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Exercise 1 : Cosmological Constant vs. Dark Energy

In general cosmologists assume that the mysterious energy driving the Universe’s
acceleration is dark energy, i.e. a general quantity with general equation of state w,
which can have a redshift dependence, i.e. w = w(z). The dark energy equation of state
is often parameterised as w(z) = w0 + (1− a)wa.
Observational evidence suggests that the spatial distribution of dark energy is fairly

smooth in the Universe, i.e. that there are little, if no, perturbations in the dark energy
field (contrarily to the perturbations in the matter field, which are well observed). In
practice, dark energy could clump at very large scales (scales beyond current observa-
tion).
The leading candidate for dark energy is the simplest one, where w = −1. In this case

the equation of state is constant with redshift (wa = 0 and w0 = −1, ∀z). In the case
of a cosmological constant, there are no perturbations in the ‘dark energy’ field, which
can now be thought of as a ‘vacuum energy’ : a fixed amount of energy is attached to
every tiny region of space, unchanging in time or spatial direction.

Exercise 2 : Critical Density

a) ρc(z) = 3H2(z)/8πG.

b) ∼ 10−27kg m−3

c) ∼ 10 Hydrogen atoms per m3

d) ∼ 1.5× 1011M⊙Mpc−3.

Exercise 3 : Flatness problem

a) The critical density at z is ρc = 3H2/(8πG). With defining : ρ = ρr + ρm, Ωr =
ρr/ρc, Ωm = ρm/ρc, Ωk = −kc2/(H2a2), and ΩΛ = Λc2/(3H2), we have :

1 = Ωr + Ωm + Ωk + ΩΛ (1)
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b) With dividing the Friedmann equation by H2
0 , we obtain :

(H/H0)
2 =

ρr
ρc,0

+
ρm
ρc,0

+
Ωk,0

a2
+ ΩΛ,0 (2)

As the volume universe scales with a, we have : ρm = ρm,0/a
3. Besides, as the

photons lose energy via redshifting proportionnaly to 1/a, we have : ρr = ρr,0/a
4.

Thus :

(H/H0)
2 =

Ωr,0

a4
+

Ωm,0

a3
+

Ωk,0

a2
+ ΩΛ,0 (3)

c) In a radiation-dominated Universe :

H2(z) = (ȧ/a)2 =
Ωr,0

a4
. (4)

Hence : da/(a × dt) ∝ 1/a2, which means : da/dt ∝ 1/a. We have. a ∝ t1/2 and
H ∝ t−1.

In a matter-dominated Universe :

H2(z) = (ȧ/a)2 =
Ωm,0

a3
. (5)

We similarly obtain : a ∝ t2/3 and H ∝ t−1.

d) We have at t : Ωk = −kc2/(H2a2). Similarly at t0 : Ωk,0 = −kc2/(H2
0 ) (a0 = 1).

Hence :

|Ωk| ∝ |Ωk,0|/(a2H2) (6)

For a radiation-dominated Universe : |Ωk| ∝ t. For a matter-dominated Universe :
|Ωk| ∝ t2/3.

For the Universe to be flat today, i.e. Ωk,0 < 0.1, given a matter-dominated
approximation, we have the |Ωk| ∼ 10−13 back at the universe is 1 second years
old. If Ωk had been slightly above 0, it would have recollapsed very early before
making galaxies ; If Ωk had been slightly below 0, it would have expanded so rapidly
that structures would not have formed. It is the “fine tuning” of this scenario which
is called the flatness problem.

Exercise 4 : Redshift of matter-radiation equality

From the definition of Ωr and Ωm we have :

Ωr

Ωm

=
ρr
ρm

(7)

The matter energy density scales as R−3, that is :

ρmR
3 = ρm,0R

3
0 (8)
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On the other hand, the photon/neutrino energy density scales as R−4, as not only the
volume expands as R3, but the wavelength expands as well, and thus each photons
energy shrinks as R−1 :

ρrR
4 = ρr,0R

4
0 (9)

Thus,

Ωr

Ωm

=
R0

R

Ωr,0

Ωm,0

= (1 + z)
Ωr,0

Ωm,0

(10)

We want to find the redshift zeq for which Ωr/Ωm = 1 :

1 + zeq =
Ωm,0

Ωr,0

(11)

Inserting the numerical value of Ωr,0, this gives the desired result.
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