom = o 2 LO L (9)
Jo Jo Jo dxdydz
Finally,
A7 r+Ar)3 — (r— Ar)3

Nrandom(r) = ? X [( ) L3( ) ] (10)

Using, the two results from above and the fact that
N,
é(r) = L(r) 1. (11)

N, random (7’)

one can trivially compute ¢(7) and plot it.
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