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Exercise 1 : Hubble parameter and expansion rate

In [1]: import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np

# Main references:
# https://en.wikipedia.org/wiki/Orders_of_magnitude_(length)
# https://en.wikipedia.org/wiki/Orders_of_magnitude_(mass)
name = ['Observable Universe', 'Milky Way', 'Sun', \

'Earth', 'Khufu Pyramid', 'Human', 'Mosquito', \
'Bacterium', 'Hydrogen Atom']

size = [1e27, 2e21, 1e9, 1e7, 1e2, 1, 1e-3, 1e-6, 1e-15]
mass = [6e52, 1e42, 2e30, 6e24, 6e9, 70, 2e-6, 1e-15, 2e-27]

# Plot the masses as function of sizes.
plt.plot(size, mass, 'or')
for nm, sz, ms in zip(name, size, mass):

plt.annotate(nm, (sz, ms), ha='center', va='bottom')

# Mass-size relation with the water density.
size_water = np.logspace(-15, 27)
mass_water = size_water**3
plt.plot(size_water, mass_water, 'b')

plt.xlabel('Size [m]')
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plt.ylabel('Mass [kg]')
plt.xscale('log')
plt.yscale('log')

10 12 10 6 100 106 1012 1018 1024

Size [m]

10 36

10 20

10 4

1012

1028

1044

1060

1076

M
as

s [
kg

]

Observable Universe
Milky Way

Sun
Earth

Khufu Pyramid
Human

Mosquito
Bacterium

Hydrogen Atom

Exercise 2 : The Hubble law

A negative radial velocity means that the observed galaxy is moving towards
us ; this can happen for close-by galaxies, which are leaving in the same dark
matter halos than us ; the relative motion inside the halos are not sensitive to
the overall expansion of the Universe.

In [1]: import matplotlib.pyplot as plt
%matplotlib inline

In [2]: # Velocity - distance relation from Hubble (1929).
import numpy as np
from scipy.optimize import leastsq

D = [0.032, 0.034, 0.214, 0.263, 0.275, 0.275, 0.45, 0.5, \
0.5, 0.63, 0.8, 0.9, 0.9, 0.9, 0.9, 1.0, \
1.1, 1.1, 1.4, 1.7, 2.0, 2.0, 2.0, 2.0]

V = [170, 290, -130, -70, -185, -220, 200, 290, \
270, 200, 300, -30, 650, 150, 500, 920, \
450, 500, 500, 960, 500, 850, 800, 1090]

D = np.array(D)
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V = np.array(V)

plt.plot(D, V, 'ro')

# Least-square fit
def fitfunc(par, x):

return par[0] * x

def errfunc(par, x, y):
return y - fitfunc(par, x)

pfit, pcov = leastsq(errfunc, [0], args=(D, V))

H0 = pfit[0]
res_sq = (errfunc(pfit, D, V)**2).sum() / (len(V)-len(pfit))
H0_err = np.sqrt(pcov * res_sq)

# Unit conversion
km_per_Mpc = 3.09e19
sec_per_Gyr = 3.15e16
H0_in_Gyr = H0 * sec_per_Gyr / km_per_Mpc

print('H0 = {:g} +- {:g} km/s/Mpc'.format(H0, H0_err))
print('1/H0 = {:g} Gyr'.format(1.0/H0_in_Gyr))

# Plot best-fit curve
x = np.linspace(D.min(),D.max())
y = fitfunc(pfit, x)
plt.plot(x, y, 'k-')

plt.grid(ls=':')
plt.xlabel('Distance (Mpc)')
plt.ylabel('Velocity (km/s)')
plt.show()

H0 = 423.937 +- 323.89 km/s/Mpc
1/H0 = 2.31391 Gyr
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When expressed in km.s−1.Mpc−1, H0 is typical speed at which two galaxies
distant from 1 Mpc will be receding one from each other.

The time that has elapsed since the two galaxies were in contact is : t = d/v =
d/(H0 × d) = 1/H0. This time is refered as the Hubble time ; it provides an
estimate of the age of the Universe.

In [3]: # Velocity - distance relation from Freedman et al. (2001).

D = [2.00, 9.16, 16.14, 17.95, 21.88, 3.22, 11.22, 11.75, \
3.63, 13.80, 10.00, 10.52, 6.64, 15.21, 17.70, 14.86, \
16.22, 15.78, 14.93, 21.98, 12.36, 4.49, 3.15, 14.72]

V = [133, 664, 1794, 1594, 1473, 278, 714, 882, \
80, 772, 642, 768, 609, 1433, 619, 1424, \
1384, 1444, 1423, 1403, 1103, 318, 232, 999]

dV = [273, 290, 630, 437, 8, 85, 222, 44, \
166, 76, 533, 470, 411, 3, 596, 43, \
37, 34, 25, 45, 122, 318, 568, 179]

D = np.array(D)
V = np.array(V)
dV = np.array(dV)

plt.errorbar(D, V, dV, marker='o', ls='none', capsize=3)

# Least-square fit with error bars
def fitfunc(par, x):

return par[0] * x
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def errfunc(par, x, y, err):
return (y - fitfunc(par, x)) / err

pfit, pcov = leastsq(errfunc, [0], args=(D, V, dV))

H0 = pfit[0]
res_sq = (errfunc(pfit, D, V, dV)**2).sum() \

/ (len(V)-len(pfit))
H0_err = np.sqrt(pcov * res_sq)
H0_in_Gyr = H0 * sec_per_Gyr / km_per_Mpc

print('H0 = {:g} +- {:g} km/s/Mpc'.format(H0, H0_err))
print('1/H0 = {:g} Gyr'.format(1.0/H0_in_Gyr))

x = np.linspace(D.min(),D.max())
y = fitfunc(pfit, x)
plt.plot(x, y, 'k-')

plt.xlabel('Distance (Mpc)')
plt.ylabel('Velocity (km/s)')
plt.show()

H0 = 88.0236 +- 19.5971 km/s/Mpc
1/H0 = 11.1442 Gyr
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Exercise 3 : Parsec

a) Parallax is the difference in apparent position of an object when viewed
from different angles or lines of sight. The stellar parallax is the shift in
apparent positions of nearby stars with respect to distant stars depending
on the time of the year we observe them in. (This is different from the fact
that we can see different stars at different times of the year).

b) A parsec stands for ‘distance corresponding to a parallax of one arcsecond,
as viewed from the earth, i.e. for a change in line of sight corresponding
to 1AU, the distance of the earth to the sun. See Figure 1.

Illustration of stellar parallax (not to scale). The distance to the nearby star is 1
parsec if the angle θ = 1”.

c) The distance can be determined by :

d =
1A.U.

tan(1”)
≃ 1A.U.

1”
=

1A.U.
1

3600
π

180

≃ 2.06265 × 105AU (1)

where we’ve used tan (1”) ≃ 1” since the angles are very small.

d) Since 1 A.U. =1.49597871 × 1011 m, this gives 1 pc ≃ 3.0857 × 1016 m.

e) 1 pc ∼ 3.26 light-years.

Exercise 4 : Introduction to redshift

Let us assume that M31 has a radial velocity v and that the observed redshift
z = −0.001 is only due to Doppler effect.
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Let λem be the emitted wavelength and λobs the observed wavelength.
The corresponding frequencies are f = c/λ, where c is the speed of light.
If the wavefront is emitted from M31 at t0, we will receive it at t0 + d0/c,

where d0 is the distance of M31 at t0.
The next wavefront will be emitted at t0 + 1/ fem and we will receive it at

t0 + 1/ fem + (d0 + v/ fem)/c.
Hence the observed frequency will be : 1/ fobs = 1/ fem(1 + v/c).
And the observed wavelength : λobs = λem(1 + v/c).
We thus obtain : z = (λobs − λem)/λem ∼ v/c.
The observed z = −0.001 corresponds to a velocity of -300 km.s−1.
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