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Exercise 1 : Scale factor and redshift (credits : B.Ryden)

a) The FLRW metric is

ds* = —cdt* +a(t)?- (dr® + S.(r)* - dQ?)
2
242 2, 2, QQ
c*dt® + a(t) (1_/%2%—3: dQ?)
Thus, we have
Sul(r) =, (1)
and
dx?
dr? = ) 2
R g (2)
Then
25 T = (da)? = (dsinTa)? for k=41
dr* = { da? for k =0 (3)
1‘%22 Egnhe g‘fé%ﬁi = (da)* = (dsinh™'z)* for k = —1.

Then the expression of S,(r) is as follows

sin(r)  for k = 41
Se(r)y=z=<(r for k =0 (4)

sinh(r) for Kk = —1

b) A photon follows a null geodesic : ds = 0. If the photon follows a radial path,
then : dQ? = 0. We thus have : dr = c¢- dt/a(t). Integrating the previous equation,
we have :

!

/Trd/ /t/toc-dt’
r = .
=0 v=t, a(l’)
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Which gives :
/to dt
r=c —.
r alt)

The first wave crest is emitted at ¢, and it is observed at t;. The next wave crest
is emitted at t. + A./c and is observed at ¢ty + \g/c. Consequently, we have :

to gt totro/e gy
rT=c — =c —.
/te a(t) /teJr)\e/c a(t)

We subtract the ftto dt/a(t) on both sides and divide by ¢ :

e+>\e/c
te+>\e/c dt t0+)\0/c dt
/te a(t) /to a(t)

Besides, the expansion of the Universe does not change between two wave crests,
as one can see for an optical photon :

Me~2-107" s < Hy' ~ 14 Gyr.

1 te+/\e/C 1 to-l—)\()/c
L / T— / dt.
a(tE) te a(to) to

)\e /\0

afte) — a(to)’
Using the redshift definition z = (Ag — A¢)/Ae and the fact that a(ty) = 1, we
eventually have :

We can write :

Hence we have :

w4~ Comaoving distance
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F1GURE 1 - Figure 1. Comoving distance as function of redshift
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Exercise 2 : Luminosity distance (credits : B.Ryden)

a) d, = \/%.

b) First, the wavelength of the light decreases from A, to A¢ according to : Ay =

d)

(14 2)Ae, which implies a decrease of the energy : Ey = E./(1 + 2).

Second, the time between two consecutive photon detection will be greater. If
two photons are emitted in the same direction separated by a time interval 6t,,
the proper distance between them is cdt.; by the time we detect the photons at
time ¢y, the proper distance between them is stretched to ¢dt, x (1+ z). Thus, the
two detected photons are separated in time by dtg = dt. x (1 + z).

Overall, the observed flux of light is decreased by a factor (1 + z)%.

The photons emitted at t. are spread at t; over a sphere of proper radius d,(ty),
which is equal to the comoving radius r, as d,(ty) = a(to) - v and a(ty) = 1. If
the space is flat (k = 0), the proper area of the sphere is given by the Euclidean
relation A, (tg) = 4md,(to)? = 4mr.

Combining the fact that the observed flux is decreased by (14-2)? and that A,(tg) =
47S,(r)?, we obtain the relation :

L

P N LR (e ES

Hence we can express the luminosity distance as :

dL:SKO“)(l—FZ)

—— Luminosity distance
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FIGURE 2 — Figure 2. The luminosity distance as a function of redshift
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Exercise 3 : The evolution of surface brightness with redshift

a) The relation between the angular diameter distance and the luminosity distance
is :
dy, = (1 + Z)2d A
b) For a given proper size, the angular diameter will by definition be inversely pro-
portional to da. The angular area (for instance in square degrees) will thus vary
as 02 oc d°.
Using the definition of the luminosity distance, the flux will be inversely propor-
tional to d? : f o< d;°.
The surface brightness will therefore vary as f/6? oc d3 /d?. But dy, = (1+ 2)%da
, so surface brightness must vary as (1 + z)~*.

Exercise 4 : Angular diameter distance

a) In the considered model (Q,7,Q5) = (1,0) = k =0, we have :

dcomovin
da(z) = N :

And thus :

dn(z) = L

c z
Ho(l 4 Z) /0 \/(1 4 Z/)2(1 Y Qm’()) _ Z/(Q -+ z/) QA’(]

dz

c # c 2
— . 1+ /—3/2d /:— _2 1+ /—1/2
2c 1+z—+V1+4+ 2z

HO (1 + 2)2

b) The angular diameter # = D/d, reaches its minimum if du(z) is maximal :

0 = G (00T L0 i e v
- <_2 e {1—%(1“)”2]) B

1
o —2<1—|—z—\/1—|—z)—I—(1+z)—§\/1—|—z:0

3
& 5\/1—1—2:(1—#2) & z=1.25

Thus, for the Einstein-de Sitter Universe, the angular diameter distance increases
with z for z < 1.25 then decreases for z > 1.25.

c
da(1.25) =~ 0.3—
A(1.25) = 0 3H0

D 30k
= De ~ 33-10"% hrad =~ 6.8 h arc seconds.

daas)  03%

emin =
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FiGURE 3 — Figure 3. The angular distance as a function of redshift z. Solid lines re-
present the results provided by astropy.cosmology package. The dashed line
is the result provided by the analytical expression derived in this exercise.

d) The intrinsic luminosity is L = 10*® erg s™!, and the observed flux is | = 3 -

107! erg s7! em™2. From this we can obtain the luminosity distance :

L\ 2
d, = | — = 1670 Mpc
4rl

For a redshift of z = 0.5, this implies an angular diameter distance of
dy = dy/(1+ 2)* = 740 Mpc

Note that this corresponds to the evaluation of du(z) as obtained above for Hy =

100 km s~! Mpc~t. But given the observations, we don’t need to assume a value
for Hy.

Finally, the proper diameter of the galaxy is given by :

D = dy 6 ~ 20 kpc



	Scale factor and redshift (credits: B.Ryden)
	Luminosity distance (credits: B.Ryden)
	The evolution of surface brightness with redshift
	Angular diameter distance

