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Exercise 1 : Scale factor and redshift (credits : B.Ryden)

a) The FLRW metric is

ds2 = −c2dt2 + a(t)2 · (dr2 + Sκ(r)
2 · dΩ2)

= −c2dt2 + a(t)2 · ( dx2

1− κx2
+ x2 · dΩ2)

Thus, we have

Sκ(r) = x, (1)

and

dr2 =
dx2

1− κx2
. (2)

Then

dr2 =


dx2

1−x2

x=sinα
= (dsinα)2

1−sin2α
= (dα)2 = (dsin−1x)2 for κ = +1

dx2 for κ = 0
dx2

1+x2

x=sinhα
= (dsinhα)2

1+sinh2α
= (dα)2 = (dsinh−1x)2 for κ = −1.

(3)

Then the expression of Sκ(r) is as follows

Sκ(r) = x =


sin(r) for κ = +1

r for κ = 0

sinh(r) for κ = −1

(4)

b) A photon follows a null geodesic : ds = 0. If the photon follows a radial path,
then : dΩ2 = 0. We thus have : dr = c · dt/a(t). Integrating the previous equation,
we have : ∫ r′=r

r′=0

dr′ =

∫ t′=t0

t′=te

c · dt′

a(t′)
.
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Which gives :

r = c

∫ t0

te

dt

a(t)
.

c) The first wave crest is emitted at te and it is observed at t0. The next wave crest
is emitted at te + λe/c and is observed at t0 + λ0/c. Consequently, we have :

r = c

∫ t0

te

dt

a(t)
= c

∫ t0+λ0/c

te+λe/c

dt

a(t)
.

We subtract the
∫ t0
te+λe/c

dt/a(t) on both sides and divide by c :∫ te+λe/c

te

dt

a(t)
=

∫ t0+λ0/c

t0

dt

a(t)

Besides, the expansion of the Universe does not change between two wave crests,
as one can see for an optical photon :

λ/c ∼ 2 · 10−15 s ≪ H−1
0 ∼ 14 Gyr.

We can write :
1

a(te)

∫ te+λe/c

te

dt =
1

a(t0)

∫ t0+λ0/c

t0

dt.

Hence we have :
λe

a(te)
=

λ0

a(t0)
.

Using the redshift definition z = (λ0 − λe)/λe and the fact that a(t0) = 1, we
eventually have :

1 + z =
1

a(te)
.

Figure 1 – Figure 1. Comoving distance as function of redshift
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Exercise 2 : Luminosity distance (credits : B.Ryden)

a) dL ≡
√

L
4πf

.

b) First, the wavelength of the light decreases from λe to λ0 according to : λ0 =
(1 + z)λe, which implies a decrease of the energy : E0 = Ee/(1 + z).

Second, the time between two consecutive photon detection will be greater. If
two photons are emitted in the same direction separated by a time interval δte,
the proper distance between them is cδte ; by the time we detect the photons at
time t0, the proper distance between them is stretched to cδte × (1+ z). Thus, the
two detected photons are separated in time by δt0 = δte × (1 + z).

Overall, the observed flux of light is decreased by a factor (1 + z)2.

c) The photons emitted at te are spread at t0 over a sphere of proper radius dp(t0),
which is equal to the comoving radius r, as dp(t0) = a(t0) · r and a(t0) = 1. If
the space is flat (κ = 0), the proper area of the sphere is given by the Euclidean
relation Ap(t0) = 4πdp(t0)

2 = 4πr2.

d) Combining the fact that the observed flux is decreased by (1+z)2 and that Ap(t0) =
4πSκ(r)

2, we obtain the relation :

f =
L

4π · Sκ(r)2 · (1 + z)2
.

Hence we can express the luminosity distance as :

dL = Sκ(r) · (1 + z).

Figure 2 – Figure 2. The luminosity distance as a function of redshift
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Exercise 3 : The evolution of surface brightness with redshift

a) The relation between the angular diameter distance and the luminosity distance
is :

dL = (1 + z)2dA

b) For a given proper size, the angular diameter will by definition be inversely pro-
portional to dA. The angular area (for instance in square degrees) will thus vary
as θ2 ∝ d−2

A .

Using the definition of the luminosity distance, the flux will be inversely propor-
tional to d2L : f ∝ d−2

L .

The surface brightness will therefore vary as f/θ2 ∝ d2A/d
2
L. But dL = (1+ z)2dA

, so surface brightness must vary as (1 + z)−4.

Exercise 4 : Angular diameter distance

a) In the considered model (ΩM ,ΩΛ) = (1, 0) ⇒ k = 0, we have :

dA(z) =
dcomoving

1 + z

And thus :

dA(z) =
c

H0(1 + z)

∫ z

0

1√
(1 + z′)2(1 + z′ Ωm,0)− z′(2 + z′) ΩΛ,0

dz′

=
c

H0(1 + z)

∫ z

0

(1 + z′)−3/2 dz′ =
c

H0(1 + z)

[
−2(1 + z′)−1/2

]z
0

=
2c

H0

1 + z −
√
1 + z

(1 + z)2

b) The angular diameter θ = D/dA reaches its minimum if dA(z) is maximal :

d

dz
dA(z) =

2c

H0

((
1 + z −

√
1 + z

) d

dz

[
(1 + z)−2

]
+

1

(1 + z)2
d

dz

[
1 + z −

√
1 + z

])
=

2c

H0

(
−2
(
1 + z −

√
1 + z

)
(1 + z)3

+
1

(1 + z)2

[
1− 1

2
(1 + z)−1/2

])
= 0

⇔ −2
(
1 + z −

√
1 + z

)
+ (1 + z)− 1

2

√
1 + z = 0

⇔ 3

2

√
1 + z = (1 + z) ⇔ z = 1.25

Thus, for the Einstein-de Sitter Universe, the angular diameter distance increases
with z for z < 1.25 then decreases for z > 1.25.

c)

dA(1.25) ≈ 0.3
c

H0

θmin =
D

dA(1.25)

≈ 30 kpc

0.3 c
H0

≈ 33 · 10−6 h rad ≈ 6.8h arc seconds.
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Figure 3 – Figure 3. The angular distance as a function of redshift z. Solid lines re-
present the results provided by astropy.cosmology package. The dashed line
is the result provided by the analytical expression derived in this exercise.

d) The intrinsic luminosity is L = 1043 erg s−1, and the observed flux is l = 3 ·
10−14 erg s−1 cm−2. From this we can obtain the luminosity distance :

dL =

(
L

4πl

)1/2

= 1670 Mpc

For a redshift of z = 0.5, this implies an angular diameter distance of

dA = dL/(1 + z)2 = 740 Mpc

Note that this corresponds to the evaluation of dA(z) as obtained above for H0 =
100 km s−1 Mpc−1. But given the observations, we don’t need to assume a value
for H0.

Finally, the proper diameter of the galaxy is given by :

D = dA θ ≈ 20 kpc
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