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Preface

The lectures that four authors present in this volume investigate core topics related
to the accelerated expansion of the Universe. Accelerated expansion occured in the
very early Universe – an exponential expansion in the inflationary period 10−36 s
after the Big Bang. This well-established theoretical concept had first been pro-
posed in 1980 by Alan Guth to account for the homogeneity and isotropy of the
observable universe, and simultaneously by Alexei Starobinski, and has since then
been developed by many authors in great theoretical detail.

An accelerated expansion of the late Universe at redshifts z < 1 has been discov-
ered in 1998; the expansion is not slowing down under the influence of gravity, but
is instead accelerating due to some uniformly distributed, gravitationally repulsive
substance accounting for more than 70% of the mass–energy content of the Uni-
verse, which is now known as dark energy. Its most common interpretation today is
given in terms of the so-called �CDM model with a cosmological constant �.

This pathbreaking result was obtained almost simultaneously by the Supernova
Cosmology Project led by Saul Perlmutter of the Lawrence Berkeley National
Laboratory and the University of California at Berkeley, and the High-z Super-
nova Search Team around Brian Schmidt of the Australian National University in
Canberra, and Adam Riess, who is now at the Johns Hopkins University and the
Space Telescope Science Institute, both in Baltimore, Maryland. It is presently not
clear whether there is any relationship between inflation in the early Universe and
the accelerated expansion in the late Universe. Dark energy is somewhat similar to
cosmological inflation, but its energy scale of 10−12 GeV is about 27 orders of mag-
nitude smaller than the typical energy scale of inflation. In its physical interpretation,
the solution for the cosmological constant problem is the clue to further progress in
both cosmology and particle physics – in particular, the correct explanation of the
smallness of the cosmological constant, and the reason for the approximate equality
of its energy density and the matter energy density at the present epoch.

The discovery of the accelerated expansion in the late Universe relied on data
from type Ia supernovae. These are fairly reliable standard candles, and can hence
be used in the cosmic luminosity-distance determination. The accelerated expansion
in the redshift range z < 1 has subsequently been and will further be investi-
gated in detail not only through refined data from type Ia supernovae, but also
through observations of the temperature fluctuations in the cosmic microwave
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vi Preface

background, in particular with the Planck satellite, of baryonic acoustic oscillations,
the weak-lensing effect, and through galaxy cluster counts with the South Pole Tele-
scope and other equipment. At larger redshifts, the acceleration becomes a deceler-
ation, owing to the lessening impact of dark energy at earlier times – as has been
confirmed by recent supernova data from the Hubble space telescope.

Selected aspects of the vast field of accelerated expansion of our Universe in
different epochs are treated in the four selected lectures that are presented in this
volume. The first chapter by David Langlois of the Université Paris 7 considers
inflation and how it accounts for the primordial seeds of the cosmological pertur-
bations which we can observe today with great precision. It also serves as an intro-
duction to the principles of the Hot Big Bang Model and its limitations. Particular
emphasis is placed on the amplification of the quantum vacuum fluctuations during
the inflationary phase. The constraints on inflationary models are discussed, as well
as more general models of inflation involving multiple fields, and non-Gaussianities
of the primordial perturbations.

The second chapter written by Mark Sullivan of Oxford University introduces
dark energy in a review of type Ia supernovae results in cosmology. The physics
which leads to the near-uniform peak brightness of these supernovae, allowing
astronomers to use them for precise luminosity-distance determinations, is explained.
Modern SN Ia searches and distance estimation techniques have allowed to measure
the average equation of state of dark energy to better than 5% statistical error, when
combined with complementary probes of large-scale structure such as baryonic
acoustic oscillations. Future prospects for determining dark energy with SN Ia in
the next generation of planned experiments are given.

The third chapter by Shinji Tsujikawa of Tokyo University concerns modified
gravity models of dark energy. Such theories presently appear to be the most serious
competitors to conventional dark-energy models based on a cosmological constant,
or its time-dependent counterparts arising from a scalar field, although the physical
origin of the modifications of gravity are not always clear. A number of modified-
gravity models that satisfy local gravity and cosmological constraints are presented.
Signatures that may distinguish modified gravity models from �CDM cosmology
are discussed. The braneworld models treated in this chapter as possible candidates
for late-time cosmic acceleration are, however, ruled out from observational con-
straints.

Finally, the last lecture by Licia Verde from the Universitat de Barcelona about
statistical methods in cosmology gives a summary of the currently available statis-
tical methods that are indispensable for the analysis of cosmological data, and are
thus necessary prerequisites for many of the results that have been presented in this
volume and eleswhere in cosmological research.

The lectures have grown out of the annual Winter School of the Transregional
Research Center TRR33 “The Dark Universe” of the joint Universities Heidelberg,
Bonn, and LMU Munich. The center is funded by the Deutsche Forschungsgemein-
schaft. The first Winter School was established in 2007 by the Research Center
following the request and initiative of the young researchers, including postdoctoral,
doctoral, and master students. The most active group of them acted as organizers and
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set up the school in the Italian mountain resort, Tonale, at moderate cost but great
scientific benefit for the center. The main idea was to present “theory for observers
and observations for theorists,” to initiate discussions and joint projects between
theorists, observers, and scientists working with simulation methods.

The school was a big success, and it is scheduled to continue every year during
the funding period of TRR33. The four selected lectures in this book arose from
the second school in 2008, which was mainly organized by the young researchers,
M. Baldi, C. Byrnes, T. Koivisto, M. Maturi, C. Mignone, D. Mota, V. Pettorino,
G. Robbers, M. Viola, and J.C. Waizmann, with the help of some more senior
people in the background. The four authors of this Lecture Notes volume have
expressed their gratitude to the organizers for setting up this very useful and enjoy-
able Research School and for their hospitality. We all hope that this endeavor will
contribute further to the bright future of dark energy.

Heidelberg Georg Wolschin
September 2009
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Inflation and Cosmological Perturbations

D. Langlois

Summary The purpose of these lectures is to give a pedagogical introduction to
inflation and the production of the primordial perturbations, as well as a review of
some of the latest developments in this domain.

After a short introduction, we review the main principles of the Hot Big Bang
model, as well as its limitations. These deficiencies provide the motivation for the
study of a cosmological phase of accelerated expansion, called inflation, which can
be induced by a slow-rolling scalar field. A few illustrative models are presented.
We then turn to the analysis of cosmological perturbations and explain how the
vacuum quantum fluctuations are amplified during an inflationary phase. The next
step consists in relating the perturbations generated during inflation to the pertur-
bations of the cosmological fluid in the standard radiation-dominated phase. One
can thus confront the predictions of inflationary models with cosmological obser-
vations, such as the measurements of the Cosmic Microwave Background or the
large-scale structure surveys. The present constraints on inflationary models are
discussed.

The final part of these lectures gives a review of more general models of inflation,
involving multiple fields or non-standard kinetic terms. Although more complicated,
these models are usually motivated by high-energy physics and they can lead to
specific signatures that are not expected in the simplest models of inflation. After
introducing a very general formalism to describe perturbations in multi-field models
with arbitrary kinetic terms, several interesting cases are presented. We also stress
the role of entropy perturbations in the context of multi-field models. Finally, we
discuss in detail the non-Gaussianities of the primordial perturbations and some
models that could produce a detectable level of non-Gaussianities.

D. Langlois (B)
APC (CNRS-Université Paris 7), 10, rue Alice Domon et Léonie Duquet, 75205 Paris
Cedex 13, France
e-mail: langlois@apc.univ-paris7.fr

Langlois, D.: Inflation and Cosmological Perturbations. Lect. Notes Phys. 800, 1–57 (2010)
DOI 10.1007/978-3-642-10598-2_1 c© Springer-Verlag Berlin Heidelberg 2010



2 D. Langlois

1 Introduction

Inflation is today the main theoretical framework that describes the early Uni-
verse and that can account for the present observational data. In 30 years of exis-
tence, inflation has survived, in contrast with earlier competitors, the tremendous
improvement of cosmological data. In particular, the fluctuations of the Cosmic
Microwave Background (CMB) had not yet been measured when inflation was
invented, whereas they give us today a remarkable picture of the cosmological
perturbations in the early Universe. In the future, one can hope that more precise
measurements of the primordial cosmological perturbations will allow us to go one
step further in the confrontation of inflation models with data, and especially to
discriminate between the many different possible realizations of inflation.

The purpose of these lectures is 2-fold. The first goal is to explain, in a simple
way and starting from first principles as much as possible, the conceptual basis
of inflation and the elementary steps to calculate the cosmological perturbations
predicted by the simplest models. The second objective of these lectures is to give
an overview of the latest developments on inflation, in particular the study of more
general models of inflation involving several scalar fields or non-standard kinetic
terms. Although more complicated, these models can give very specific signatures
in the primordial cosmological perturbations, in particular non-Gaussianities and
isocurvature perturbations.

There is a huge literature on inflation and these lectures cover only a few topics,
with a list of references that is far from exhaustive. More details and more references
can be found in several textbooks (see, e.g. [1–3]) and many reviews (including for
instance, [4–8]; more specialized reviews will also be mentioned in the text). A
novel feature of the present lectures is to introduce the most modern approach to
the computation of perturbations. This has the advantage to be easily applicable
to the study of non-linear perturbations, which has recently become an extremely
active topic.

The outline of these lectures is the following. In the next section, we recall the
basic elements of the Hot Big Bang model and discuss its limitations, which moti-
vate inflation. Homogeneous inflation is introduced in Sect. 3. In Sect. 4, we turn to
the theory of linear cosmological perturbations and explain how they are generated
during an inflationary phase. The following section, Sect. 5, is devoted to the link
between primordial perturbations and present cosmology, and thus to the confronta-
tion of inflation models with the data. In Sect. 6, more general models of inflation
are considered, with a discussion of several specific scenarios, which have attracted
a lot of attention recently. Section 7 is devoted to the primordial non-Gaussianities.
And we conclude in the last section.

2 The Hot Big Bang Model

Modern cosmology is based on the theory of general relativity, according to which
our Universe is described by a four-dimensional geometry gμν that satisfies Ein-
stein’s equation
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Gμν ≡ Rμν − 1

2
R gμν = 8πG Tμν , (1)

where Rμν is the Ricci tensor, R ≡ gμνRμν the scalar curvature and Tμν the energy–
momentum tensor that describes the matter distribution.

2.1 The Friedmann Equations

One of the main assumptions of cosmology, which has been confirmed by observa-
tions so far, is to consider, as a first approximation, the Universe as being homo-
geneous and isotropic. Note that these symmetries define implicitly a particular
“slicing” of spacetime, in which the space-like hypersurfaces are homogeneous and
isotropic. A different slicing of the same spacetime would give space-like hypersur-
faces that are not homogeneous and isotropic.

Homogeneity and isotropy turn out to be very restrictive and the only geome-
tries compatible with these requirements are the FLRW (Friedmann–Lemaître–
Robertson–Walker) spacetimes, with metric

ds2 = −dt2 + a2(t)

[
dr2

1 − κr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (2)

where κ = 0, − 1,1 determines the curvature of spatial hypersurfaces, respectively,
flat, elliptic or hyperbolic. Moreover, the matter content compatible with homogene-
ity and isotropy is necessarily characterized by an energy–momentum tensor of the
form

Tμ
ν = Diag (−ρ(t),P(t),P(t),P(t)) , (3)

where ρ corresponds to an energy density and P to a pressure.
Substituting the metric (2) and the energy–momentum tensor (3) into Einstein’s

equations (1) gives the Friedmann equations,

(
ȧ

a

)2

= 8πGρ

3
− κ

a2
, (4)

ä

a
= −4πG

3
(ρ + 3P) , (5)

which govern the time evolution of the scale factor a(t).
An immediate consequence of the two above equations is the continuity equation

ρ̇ + 3H (ρ + P) = 0, (6)

where H ≡ ȧ/a is the Hubble parameter. The continuity equation can also be
obtained directly from the energy–momentum conservation



4 D. Langlois

∇μTμ
ν = 0, (7)

where ∇ denotes the covariant derivative associated with the metric gμν .
The cosmological evolution can be determined once the equation of state for the

matter is specified. Let us assume here P = wρ with w constant, which includes
the two main types of matter that play an important rôle in cosmology, namely
non-relativistic matter (w � 0) and a gas of relativistic particles (w = 1/3). The
conservation equation (6) can be integrated to give

ρ ∝ a−3(1+w). (8)

Substituting in (4), one finds, for κ = 0,

a(t) ∝ t
2

3(1+w) , (9)

which thus gives the evolution a(t) ∝ t1/2 for relativistic matter and a(t) ∝ t2/3

for non-relativistic matter. Note that a different cosmological evolution, governed
by modified Friedmann’s equations, can be envisaged in the primordial Universe, as
for example, in the context of brane cosmology (see, e.g. [9]), but this possibility
will not be discussed in these notes.

The present cosmological observations seem to indicate that our Universe is cur-
rently accelerating. The simplest way to account for this acceleration is to assume
the presence of a cosmological constant Λ in Einstein’s equations, i.e. an additional
term Λgμν on the left-hand side of (1). By moving this term on the right-hand
side of Einstein’s equations it can also be interpreted as an energy–momentum
tensor with equation of state P = −ρ, where ρ is time independent. This leads,
for κ = 0 and without any other matter, to an exponential evolution of the scale
factor

a(t) ∝ exp (Ht). (10)

In our Universe, several species with different equations of state coexist, and it
has become customary to characterize their relative contributions by the dimension-
less parameters

Ω(i) ≡ 8πGρ(i)
0

3H2
0

, (11)

where ρ(i)
0 denote the present energy densities of the various species, and H0 is the

present Hubble parameter. The first Friedmann equation (4), evaluated at the present
time, implies

Ω0 =
∑

i

Ω(i) = 1 + κ

a2
0H2

0

. (12)
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One can infer from present observations the following parameters: Ωm � 0.3 for
non-relativistic matter (which includes a small baryonic component Ωb � 0.05),
ΩΛ � 0.7 for a “dark energy” component (compatible with a cosmological con-
stant), Ωγ � 5 × 10−5 for the photons, and a total Ω0 close to 1, i.e. no detectable
deviation from flatness.

2.2 The Shortcomings of the Standard Big Bang Model

The standard Big Bang model has encountered remarkable successes, in particular
with primordial nucleosynthesis and the CMB, and it remains today a cornerstone
in our understanding of the present and past Universe. However, a few intriguing
facts remain unexplained in the strict scenario of the Hot Big Bang model and seem
to necessitate a larger framework. We review now the main problems:

• Homogeneity problem: A first question is why the approximation of homogene-
ity and isotropy turns out to be so good. Indeed, inhomogeneities are unstable,
because of gravitation, and they tend to grow with time. It can be verified, for
instance, with the CMB that inhomogeneities were much smaller at the last scat-
tering epoch than today. One thus expects that these homogeneities were still
smaller further back in time. How to explain a Universe so smooth in its past ?

• Flatness problem: Another puzzle lies in the (spatial) flatness of our Universe.
Indeed, the first Friedmann equation (4) implies

Ω − 1 ≡ 8πGρ

3H2
− 1 = κ

a2H2
. (13)

In standard cosmology, the scale factor behaves like a ∼ tp with p < 1 (p = 1/2
for radiation and p = 2/3 for non-relativistic matter). As a consequence, (aH)−2

grows with time and |Ω−1| must thus diverge with time. Therefore, in the context
of the standard model, the quasi-flatness observed today requires an extreme fine-
tuning of Ω near 1 in the early Universe.

• Horizon problem: One of the most fundamental problems in standard cosmology
is certainly the horizon problem. The (particle) horizon is the maximal distance
that can be covered by a light ray. For a light-like radial trajectory dr = a(t)dt,
and the horizon is thus given by

dH(t) = a(t)
∫ t

ti

dt′

a(t′)
= a(t)

t1−q − t1−q
i

1 − q
, (14)

where the last equality is obtained by assuming a(t) ∼ tq and ti is some initial
time.

In standard cosmology (q < 1), the integral converges in the limit ti = 0 and
the horizon has a finite size, of the order of the so-called Hubble radius H−1:
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dH(t) = q

1 − q
H−1. (15)

It is also useful to consider the comoving Hubble radius, (aH)−1, which repre-
sents the fraction of comoving space in causal contact. One finds that it grows
with time, which means that the fraction of the Universe in causal contact
increases with time in the context of standard cosmology. But the CMB tells
us that the Universe was quasi-homogeneous at the time of last scattering on a
scale encompassing many regions a priori causally independent. How to explain
this ?

A solution to the horizon problem and to the other puzzles is provided by the
inflationary scenario, which we will examine in the next section. The basic idea
is to “decouple” the causal size from the Hubble radius, so that the real size of
the horizon region in the standard radiation-dominated era is much larger than the
Hubble radius. Such a situation occurs if the comoving Hubble radius decreases
sufficiently in the very early Universe. The corresponding condition is

ä > 0, (16)

i.e. the Universe undergoes a phase of acceleration.

3 Inflation

The broadest definition of inflation is that it corresponds to a phase of acceleration
of the Universe,

ä > 0. (17)

In this sense, the current cosmological observations, if correctly interpreted, mean
that our present Universe is undergoing an inflationary phase. It is worth noting
that many of the models suggested for inflation have been adapted to account for
the present acceleration. We are, however, interested here in an inflationary phase
taking place in the early Universe, thus characterized by very different energy scales.
Another difference is that inflation in the early Universe must end to leave room to
the standard radiation-dominated cosmological phase.

Cosmological acceleration requires, according to the second Friedmann
equation (5), an equation of state satisfying

P < −1

3
ρ, (18)

condition which looks at first view rather exotic.
A very simple example giving such an equation of state is a cosmological con-

stant, corresponding to a cosmological fluid with the equation of state
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P = −ρ. (19)

However, a strict cosmological constant leads to exponential inflation forever which
cannot be followed by a radiation era. Another possibility is a scalar field, which we
now discuss in some details.

3.1 Cosmological Scalar Fields

The dynamics of a scalar field minimally coupled to gravity is governed by the
action

Sφ =
∫

d4x
√−g

(
−1

2
∂μφ∂μφ − V(φ)

)
, (20)

where g ≡ det(gμν) and V(φ) is the potential of the scalar field. The corresponding
energy–momentum tensor, obtained by varying the action (20) with respect to the
metric, is given by

Tμν = ∂μφ∂νφ − gμν

(
1

2
∂σφ∂σφ + V(φ)

)
. (21)

In the homogeneous and isotropic geometry (2), the energy–momentum tensor is of
the perfect fluid form, with the energy density

ρ = −T0
0 = 1

2
φ̇2 + V(φ), (22)

where one recognizes the sum of a kinetic energy and potential energy and the pres-
sure

P = 1

2
φ̇2 − V(φ). (23)

The equation of motion for the scalar field is the Klein–Gordon equation, obtained
by taking the variation of the above action (20) with respect to the scalar field,

∇μ∇μφ = dV

dφ
, (24)

which reduces to

φ̈ + 3Hφ̇ + V ′ = 0 (25)

in a homogeneous and isotropic Universe.
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The system of equations governing the dynamics of the scalar field and of the
cosmological geometry is thus given by

H2 = 8πG

3

(
1

2
φ̇2 + V(φ)

)
, (26)

φ̈ + 3Hφ̇ + V ′ = 0, (27)

Ḣ = −4πGφ̇2. (28)

The last equation can be derived from the first two and is therefore redundant.

3.2 The Slow-Roll Regime

The dynamical system (26), (27), and (28) does not always give an accelerated
expansion but it does so in the so-called slow-roll regime when the potential energy
of the scalar field dominates over its kinetic energy.

More specifically, the slow-roll approximation consists in neglecting the kinetic
energy of the scalar field , φ̇2 in (26) and the acceleration φ̈ in the Klein–Gordon
equation (27). One then gets the simplified system

H2 � 8πG

3
V , (29)

3Hφ̇ + V ′ � 0. (30)

Let us now examine in which regime this approximation is valid. From (30), the
velocity of the scalar field is given by

φ̇ � − V ′

3H
. (31)

Substituting this relation in the condition φ̇2/2 
 V yields the requirement:

εV ≡ M2
P

2

(
V ′

V

)2


 1, (32)

where we have introduced the reduced Planck mass

MP ≡ 1√
8πG

. (33)

Alternatively, one can use the parameter

ε ≡ − Ḣ

H2
, (34)

which coincides with εV at leading order in slow-roll, since ε = φ̇2/(2M2
PH2).
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Similarly, φ̈ 
 V ′ implies, after using the time derivative of (31) and (29), the
condition

ηV ≡ M2
P

V ′′

V

 1. (35)

In summary, the slow-roll approximation is valid when the conditions εV ,ηV 
 1
are satisfied by the potential, which means that the slope and the curvature of the
potential, in Planck units, must be sufficiently small.

3.3 Number of e-Folds

Inflation must last long enough, in order to solve the problems of the Hot Big Bang
model. To investigate this question, one usually introduces the number of e-folds
before the end of inflation, denoted by N, and simply defined by

N = ln
aend

a
, (36)

where aend is the value of the scale factor at the end of inflation and a is a fiducial
value for the scale factor during inflation. By definition, N decreases during the
inflationary phase and reaches zero at its end.

In the slow-roll approximation, it is possible to express N as a function of the
scalar field. Since dN = −d ln a = −Hdt = −(H/φ̇)dφ, one easily finds, using
(31) and (29), that

N(φ) �
∫ φend

φ

V

M2
PV ′ dφ. (37)

Given an explicit potential V(φ), one can in principle integrate the above expression
to obtain N in terms of φ. This will be illustrated below for some specific models.

Let us now discuss the link between N and the present cosmological scales. Let
us consider a given scale characterized by its comoving wavenumber k = 2π/λ.
This scale crossed out the Hubble radius, during inflation, at an instant t∗(k) defined
by

k = a(t∗)H(t∗). (38)

To get a rough estimate of the number of e-foldings of inflation that are needed
to solve the horizon problem, let us first ignore the transition from a radiation era
to a matter era and assume for simplicity that the inflationary phase was followed
instantaneously by a radiation phase that has lasted until now. During the radiation
phase, the comoving Hubble radius (aH)−1 increases like a. In order to solve the
horizon problem, the increase of the comoving Hubble radius during the standard
evolution must be compensated by at least a decrease of the same amount during
inflation. Since the comoving Hubble radius roughly scales like a−1 during inflation,
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the minimum amount of inflation is simply given by the number of e-folds between
the end of inflation and today

ln (a0/aend) = ln (Tend/T0) ∼ ln (1029(Tend/1016 GeV)), (39)

i.e. around 60 e-folds for a temperature T ∼ 1016 GeV at the beginning of the
radiation era. As we will see later, this energy scale is typical of inflation in the
simplest models (Fig. 1).

This determines roughly the number of e-folds N(k0) between the moment when
the scale corresponding to our present Hubble radius k0 = a0H0 exited the Hubble
radius during inflation and the end of inflation. The other lengthscales of cosmo-
logical interest are smaller than k−1

0 and therefore exited the Hubble radius during
inflation after the scale k0, whereas they entered the Hubble radius during the stan-
dard cosmological phase (either in the radiation era for the smaller scales or in the
matter era for the larger scales) before the scale k0.

A more detailed calculation, which distinguishes between the energy scales at
the end of inflation and after the reheating, gives for the number of e-folds between
the exit of the mode k and the end of inflation (see, e.g. [2, 10])

N(k) � 62 − ln
k

a0H0
+ ln

V1/4
k

1016GeV
+ ln

V1/4
k

V1/4
end

+ 1

3
ln
ρ

1/4
reh

V1/4
end

. (40)

Since the smallest scale of cosmological relevance is of the order of 1 Mpc, the
range of cosmological scales covers about 9 e-folds.

The above number of e-folds is altered if one changes the thermal history of the
Universe between inflation and the present time by including, for instance, a period
of so-called thermal inflation.

Fig. 1 Evolution of the
comoving Hubble radius
λH = (aH)−1, during
inflation, radiation-dominated
era and matter-dominated era.
The horizontal dashed lines
correspond to two different
comoving lengthscales: the
larger scales cross out the
Hubble radius earlier during
inflation and reenter the
Hubble radius later in the
standard cosmological era

ln(aH)−1

ln a
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3.4 A Few Examples

It is now time to illustrate all the points discussed above with some specific poten-
tials.

3.4.1 Power Law Potential

We consider first the case of power law monomial potentials, of the form

V(φ) = λφp, (41)

which have been abundantly studied in the literature. In particular, the above poten-
tials include the case of a free massive scalar field, V(φ) = m2φ/2.

The slow-roll parameters are given by

ε = p2MP

2φ2
, η = p(p − 1)

M2
P

φ2
. (42)

The slow-roll conditions ε 
 1 and η 
 1 thus imply

φ � p MP, (43)

which means that the scalar field amplitude must be well above the Planck mass
during inflation.

After substituting the potential (41) into the slow-roll equations of motion (29)
and (30), one can integrate them explicitly to get

φ2−p/2 − φ
2−p/2
i = − 2p

4 − p

√
λ

3
MP (t − ti) (44)

for p 
= 4 and

φ = φi exp

[
−4

√
λ

3
MP(t − ti)

]
(45)

for p = 4.
One can also express the scale factor as a function of the scalar field [and thus as a

function of time by substituting the above expression for φ(t)] by using d ln a/dφ =
H/φ̇ � −φ/(pM2

P). One finds

a = aend exp

[
−
(
φ2 − φ2

end

)
2p M2

P

]
. (46)
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Defining the end of inflation by ε = 1, one gets φend = p MP/
√

2 and the number
of e-folds is thus given by

N(φ) � φ2

2pM2
P

− p

4
. (47)

This can be inverted, so that

φ(N) � √2Np MP, (48)

where we have ignored the second term of the right-hand side of (47), consistently
with the condition (43).

3.4.2 Exponential Potential

Cosmological scalar fields with a potential of the form

V = V0 exp

(
−
√

2

q

φ

MP

)
(49)

admit an exact solution (i.e. valid beyond the slow-roll approximation) of the system
(26), (27), and (28), with a power law scale factor, i.e.

a(t) ∝ tq. (50)

The evolution of the scalar field is given by the expression

φ(t) = √2q MP ln

[√
V0

q(3q − 1)

t

MP

]
. (51)

Note that one recovers the slow-roll approximation in the limit q � 1, since the
slow-roll parameters are given by

εV = 1

q
ηV = 2

q
. (52)

3.4.3 Hybrid Inflation

In this type of model, the potential contains a constant piece in addition to a power
law potential. The simplest example is

V(φ) = V0 + 1

2
m2φ2. (53)
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In fact, the full model relies on the presence of two scalar fields, where one plays
the traditional role of the inflaton, while the other is necessary to end inflation. In
the original model of hybrid inflation [11], one starts from the potential

V(φ,ψ) = 1

2
m2φ2 + 1

2
λ′ψ2φ2 + 1

4
λ
(

M2 − ψ2
)2

. (54)

For values of the field φ larger than the critical value φc = λM2/λ′, the potential
for ψ has its minimum at ψ = 0. This is the case during inflation. ψ is thus trapped
in this minimum ψ = 0, so that the effective potential for the scalar field φ, which
plays the role of the inflaton, is given by (53) with V0 = λM4/4. During the infla-
tionary phase, the field φ slow-rolls until it reaches the critical value φc. The shape
of the potential for ψ is then modified and new minima appear in ψ = ±M. ψ will
thus roll down into one of these new minima and, as a consequence, inflation will
end.

During the inflationary phase, the slow-roll parameters are given by

ε = m2M2
Pφ̃

2

V0(1 + φ̃2)2
, η = m2M2

P

V0(1 + φ̃2)
, (55)

where we have introduced the rescaled scalar field φ̃, which is dimensionless and
defined so that V = V0(1 + φ̃2). Note that there are two limiting regimes: if φ̃ � 1,
the constant term is negligible and one recovers a power law potential with p = 2;
if φ̃ 
 1, V0 dominates and the potential is extremely flat with ε 
 η.

3.5 The Inflationary “Zoology”

3.5.1 Historical Perspective

The first model of inflation is usually traced back to Alan Guth [12] in 1981,
although one can see the model of Alexei Starobinsky [13] as a precursor. Guth’s
model, which is today named as old inflation is based on a first-order phase tran-
sition, from a false vacuum with non-zero energy, which generates an exponential
inflationary phase, into a true vacuum with zero energy density. The true vacuum
phase appears in the shape of bubbles via quantum tunneling. The problem with this
inflationary model is that, in order to get sufficient inflation to solve the problems of
the standard model mentioned earlier, the nucleation rate must be sufficiently small;
but, then, the bubbles never coalesce because the space that separates the bubbles
undergoes inflation and expands too rapidly. Therefore, the first model of inflation
is not phenomenologically viable.

After this first and unsuccessful attempt, a new generation of inflationary models
appeared, usually denoted as new inflation models [14, 15]. They rely on a second-
order phase transition, based on thermal corrections of the effective potential and
thus assume that the scalar field is in thermal equilibrium.
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This hypothesis of thermal equilibrium was given up in the third generation of
models, initiated by Andrei Linde, and whose generic name is chaotic inflation [16].
This allows to use extremely simple potentials, quadratic or quartic, which lead to
inflationary phases when the scalar field is displaced from the origin with values of
the order of several Planck masses.

In the last few years, there has been an intense activity in building inflationary
models based on high-energy theories, in particular in the context of supersymmetry
and string theory. Details can be found in several recent reviews[17–21].

3.5.2 Classification

There exist a huge number of models of inflation. As far as single-field models are
concerned,1 it is convenient to regroup them into three broad categories (Fig. 2):

• Large field models (0 < η ≤ ε)
The scalar field is displaced from its stable minimum by Δφ ∼ MP. This includes
the chaotic models with monomial potentials

V(φ) = Λ4
(
φ

μ

)p

, (56)

or the exponential potential

V(φ) = Λ4 exp (φ/μ) , (57)

which have already been discussed.
• Small field models (η < 0 < ε)

In this type of models, the scalar field is rolling away from an unstable maxi-
mum of the potential. This is a characteristic feature of spontaneous symmetry
breaking. A typical potential is

V(φ) = Λ4
[

1 −
(
φ

μ

)p]
, (58)

Fig. 2 Schematic potential for the three main categories of inflationary models: large-field models,
small-field models, hybrid models

1 Or at least effectively single field during inflation (the hybrid models require a second field to end
inflation as discussed earlier).
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which can be interpreted as the lowest-order term in a Taylor expansion about the
origin. Historically, this potential shape appeared in the so-called ‘new inflation’
scenario.

A particular feature of these models is that tensor modes are much more sup-
pressed with respect to scalar modes than in the large-field models, as it will be
shown later.

• Hybrid models (0 < ε < η)
Although a second scalar field is needed to end inflation, hybrid models corre-
spond effectively to single-field models with a potential characterized by V ′′(φ) >
0 and 0 < ε < η. A typical potential is

V(φ) = Λ4
[

1 +
(
φ

μ

)p]
. (59)

Once more, this potential can be seen as the lowest order in a Taylor expansion
about the origin.

In the case of hybrid models, the value φN of the scalar field as a function
of the number of e-folds before the end of inflation is not determined by the
above potential and, therefore, (φN/μ) can be considered as a freely adjustable
parameter.

4 Quantum Fluctuations and “Birth” of Cosmological
Perturbations

So far, we have concentrated our attention on strictly homogeneous and isotropic
aspects of cosmology. Of course, this idealized version, although extremely useful,
is not sufficient to account for real cosmology and it is now time to turn to the study
of deviations from homogeneity and isotropy.

In cosmology, inhomogeneities grow because of the attractive nature of gravity,
which implies that inhomogeneities were much smaller in the past. As a conse-
quence, for most of their evolution, inhomogeneities can be treated as linear pertur-
bations. The linear treatment ceases to be valid on small scales in our recent past,
hence the difficulty to reconstruct the primordial inhomogeneities from large-scale
structure, but it is quite adequate to describe the fluctuations of the CMB at the time
of last scattering. This is the reason why the CMB is currently the best observational
probe of primordial inhomogeneities.

In this section, we concentrate on the perturbations of the inflaton and show
how the accelerated expansion during inflation converts its initial vacuum quantum
fluctuations into “macroscopic” cosmological perturbations (see [22–27] for some
of the historical works). In this sense, inflation provides us with “natural” initial
conditions. We will also see how the perturbations of the inflaton can be translated
into perturbations of the geometry.



16 D. Langlois

4.1 Massless Scalar Field in de Sitter

As a warming-up, it is instructive to discuss the case of a massless scalar field in a so-
called de Sitter Universe, or a cosmological spacetime with exponential expansion,
a ∝ exp (Ht),

ds2 = −dt2 + a2(t)dx2, a(t) = eHt. (60)

It turns out it is more convenient to use, instead of the cosmic time t, a conformal
time τ defined by

τ =
∫

dt

a(t)
, (61)

so that the metric takes the particularly simple form

ds2 = a2(τ )
[
−dτ 2 + dx2

]
. (62)

In the de Sitter case, the conformal time is given by

τ = −e−Ht

H
= − 1

aH
, (63)

so that the scale factor in terms of τ is simply

a(τ ) = − 1

Hτ
. (64)

The conformal time is here negative (so that the scale factor is positive) and goes
from −∞ to 0.

The action for a massless scalar field is given by

S =
∫

d4x
√−g

(
−1

2
∂μφ∂

μφ

)
=
∫

dτ d3x a4
[

1

2a2
φ′2 − 1

2a2
∇φ2

]
, (65)

where we have substituted in the action the cosmological metric (62) and where a
prime denotes a derivative with respect to the conformal time τ . Note that, whereas
we still allow for spatial variations of the scalar field, i.e. inhomogeneities, we
will assume here, somewhat inconsistently, that the geometry is completely fixed
as homogeneous. We will deal later with the question of the metric perturbations.

It is possible to eliminate the factor a2 in front of the kinetic term φ′2 by intro-
ducing the new function

u = aφ. (66)
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This will generate a term proportional to uu′ but one can get rid of it by an integration
by parts. The action (65) can then be rewritten as

S = 1

2

∫
dτ d3x

[
u′2 − ∇u2 + a′′

a
u2
]

. (67)

The first two terms are familiar since they are the same as in the action for a free
massless scalar field in Minkowski spacetime. The fact that our scalar field here
lives in de Sitter spacetime rather than Minkowski has been reexpressed as a time-
dependent effective mass

m2
eff = −a′′

a
= − 2

τ 2
. (68)

Let us now proceed to the quantization of the scalar field u by using the standard
procedure of quantum field theory. One first turns u into a quantum field denoted by
û, which we expand in Fourier space as

û(τ ,x) = 1

(2π )3/2

∫
d3k

{
âkuk(τ )eik.x + â†�ku∗k (τ )e−ik.x

}
, (69)

where the â† and â are creation and annihilation operators, respectively, satisfying
the usual commutation rules

[
âk,âk′

] = [â†k,â†k′
]
= 0,

[
âk,â†k′

]
= δ(k − k′). (70)

The function uk(τ ) is a complex time-dependent function that must satisfy the clas-
sical equation of motion in Fourier space, namely

u′′k +
(

k2 − a′′

a

)
uk = 0, (71)

which is simply the equation of motion for an oscillator with a time-dependent mass.
In the case of a massless scalar field in Minkowski spacetime, this effective mass is
zero (a′′/a = 0) and one usually takes

uk =
√

h̄

2k
e−ikτ (Minkowski), (72)

where the choice for the normalization factor will be clear below. In the case of de
Sitter, one can solve explicitly the above equation with a′′/a = 2/τ 2 and the general
solution is given by

uk = αe−ikτ
(

1 − i

kτ

)
+ βeikτ

(
1 + i

kτ

)
. (73)
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Canonical quantization consists in imposing the following commutation rules on
the τ =constant hypersurfaces:

[
û(τ ,x),û(τ ,x′)

] = [π̂u(τ ,x),π̂u(τ ,x′)
] = 0 (74)

and

[
û(τ ,x),π̂u(τ ,x′)

] = ih̄δ(x − x′), (75)

where πu ≡ δS/δu′ is the conjugate momentum of u. In the present case, πu = u′
since the kinetic term is canonical.

Subtituting the expansion (69) in the commutator (75), and using the commuta-
tion rules for the creation and annihilation operators (70), one obtains the relation

uku′k
∗ − u∗ku′k = ih̄, (76)

which determines the normalization of the Wronskian.
The choice of a specific function uk(τ ) corresponds to a particular prescription

for the physical vacuum |0〉, defined by

âk|0〉 = 0. (77)

A different choice for uk(τ ) is associated to a different decomposition into creation
and annihilation modes and thus to a different vacuum.

Let us now note that the wavelength associated with a given mode k can always
be found within the Hubble radius provided one goes sufficiently far backwards in
time, since the comoving Hubble radius is shrinking during inflation. In other words,
for |τ | sufficiently big, one gets k|τ | � 1. Moreover, for a wavelength smaller than
the Hubble radius, one can neglect the influence of the curvature of spacetime and
the mode behaves as in a Minkowski spacetime, as can also be checked explicitly
with the equation of motion (71) (the effective mass is negligible for k|τ | � 1).
Therefore, the most natural physical prescription is to take the particular solution
that corresponds to the usual Minkowski vacuum, i.e. uk ∼ exp (− ikτ ), in the limit
k|τ | � 1. In view of (73), this corresponds to the choice

uk =
√

h̄

2k
e−ikτ

(
1 − i

kτ

)
, (78)

where the coefficient has been determined by the normalization condition (76). This
choice, in the jargon of quantum field theory on curved spacetimes, corresponds to
the Bunch–Davies vacuum.

Finally, one can compute the correlation function for the scalar field φ in the
vacuum state defined above. When Fourier transformed, the correlation function
defines the power spectrum Pφ(k):
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〈0|φ̂(x1)φ̂(x2)|0〉 =
∫

d3k eik.(x1−x2)Pφ(k)

4πk3
. (79)

Note that the homogeneity and isotropy of the quantum field are used implicitly in
the definition of the power spectrum, which is “diagonal” in Fourier space (homo-
geneity) and depends only on the norm of k (isotropy). In our case, we find

2π2k−3Pφ = |uk|2
a2

, (80)

which gives in the limit when the wavelength is larger than the Hubble radius, i.e.
k|τ | 
 1,

Pφ(k) � h̄

(
H

2π

)2

(k 
 aH) (81)

Note that, in the opposite limit, i.e. for wavelengths smaller than the Hubble radius
(k|τ | � 1), one recovers the usual result for fluctuations in Minkowski vacuum,
Pφ(k) = h̄(k/2πa)2.

We have used a quantum description of the scalar field. But the cosmological
perturbations are usually described by classical random fields. Roughly speaking,
the transition between the quantum and classical (although stochastic) descriptions
makes sense when the perturbations exit the Hubble radius. Indeed each of the terms
in the Wronskian (76) is roughly of the order h̄/2(kτ )3 in the super-Hubble limit and
the non-commutativity can then be neglected. In this sense, one can see the exit out-
side the Hubble radius as a quantum-classical transition, although much refinement
would be needed to make this statement more precise.

4.2 Quantum Fluctuations with Metric Perturbations

Let us now move to the more realistic case of a perturbed inflaton field living in
a perturbed cosmological geometry. The situation is more complicated than in the
previous problem, because Einstein’s equations imply that scalar field fluctuations
must necessarily coexist with metric fluctuations. A correct treatment, either classi-
cal or quantum, must therefore involve both the scalar field perturbations and met-
ric perturbations. We thus need to resort to the theory of relativistic cosmological
perturbations, which we briefly present below (more details can be found in, e.g.,
[28–30, 7, 31]).

4.2.1 Linear Perturbations of the Metric

The most general linear perturbation about the homogeneous metric can be expressed
as

ds2 = a2
{
−(1 + 2A)dτ 2 + 2Bidxidτ + (δij + hij

)
dxidxj

}
, (82)
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where we have assumed, for simplicity, a spatially flat metric.2

We have introduced a time plus space decomposition of the perturbations. The
indices i, j stand for spatial indices and the perturbed quantities defined in (82)
can be seen as three-dimensional tensors, for which the indices can be lowered (or
raised) by the spatial metric δij (or its inverse).

It is very convenient to separate the perturbations into three categories, the so-
called ‘scalar’, ‘vector’ and ‘tensor’ modes. For example, a spatial vector field Bi

can be decomposed uniquely into a longitudinal part and a transverse part,

Bi = ∂iB + B̄i, ∂iB̄
i = 0, (83)

where the longitudinal part is curl-free and can thus be expressed as a gradient, and
the transverse part is divergenceless. One thus gets one “scalar” mode, B , and two
“vector” modes B̄i (the index i takes three values but the divergenceless condition
implies that only two components are independent).

A similar procedure applies to the symmetric tensor hij, which can be decom-
posed as

hij = 2Cδij + 2∂i∂jE + 2∂(iEj) + Eij, (84)

with E
ij

transverse and traceless (TT), i.e. ∂iE
ij = 0 (transverse) and E

ij
δij = 0

(traceless), and Ei transverse. The parentheses around the indices denote sym-
metrization, namely 2∂(iEj) = ∂iEj + ∂jEi. We have thus defined two scalar modes:
C and E, two vector modes, Ei, and two tensor modes, Ēij.

4.2.2 Coordinate Transformations

The metric perturbations, introduced in (82), are modified in a coordinate transfor-
mation of the form

xα → xα + ξα , ξα = (ξ0,ξ i). (85)

It can be shown that the change of the metric components can be expressed as

δgμν → δgμν − 2∇(μξν), (86)

where ∇ is the four-dimensional covariant derivative, and one considers the varia-
tion, due the coordinate transformation, at the same old and new coordinates (and
thus at different physical points).

2 This is moreover justified that the metric in the early Universe was closer to a spatially flat metric
that our present metric which is indistinguishable from a flat geometry, according to observations.
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The above variation can be decomposed into individual variations for the various
components of the metric defined earlier. One finds

A → A − ξ0′ −Hξ0 (87)

Bi → Bi + ∂iξ
0 − ξ ′i (88)

hij → hij − 2
(
∂(iξj) −Hξ0δij

)
, (89)

where H ≡ a′/a. The effect of a coordinate transformation can also be decomposed
along the scalar, vector and tensor sectors introduced earlier. The generator ξα of
the coordinate transformation can be written as

ξα = (ξ0,∂ iξ + ξ
i
), (90)

with ξ
i
transverse. This shows explicitly that ξα contains two scalar components, ξ0

and ξ , and two vector components, ξ
i
. The transformations (88) and (89) are then

decomposed into

B → B + ξ0 − ξ ′,
C → C −Hξ0,

E → E − ξ , (91)

B
i → B

i − ξ
i′

,

Ei → Ei − ξ
i
.

The tensor perturbations remain unchanged since ξα does not contain any tensor
component.

To summarize, the whole system scalar field plus gravitation is described by 11
perturbations. They can be decomposed into five scalar quantities: A, B, C and E
from the metric and δφ; four vector quantities B̄i and Ēi; two tensor quantities, the
two polarizations of ETT

ij . However, these quantities are physically redundant since
the same physical situation can be described by different sets of values of these
perturbations, provided they are related by the coordinate transformations described
above.

One would thus like to identify the true degrees of freedom, i.e. the physically
independent quantities characterizing the system. Since spacetime has four coordi-
nates, the coordinate transformations represent four gauge transformations, two of
scalar type and two of vector types. Each gauge transformation reduces the number
of degrees of freedom by two (the gauge “strikes” twice): one corresponds to the
constraint associated with the gauge transformation, the other one because within
the constrained hypersurface, one can fix the gauge. The situation for the scalar,
vector and tensor sectors, respectively, is summarized in Table 1. The true degrees
of freedom are thus the two polarizations of the gravitational waves and one scalar
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Table 1 Counting of the degrees of freedom in the scalar, vector and tensor sectors

Metric
Scalar
field

Gauge
choice Constraints

True
d.o.f.

S 4 1 −2 −2 1
V 4 0 −2 −2 0
T 2 0 0 0 2

degree of freedom. If matter was composed of N scalar fields, one would get N
scalar degrees of freedom in addition to the two tensor modes.

In a coordinate transformation, the scalar field perturbation is also modified,
according to

δφ → δφ − φ′ξ0 . (92)

In single-field inflation, there are thus two natural choices of gauge to describe the
scalar perturbation. The first is to work with hypersurfaces that are flat, i.e. C = 0,
in which case we will denote the scalar field perturbation by Q, i.e.

Q = δφC=0 . (93)

The other choice is to work with hypersurfaces where the scalar field is uniform,
i.e. δφ = 0, in which case the scalar degree of freedom is embodied by the metric
perturbation Cδφ=0. In other words, the true scalar degree of freedom can be rep-
resented either as a pure matter perturbation or a pure metric perturbation. In the
general case, we have [26, 32]

Q = δφ − φ′

HC , (94)

which is a gauge-invariant combination.

4.3 Quantizing the Scalar Degree of Freedom

In order to quantize the true scalar degree of freedom, one needs an action that
governs its dynamics. Let us first note that the linearized equations of motion for
the coupled system {gravity + scalar field} are obtained from the expansion of the
full action at second order in the perturbations. Indeed the equations for the linear
perturbations correspond to the Euler–Lagrange equations derived from a quadratic
Lagrangian. In our case, the difficulty is that there are several scalar perturbations
that are not independent. In order to quantize this coupled system, one can work
directly with the second-order Lagrangian [30] or resort to a Hamiltonian approach
[33, 34].

The modern approach, introduced by Maldacena [35] to study perturbations
beyond linear order, is based on the Arnowitt–Deser–Misner (ADM) formalism [36],
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which in some sense can be seen as a compromise between the purely Lagrangian
and Hamiltonian approaches. In the ADM formalism, the metric is written in the
form

ds2 = −N2dt2 + hij(dxi + Nidt)(dxj + Njdt), (95)

where N is the lapse function and Ni the shift vector. The full action for the scalar
field and for gravity

Sφ =
∫

d4x
√−g

(
−1

2
∂μφ∂μφ − V(φ)

)
+ M2

P

2

∫
d4x

√−gR (96)

becomes, after substitution of (95),

S=
∫

dtd3x
√

h

{
N

[ V2

2N2
− 1

2
hij∂iφ∂jφ − V(φ)

]
+M2

P

2

[
N(3)R + 1

N
(EijE

ij − E2)

]}
,

(97)
where(3)R is the scalar curvature of the spatial metric hij and h its determinant,

V ≡ φ̇ − Nj∂jφ (98)

and the symmetric tensor Eij, defined by

Eij ≡ 1

2
ḣij − N(i|j) , (99)

(the symbol | denotes the spatial covariant derivative associated with the spatial
metric hij) is proportional to the extrinsic curvature of the spatial slices.

The variation of the action with respect to N yields the energy constraint,

V2

2N2
+ 1

2
hij∂iφ∂jφ + V(φ) + M2

P

2N2
(EijE

ij − E2) − M2
P

2
(3)R = 0 , (100)

while the variation of the action with respect to the shift Ni gives the momentum
constraint,

M2
P

(
1

N
(Ej

i − Eδj
i)

)
|j
= V

N
∂iφ. (101)

In order to study the linear perturbations about the FLRW background, we now
restrict ourselves to the flat gauge, which corresponds to the choice

hij = a2(t)δij. (102)

The scalar fields on the corresponding flat hypersurfaces can be decomposed into
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φ = φ̄ + Q, (103)

where φ̄ is the spatially homogeneous background value of the scalar fields and Q
represents its perturbation (in the flat case). In the following, we will often omit
the bar and simply write the homogeneous value as φ, unless this could generate
ambiguities.

We can also write the (scalarly) perturbed lapse and shift as

N = 1 + α, Ni = β,i , (104)

where the linear perturbations α and β are determined in terms of the scalar field
perturbations Q by solving the linearized constraints. At first order, the momentum
constraint implies

α = φ̇

2M2
P H

Q , (105)

while the energy constraint gives ∂2β in terms of Q and Q̇.

4.4 Second-Order Action

We now expand, up to quadratic order, the action in terms of the linear perturbations.
This action can be written solely in terms of the physical degree of freedom Q by
substituting the expression (105) for α, since it turns out that β disappears from the
second-order action, after an integration by parts. The second-order action can be
written in the rather simple form

S(2) = 1

2

∫
dt d3x a3

[
Q̇2 − 1

a2
∂iQ∂

iQ −M2Q2
]

, (106)

with the effective (squared) mass

M2 = V ′′ − 1

a3

d

dt

(
a3

H
φ̇2
)

. (107)

As we did earlier, it is convenient to resort to conformal time τ and to introduce
the canonical degree of freedom

v = a Q, (108)

which leads to the action

Sv = 1

2

∫
dτ d3x

[
v′2 + ∂iv∂

iv + z′′

z
v2
]

(109)
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with

z = a
φ′

H . (110)

This action is thus analogous to that of a scalar field in Minkowski spacetime with a
time-dependent mass. One is thus back in a situation similar to the previous subsec-
tion, with the notable difference that the effective time-dependent mass is now z′′/z,
instead of a′′/a.

The quantity we will be eventually interested in is the comoving curvature per-
turbation R, which is related to the canonical variable v by the relation

v = zR. (111)

Since, by analogy with (80), the power spectrum for v is given by

2π2k−3Pv(k) = |vk|2, (112)

the corresponding power spectrum for R is found to be

2π2k−3PR(k) = |vk|2
z2

. (113)

In the case of an inflationary phase in the slow-roll approximation, the evolution
of φ and of H is much slower than that of the scale factor a. Consequently, one gets
approximately

z′′

z
� a′′

a
, (slow-roll) (114)

and all results of the previous section obtained for u apply directly to our variable v
in the slow-roll approximation. This implies that the properly normalized function
corresponding to the Bunch–Davies vacuum is approximately given by

vk �
√

h̄

2k
e−ikτ

(
1 − i

kτ

)
. (115)

In the super-Hubble limit k|τ | 
 1, the function vk behaves like

vk � −
√

h̄

2k

i

kτ
� i

√
h̄

2k

aH

k
, (116)

where we have used a � −1/(Hτ ).
Consequently, combining (113), (110) and (115) and reintroducing the cosmic

time gives the power spectrum for R, on scales larger than the Hubble radius,
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PR � h̄

4π2

(
H4

φ̇2

)
k=aH

= h̄

2M2
Pε∗

(
H∗
2π

)2

(117)

where we have used ε ≡ −Ḣ/H2 in the second equality, and the subscript ∗ means
that the quantity is evaluated at Hubble crossing (k = aH). This is the main result
for the spectrum of scalar cosmological perturbations generated from vacuum fluc-
tuations during a slow-roll inflation phase.

4.5 Gravitational Waves

We have focused so far our attention on scalar perturbations, which are the most
important in cosmology. Tensor perturbations, or primordial gravitational waves, if
ever detected in the future, would be a remarkable probe of the early Universe. In
the inflationary scenario, like scalar perturbations, primordial gravitational waves
are generated from vacuum quantum fluctuations [37]. Let us now explain briefly
this mechanism.

The action expanded at second order in the perturbations contains a tensor part
given by

S(2)
g = M2

P

8

∫
dτ d3x a2ημν∂μĒi

j∂ν Ēj
i, (118)

where ημν denotes the Minkowski metric. Apart from the tensorial nature of Ei
j, this

action is quite similar to that of a scalar field in a FLRW Universe (65), up to a
renormalization factor MP/2. The decomposition

aĒi
j =

∑
λ=+,×

∫
d3k

(2π )3/2
vk,λ(τ )εi

j(k;λ)eik.x, (119)

where the εi
j(k;λ) are the polarization tensors, shows that the gravitational waves

are essentially equivalent to two massless scalar fields (for each polarization) φλ =
MPĒλ/2.

The total power spectrum is thus immediately deduced from (80):

PT = 2 × 4

M2
P

× h̄

(
H

2π

)2

, (120)

where the first factor comes from the two polarizations, the second from the renor-
malization with respect to a canonical scalar field, the last term being the power
spectrum for a scalar field derived earlier. In summary, the tensor power spectrum is
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PT = 8h̄

M2
P

(
H∗
2π

)2

, (121)

where the subscript ∗ recalls that the Hubble parameter, which can be slowly evolv-
ing during inflation, must be evaluated when the relevant scale exited the Hubble
radius during inflation.

A measurement of the tensor amplitude (121) gives direct access, in this context,
to the energy scale H∗ during inflation, in contrast with the scalar amplitude (117)
which depends on the slow-roll parameter, ε∗, as well. The tensor to scalar ratio,

r ≡ PT

PR
= 16 ε∗ , (122)

is proportional to the slow-roll parameter.

5 From Inflation to the Standard Era

Once the perturbations have been computed during inflation, it is necessary to relate
them to the perturbations in the standard phase of cosmology, where they will be
used as “initial conditions”. A priori, one could think that it is necessary to follow the
details of how the inflaton is converted into ordinary particles in order to establish
this relation. In fact, all these details turn out to be irrelevant, at least in the case
of single inflation, because all the scales of cosmological interest are larger than
the Hubble radius at the end of inflation and there exists a conservation law on
super-Hubble scales, as we will see in this section.

5.1 Covariant Approach

Instead of the traditional metric-based approach, we use here a more geometrical
approach to cosmological perturbations [38], which will enable us to recover easily
and intuitively the main useful results, not only for linear perturbations but also for
non-linear perturbations.

Let us thus consider a spacetime with metric gab and some perfect fluid charac-
terized by its energy density ρ, its pressure P and its four-velocity ua. The corre-
sponding energy–momentum tensor is given by

Tab = ρuaub + P(gab + uaub). (123)

Let us also introduce the expansion along the fluid worldlines,

Θ = ∇aua, (124)

and the integrated expansion
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α = 1

3

∫
dτ Θ , (125)

where τ is the proper time defined along the fluid worldlines. In a FLRW spacetime,
one would find Θ = 3H. Therefore, in the general case, one can interpret Θ/3 as a
local Hubble parameter and S = exp (α) as a local scale factor, while α represents
the local number of e-folds.

As shown in [39, 40], the conservation law for the energy–momentum tensor,

∇aTa
b = 0, (126)

implies that the covector

ζa ≡ ∇aα − α̇

ρ̇
∇aρ (127)

satisfies the relation

ζ̇a ≡ Luζa = − Θ

3(ρ + p)

(
∇ap − ṗ

ρ̇
∇aρ

)
, (128)

where a dot denotes a Lie derivative along ua, which is equivalent to an ordinary
derivative for scalar quantities (e.g. ρ̇ ≡ ua∇aρ). This result is valid for any space-
time geometry and does not depend on Einstein’s equations. In the cosmological
context, α can be interpreted as a non-linear generalization, according to an observer
following the fluid, of the number of e-folds of the scale factor.

The covector ζa can be defined for the global cosmological fluid or for any of the
individual cosmological fluids (the case of interacting fluids is discussed in [41]).
Using the non-linear conservation equation

ρ̇ = −3α̇(ρ + P) , (129)

which follows from ub∇aTa
b = 0, one can re express ζa in the form

ζa = ∇aα + ∇aρ

3(ρ + P)
. (130)

If w ≡ P/ρ is constant, the above covector is a total gradient and can be written as

ζa = ∇a

[
α + 1

3(1 + w)
ln ρ

]
. (131)

On scales larger than the Hubble radius, the above definitions are equivalent to
the non-linear curvature perturbation on uniform density hypersurfaces as defined
in [42] (see also [43])



Inflation and Cosmological Perturbations 29

ζ = δN −
∫ ρ

ρ̄

H
dρ̃
˙̃ρ = δN + 1

3

∫ ρ

ρ̄

dρ̃

(1 + w)ρ̃
, (132)

where N = α. The above equation is simply the integrated version of (127) or of
(130).

5.2 Linear Conserved Quantities

Let us now introduce a coordinate system, in which the metric (with scalar pertur-
bations) reads

ds2 = a2
{
−(1 + 2A)dτ 2 + 2∂iB dxidτ + [(1 + 2C)δij + 2∂i∂jE

]
dxidxj

}
. (133)

One can decompose the fluid four-velocity as

uμ = ūμ + δuμ, δuμ = {−A/a,vi/a
}

, vi = ∂iv + v̄i , (134)

where v̄i is transverse.
At linear order, the spatial components of ζa are simply

ζ
(1)
i = ∂iζ

(1), ζ (1) ≡ δα − ᾱ′

ρ̄′
δρ. (135)

Linearizing (128) implies that the curvature perturbation on uniform energy density
hypersurfaces, defined by

ζ = C −H δρ

ρ′
= C + δρ

3(ρ + P)
(136)

and originally introduced in [44], obeys the evolution equation (see also [45])

ζ ′ = − H
ρ + P

δPnad − 1

3
∇2(E′ + v), (137)

where δPnad is the non-adiabatic part of the pressure perturbation, defined by

δPnad = δP − c2
s δρ. (138)

Note that ζ (1) differs from ζ but they coincide when the spatial gradients can be
neglected, for instance, on large scales. The expression (137) shows that ζ is con-
served on super-Hubble scales in the case of adiabatic perturbations.

Another convenient quantity, which is sometimes used in the literature instead of
ζ , is the curvature perturbation on comoving hypersurfaces, which can be written
in any gauge as



30 D. Langlois

R = −C − H
ρ + P

δq, ∂iδq ≡ δ(S)T
0
i , (139)

where the subscript (S) denotes the perturbations of scalar type. For a perfect fluid,
δq = (ρ + P) (v + B), where v has been defined in (134).

One can relate the two quantities ζ and R by using the energy and momentum
constraints, which were derived earlier in the ADM formalism. Linearizing (100)
and (101) yields, respectively,

3H2δN + aH∂2β = − a3

2M2
P

δρ, (140)

HδN = − a3

2M2
P

δq . (141)

Combining these two equations yields the relativistic analog of the Poisson equa-
tion, namely

∂2Ψ = a2

2M2
P

(δρ − 3Hδq) ≡ a2

2M2
P

δρc , (142)

where we have replaced β by the Bardeen potential Ψ ≡ −C −H(B− E′) = −Hβ

and introduced the comoving energy density δρc ≡ δρ − 3Hδq. Since

ζ = −R+ δρc

ρ + P
= −R− 2ρ

3(ρ + P)

(
k

aH

)2

Ψ , (143)

one finds that ζ and R coincide in the super-Hubble limit k 
 aH.

5.3 “Initial” Conditions for Standard Cosmology

In standard cosmology, the “initial” conditions for the perturbations are usually
defined in the radiation-dominated era around the time of nucleosynthesis, when
the main cosmological components are restricted to the usual photons, baryons,
neutrinos and cold dark matter (CDM) particles. The scales that are cosmologically
relevant today correspond to lengthscales much larger than the Hubble radius at that
time.

Before inflation, the “initial” conditions were put “by hand”, with the restriction
that their late-time consequences should be compatible with observations. Inflation
now provides a precise prescription to determine these “initial conditions”.3

3 Although one must be aware that present cosmological scales can correspond to scales smaller
than the Planck scale during inflation, suggesting the possibility of trans-Planckian effects (see,
e.g. [46]).
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Since several species are present, one needs to specify the density perturbation of
each species. A simplification arises in the case of single-field inflation, since exactly
the same cosmological history, i.e. inflation followed by the decay of the inflation
into the usual species, occurs in all parts of our Universe, up to a small time shift
depending on the perturbation of the inflaton in each region. As a consequence, even
if the number densities of the various species vary from point to point, their ratio
should be fixed, i.e.

δ (nA/nB) = 0 , (144)

for any pair of species denoted A and B (see, e.g. [47] for a more detailed discus-
sion). This is not necessarily true in multi-field inflation, as the perturbations in the
radiation era may depend on different combinations of the scalar field perturbations.

The variation in the relative particle number densities between two species can
be quantified by the quantity

SA,B ≡ δnA

nA
− δnB

nB
, (145)

which is usually called the entropy perturbation between A and B. When the equation
of state for a given species is such that w ≡ P/ρ = const, one can reexpress the
entropy perturbation in terms of the density contrast, in the form

SA,B ≡ δA

1 + wA
− δB

1 + wB
. (146)

It is convenient to choose a species of reference, for instance, the photons, and to
define the entropy perturbations of the other species relative to it. The quantities

Sb ≡ δb − 3
4δγ , (147)

Sc ≡ δc − 3
4δγ , (148)

Sν ≡ 3
4δν − 3

4δγ , (149)

thus define, respectively, the baryon, CDM and neutrino entropy perturbations.
For single-field inflation, all these entropy perturbations vanish, Sb = Sc = Sν =

0, and the primordial perturbations are said to be adiabatic. An adiabatic primordial
perturbation is thus characterized by

1

4
δγ = 1

4
δν = 1

3
δb = 1

3
δc . (150)

Only one density constrast needs to be specified. However, since it is a gauge-
dependent quantity, it is better to use the gauge-invariant quantity ζ , i.e. the uniform
density curvature perturbation, which is also equivalent to −R, since we are on
super-Hubble scales here.



32 D. Langlois

Note that the adiabatic mode, which is directly related to the curvature pertur-
bation, is also called curvature mode. By contrast, the entropy perturbations can
be non-zero even if the curvature is zero, and the corresponding modes are called
isocurvature modes.

5.4 Inflation and Cosmological Data

Let us now discuss the confrontation of single-field inflation models with the current
cosmological data. The main idea is that one can predict precisely the statistics of the
CMB perturbations, once the amplitude of the primordial perturbation as a function
of scale, R(k), is given, provided some choice for the cosmological parameters Ωi.
In other words, the measurements of the CMB, together with other cosmological
data, allow us to constrain both the cosmological parameters, which are numbers,
and the primordial spectrum, which is a function (see, e.g. [48, 49] for details on
the CMB physics). From the present data, one finds that the primordial spectrum is
nearly (although not quite) scale invariant , with an amplitude

P1/2
R � 5 × 10−5. (151)

In order to derive some constraints on the inflation models, it is useful to reex-
press the scalar and tensor power spectra, respectively, given in (117) and (121), in
terms of the scalar field potential. This can be done by using the slow-roll equations
(29) and (30). One finds for the scalar spectrum

PR = 1

12π2

(
V3

M6
PV ′2

)
k=aH

(152)

with subscript meaning that the term on the right-hand side must be evaluated at
Hubble radius exit for the scale of interest. The scalar spectrum can also be written
in terms of the first slow-roll parameter defined in (32), in which case it reads

PR = 1

24π2

(
V

M4
PεV

)
k=aH

. (153)

If εV is order 1, as in chaotic models, the observed amplitude (152) implies that the
typical energy scale during inflation is

V1/4 ∼ 10−3MP ∼ 1015GeV. (154)

The tensor power spectrum, in terms of the scalar field potential, is given by
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PT = 2

3π2

(
V

M4
P

)
k=aH

. (155)

The scalar and tensor spectra are almost scale invariant but not quite since the
scalar field evolves slowly during the inflationary phase. In order to evaluate quan-
titatively this variation, it is convenient to introduce a scalar spectral index as well
as a tensor one, defined, respectively, by

nS(k) − 1 = d lnPR(k)

d ln k
, nT (k) = d lnPT (k)

d ln k
. (156)

One can express the spectral indices in terms of the slow-roll parameters. For this
purpose, let us note that, in the slow-roll approximation, d ln k = d ln (aH) � d ln a,
so that

dφ

d ln a
= φ̇

H
� − V ′

3H2
� −M2

P
V ′

V
, (157)

where the slow-roll equations (29) and (30) have been used. Therefore, one gets

ns(k) − 1 = 2ηV − 6εV , (158)

where εV and ηV are the two slow-roll parameters defined in (32) and (35). Similarly,
one finds for the tensor spectral index

nT (k) = −2εV . (159)

Comparing with (122), this yields the relation

r = −8nT , (160)

the so-called consistency relation which relates purely observable quantities. This
means that if one was able to observe the primordial gravitational waves and mea-
sure the amplitude and spectral index of their spectrum, a rather formidable task,
then one would be able to test directly the paradigm of single-field slow-roll infla-
tion.

Let us now discuss the particular models which we have already considered, and
let us establish the predictions of these models in a (ns,r) plane, where they can be
directly compared with the observational constraints. For the power law potentials
(41), one finds, using (42),

ns − 1 = −6ε + 2η = −2
p + 2

p
ε (161)

and
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r = 16ε = 8p

p + 2
(1 − ns). (162)

Moreover,

ε = p

4N
, (163)

where N is the number of e-folds before the end of inflation when the scales of
cosmological interest crossed out the Hubble radius. Therefore, the observational
prediction for a model with a power law potential lie on a line in the (ns,r) plane,
the precise point depending on the number of e-folds when the perturbations were
generated.

For an exponential potential (49), one finds, using (52),

ns − 1 = −2

q
(164)

and

r = 16

q
. (165)

The prediction in the (ns,r) plane thus depends only on the parameter in the expo-
nential of the potential, but not on the number of e-folds as in the previous case.

For potentials (53) like in hybrid inflation, one finds

η = 1 + φ̃2

φ̃2
ε (166)

and

r = 8
φ̃2

2φ̃2 − 1
(1 − ns). (167)

One can proceed in a similar way for any model of inflation and thus be able to
confront it with observational data.

Before concluding this section, it is worth noticing that a significant amount of
gravitational waves, and thus a detectable r, requires a variation of the inflaton of
the order of the Planck mass during inflation [50].

6 More General Inflationary Scenarios

So far, the simplest models of inflation are compatible with the data but it is
instructive to study more refined models for at least two reasons. First, models
inspired by high-energy physics are usually more complicated than the simplest
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phenomenological inflationary models. Second, exploring more general models of
inflation and identifying their specific observational features is a healthy procedure
to prepare the interpretation of the future data.

At present, two types of extensions of the simplest scenarios have been mainly
studied:

• models with non-standard kinetic terms;
• models with multiple scalar fields.

Of course, the two aspects can be combined and there exist scenarios involving
several scalar fields with non-standard kinetic terms, as we will see later.

Among the scenarios involving several scalar fields, it is useful to distinguish
three subclasses. The first, and oldest, category includes the models with multi-
ple inflatons, i.e. models where several scalar fields play a dynamical role in the
homogeneous cosmological evolution during inflation. In the second category, one
finds the curvaton scenarios. These models assume the existence, in addition to the
inflaton, of a scalar field, which is light during inflation but does not participate
to inflation per se. Its energy density, which decreases less quickly than radiation,
becomes significant only after inflation. Its decay produces a second reheating, and
its fluctuations are then imprinted in the curvature perturbation.

The final subclass regroups are what we will name as the modulaton scenar-
ios. Like in the curvaton models, one assumes the presence of a light scalar field,
the modulaton, which is subdominant during inflation but acquires some fluctua-
tions. The fluctuations of the modulaton are transferred to the curvature perturbation
because the cosmological evolution is governed by some parameter that depends on
the modulaton. This parameter can be, for instance, the value of the inflaton at the
end of inflation, or the coupling of the inflaton to other particles during the reheat-
ing. Of course, one can envisage even more complicated scenarios which combine
several of these mechanisms.

6.1 Generalized Lagrangians

We now consider multi-field models, which can be described by an action of the
form

S =
∫

d4x
√−g

[
R

16πG
+ P(XIJ ,φK)

]
, (168)

where P is an arbitrary function of N scalar fields and of the kinetic term

XIJ = −1

2
∇μφ

I∇μφJ . (169)

The relations obtained earlier for the single-field model can then be generalized.
The energy–momentum tensor, derived from (168), is of the form
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Tμν = Pgμν + P<IJ>∂
μφI∂νφJ , (170)

where P<IJ> denotes the partial derivative of P with respect to XIJ (symmetrized
with respect to the indices I and J). The equations of motion for the scalar fields,
which can be seen as generalized Klein–Gordon equations, are obtained from the
variation of the action with respect to φI . One finds

∇μ

(
P<IJ>∇μφJ)+ P,I = 0, (171)

where P,I denotes the partial derivative of P with respect to φI .
In a homogeneous spacetime, XIJ = φ̇I φ̇J/2, and the energy–momentum tensor

reduces to that of a perfect fluid with energy density

ρ = 2P<IJ>XIJ − P , (172)

and pressure P. The evolution of the scale factor a(t) is governed by the Friedmann
equations, which can be written in the form

H2 = 1

3

(
2P<IJ>XIJ − P

)
, Ḣ = −XIJP<IJ> . (173)

The equations of motion for the scalar fields reduce to

(
P<IJ> + P<IL>,<JK>φ̇

Lφ̇K) φ̈J + (3HP<IJ> + P<IJ>,K φ̇
K) φ̇J − P,I = 0 , (174)

where P<IL>,<JK> denotes the (symmetrized) second derivative of P with respect
to XIL and XJK .

The expansion up to second order in the linear perturbations of the action (168)
is useful to obtain the classical equations of motion for the perturbations and to
calculate the spectra of the primordial perturbations generated during inflation, as
we have seen earlier in the case of a single scalar field. Working for convenience
with the scalar field perturbations QI defined in the spatially flat gauge, the second-
order action can be written in the compact form [51]:

S(2) = 1

2

∫
dt d3x a3 [(P<IJ> + 2P<MJ>,<IK>XMK) Q̇IQ̇J

−P<IJ>hij∂iQ
I∂jQ

J −MKLQKQL + 2ΩKIQ
KQ̇I] , (175)

where the mass matrix is



Inflation and Cosmological Perturbations 37

MKL = −P,KL + 3XMNP<NK>P<ML> + 1

H
P<NL>φ̇

N [2P<IJ>,KXIJ − P,K
]

− 1

H2
XMNP<NK>P<ML>

[
XIJP<IJ> + 2P<IJ>,<AB>XIJXAB

]

− 1

a3

d

dt

(
a3

H
P<AK>P<LJ>XAJ

)
(176)

and the mixing matrix is

ΩKI = φ̇JP<IJ>,K − 2

H
P<LK>P<MJ>,<NI>XLNXMJ . (177)

This formalism is very general and it is instructive to consider two particular cases,
which have often been studied in the literature.

6.2 Simple Multi-inflaton Scenarios

The first category includes multi-field scenarios governed by a Lagrangian of the
form

P = GIJXIJ − V = −1

2
GIJ(φ) ∂μφI∂μφ

J − V(φ) , (178)

where the field metric GIJ can be non-trivial (also studied in, e.g. [52–54]) It can
then be shown that the second-order action can be rewritten in the form

S(2) = 1

2

∫
dt d3x a3

[
GIJDtQ

IDtQ
J − 1

a2
GIJ∂iQ

I∂ iQJ − M̃IJQIQJ
]

, (179)

with

M̃IJ = DIDJV − RIKLJφ̇
K φ̇L − 1

a3
Dt

[
a3

H
φ̇I φ̇J

]
, (180)

where DI denotes the covariant derivative with respect to the field space metric GIJ

(so that DIDJV = V,IJ − Γ K
IJ V,K where Γ K

IJ denote the Christoffel symbols of the
metric GIJ), RIJKL is the corresponding Riemann tensor and DtQI ≡ Q̇I+Γ I

JK φ̇
IQK .

It is now convenient, following the approach of [55], to introduce a particular
direction in field space, which we will call the instantaneous adiabatic direction,
defined by the unit vector tangent to the inflationary trajectory in field space,

eI
σ = φ̇I

√
2X

= φ̇I

σ̇
, (181)

where we have introduced the notation X ≡ GIJXIJ and σ̇ ≡ √
2X.
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Fig. 3 Inflationary trajectory
in a two-field model. The
(instantaneous) adiabatic
vector eσ is tangent to the
trajectory while the
(instantaneous) entropic
vector es is orthogonal to it

The directions orthogonal to eI
σ are called instantaneous entropic and span an

hyperplane in field space. For simplicity, let us now concentrate on two-field sce-
narios, where there is a single entropic degree of freedom (Fig. 3). Defining the
entropy vector eI

s as the unit vector orthogonal to the adiabatic vector eI
σ , i.e.

GIJeI
se

J
s = 1, GIJeI

se
J
σ = 0, (182)

one can then uniquely decompose the scalar field perturbations into (instantaneous)
adiabatic and entropic modes,

QI = Qσ eI
σ + Qse

I
s . (183)

One can derive the equations of motion for the quantities Qσ and Qs from the
second-order action. One finds [54]

Q̈σ + 3HQ̇σ +
(

k2

a2
+ μ2

σ

)
Qσ = (ΞQs)

. −
(

Ḣ

H
+ V,σ

σ̇

)
Ξ Qs , (184)

with

Ξ ≡ − 2

σ̇
V,s , μ2

σ ≡ − (σ̇ /H)..

σ̇ /H
−
(

3H + (σ̇ /H).

σ̇ /H

)
(σ̇ /H).

σ̇ /H
, (185)

where V,σ ≡ eI
σV,I and V,s ≡ eI

sV,I . The equation of motion for the entropy part is
given by

Q̈s + 3HQ̇s +
(

k2

a2
+ μ2

s

)
Qs = −Ξ

[
Q̇σ − H

(
σ̇ 2

2H2
+ σ̈

Hσ̇

)
Qσ

]
, (186)

with

μ2
s ≡ Vss + 1

2
σ̇ 2R − V2

,s

2X
, (187)

where R is the trace of the Ricci tensor on field space, i.e. the scalar curvature.
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The adiabatic perturbation is naturally related to the comoving curvature pertur-
bation (139). Indeed, using the energy–momentum tensor (170), with the property
ρ + P = 2X, which follows from (172), one finds that the comoving perturbation
(139) is given by

R = H

2X
φ̇IQ

I = H√
2X

Qσ . (188)

Taking the time derivative of this expression and using the analog of (142),

− 2
k2

a2
Ψ = δρc =

√
2X

[
Q̇σ +

(
Ḣ

H
− Ẋ

2X

)
Qσ

]
+ 2V,sQs (189)

one finds

Ṙ = H

Ḣ

k2

a2
Ψ − 2

H

σ̇ 2
V,sQs . (190)

By noting that the right-hand side of (186) is proportional to Ṙ, one can rewrite
the entropic equation of motion as

Q̈s + 3HQ̇s +
(

k2

a2
+ μ2

s +Ξ2
)

Qs = − σ̇

Ḣ
Ξ

k2

a2
Ψ . (191)

When the spatial gradients can be neglected on large scales, the above equation
shows that the entropy perturbation Qs evolves independently of the adiabatic mode.
In the same limit, the adiabatic mode is governed by a first-order equation

Ṙ ≈ H

σ̇
Ξ Qs or Q̇σ +

(
Ḣ

H
− σ̈

σ̇

)
Qσ −Ξ Qs ≈ 0. (192)

This implies that, in contrast with the entropy mode, the adiabatic mode is affected
by the entropy on large scales, as soon as the mixing parameter Ξ = −2V,s/σ̇ is
non zero. When the field metric is flat, GIJ = δIJ , one can introduce the rotation
angle between the initial basis and the adiabatic/entropy basis. One thus finds that
Ξ = 2θ̇ . In the case a field metric of the form

GIJ dφI dφJ = dφ2 + e2b(φ)dχ2 , (193)

investigated in [56, 57], the coupling is given by Ξ = 2θ̇ + b′σ̇ sin θ , where the
additional term simply comes from the non-trivial covariant derivative. Note that
non-linear extensions of the adiabatic and entropic equations have been obtained in
[58, 59] (see also [60, 61] for other works on non-linear perturbations in multi-field
inflation).
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Fig. 4 In a double inflation model, with two different masses for the scalar fields, the inflation-
ary trajectory is bent (left). This induces an evolution of the curvature perturbation, after Hubble
crossing (right). Other examples can be found in [57]

The above results show that a generic feature of multi-inflaton scenarios is that
the curvature perturbation is not frozen at horizon crossing, like in single-field infla-
tion, but can, instead, evolve on large scales as a consequence of the transfer of
entropy perturbations into adiabatic perturbations, as illustrated in Fig. 4. This was
pointed out originally in [62] in the context of generalized gravity theories. It is thus
crucial, when working with a model involving several scalar fields during inflation,
to identify all the light directions in field space and to evolve the curvature perturba-
tion until any transfer from entropy into adiabatic modes has completely ceased (the
transfer can even occur long after inflation, as is the case in the curvaton scenario,
which we will discuss later).

As we have just seen, the instantaneous entropy perturbations can affect the evo-
lution of the curvature perturbation during inflation, on large scales, but they could
also survive the end of inflation and the reheating phase and therefore, cause the
existence of “initial” isocurvature perturbations, for instance, between the CDM and
photon fluids, in the radiation era. Moreover, these isocurvature perturbations could
be correlated with the “initial” adiabatic perturbations [63], since part of the adia-
batic perturbation can originate from an (instantaneous) entropy perturbation during
inflation. We will discuss later the observational constraints on this possibility.

6.3 K-Inflation

Let us now consider single-field inflation, but with a generalized Lagrangian

L = P(X,φ), X ≡ −∂μφ∂μφ/2. (194)
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The category of models, first studied in [64], has been called K-inflation because
inflation can arise from the presence of non-standard kinetic terms, and not neces-
sarily from a quasi-flat potential as in standard inflation.

Linear perturbations have been investigated in [65]. Here, one can simply take
the single-field limit of (175)

S(2) = 1

2

∫
dt d3x a3

[
(PX + 2PXXX) Q̇2 − PXhij∂iQ∂jQ

−MQ2 + 2ΩQQ̇
]

, (195)

where PX ≡ ∂P
∂X and PX ≡ ∂2P

∂X2 .
The first line of the above action shows that the perturbations of the scalar field
propagate with an effective sound speed given by

c2
s = PX

PX + 2XPXX
, (196)

which can be much smaller than the usual speed of light, in some models.
Introducing the conformal time τ and the canonically normalized field

v = a
√

PX

cs
Q , (197)

one gets the action

S(2) = 1

2

∫
dτ d3x

[
v′ 2 − c2

s (∂v)2 + z′′

z
v2
]

, (198)

with

z = aφ̇
√

PX

cs H
. (199)

In Fourier space, this leads to the equation of motion

v′′ +
(

k2c2
s −

z′′

z

)
v = 0, (200)

where one notes the presence of c2
s multiplying k2. As a consequence, the fluctua-

tions are amplified at sound horizon crossing, i.e. when kcs ∼ aH, and not at Hubble
radius crossing as in the standard case (the two of course coincide for cs � c).

Assuming a slow variation of the Hubble parameter H and of the sound speed cs,
one can use the approximation z′′/z � 2/τ 2 and the solution corresponding to the
vacuum on small scales is given by
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v = 1√
2kcs

e−ikcsτ

(
1 − i

kcsτ

)
. (201)

This expression differs from (78) only by the presence of cs.
One can then proceed exactly as in the standard case to obtain the power spectrum

of the scalar field fluctuations:

PQ � H2

4π2csPX
(202)

and the power spectrum of the curvature perturbation:

PR∗ =
k3

2π2

|vσ k|2
z2

� H4

4π2σ̇ 2
= H2

8π2εcs
, (203)

where ε = −Ḣ/H2 .

6.4 A Specific Example: Multi-field DBI Inflation

The two previous subsections have illustrated separately the consequences of mul-
tiple inflatons, on the one hand, and of non-standard kinetic terms. Here, these two
aspects will be naturally combined in a category of models motivated by string
theory.

Indeed, inflation could originate from the motion of a D3-brane in an internal six-
dimensional compact space. The dynamics of the brane, with tension T3, is governed
by the Dirac-Born-Infeld Lagrangian (we ignore here the dilaton and the various
form fields, but they can be included, as in [66])

LDBI = −T3
√− det γμν , (204)

which depends on the determinant of the induced metric on the 3-brane,

γμν = HAB ∂μYA
(b)∂νYB

(b), (205)

where HAB is metric of the compactified 10-dimensional spacetime, assumed to be
of the form

HAB dYA dYB = h−1/2(yK) gμνdxμdxν + h1/2(yK) GIJ(yK) dyIdyJ , (206)

and YA
(b)(x

μ) = (xμ,ψ I(xμ)), with μ = 1 . . . 3 and I = 1 . . . 6, defines the brane
embedding.

After using the rescalings φI ≡ √
T3YI and f = h/T3, one ends up with a

Lagrangian of the form
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P = − 1

f (φI)

(√
D − 1

)
− V(φI) (207)

with

D ≡ det (δμν + f GIJ∂
μφI∂νφ

J)

= 1 − 2fGIJXIJ + 4f 2X[I
I XJ]

J − 8f 3X[I
I XJ

J XK]
K + 16f 4X[I

I XJ
J XK

K XL]
L , (208)

where the field indices are lowered by the field metric GIJ , i.e. the metric of the
internal compact space, and the brackets denote antisymmetrization of the indices.
A potential term, which arises from the brane’s interactions with bulk fields or other
branes, is also included.

If the brane moves radially in a conical geometry, one can ignore the angular
directions in field space, and the effective action reduces to

S =
∫

d4x
√−g

[
−1

f

(√
1 + f ∂μφ∂μφ − 1

)
− V(φ)

]
. (209)

If f φ̇2 
 1, one can expand the square root in the Lagrangian and one recovers the
usual kinetic term familiar to slow-roll inflation. But there is another regime, called
DBI inflation [67, 68], corresponding to the “relativistic” limit

1 − f φ̇2 
 1 ⇒ |φ̇| � 1/
√

f , (210)

which does not require a very flat potential as in standard slow-roll inflation.
The Lagrangian in (209) is of the form P(X,φ), discussed in the previous subsec-

tion, with

P(X,φ) = − 1

f (φ)

(√
1 − 2fX − 1

)
− V(φ), (211)

and therefore, using (196),

cs =
√

1 − 2fX = 1

PX
. (212)

If the brane is allowed to move in the angular directions, the above single-field
simplification is not valid and one must work in a multi-field framework with the
Lagrangian (207). The perturbations generated by such a scenario have been studied
in detail in [69] and we now summarize the main results.

After decomposing the perturbations into adiabatic and entropy modes, one finds
that the single-field results apply to adiabatic mode, so that its spectrum at sound
horizon crossing is given by
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PQσ ∗ � H2

4π2
(213)

(the subscript ∗ here indicates that the corresponding quantity is evaluated at sound
horizon crossing kcs = aH).

As for the (canonically normalized) entropy mode, vs ≡ (a/
√

cs)Qs, its evolution
is governed by the equation

v′′s + ξv′σ +
(

k2c2
s −

α′′

α

)
vs = 0 , α ≡ a√

cs
, (214)

where we have neglected a possible coupling with the adiabatic mode and assumed
that the effective mass of the entropy mode is small with respect to H. vs has thus
the same spectrum as vσ , but since the normalization coefficients in front of the
adiabatic and entropy modes differ, one finds that the spectrum for the fluctuations
along the entropy direction in field space, is given by

PQ∗
s
� H2

4π2c2
s

, (215)

which shows that, for small cs, the entropic modes are amplified with respect to the
adiabatic modes:

Qs∗ � Qσ∗
cs

. (216)

Since we are in a multi-field scenario, the curvature perturbation can be mod-
ified, after sound horizon crossing, if there is a transfer from the entropic to the
adiabatic modes, as we saw earlier. The final curvature perturbation can be formally
written as

R = R∗ + TRSS∗, (217)

where, for convenience, we have introduced the rescaled entropy perturbation

S = cs
H

σ̇
Qs , (218)

defined such that its power spectrum at sound horizon crossing is the same as that
of the curvature perturbation, i.e. PS∗ = PR∗ . The final curvature power spectrum
is thus given by

PR = (1 + T2
RS )PR∗ =

PR∗
cos2Θ

, (219)

where we have introduced the “transfer angle” Θ (Θ = 0 if there is no transfer and
|Θ| = π/2 if the final curvature perturbation is mostly of entropic origin) by
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sin Θ = TRS√
1 + T2

RS

. (220)

The power spectrum for the tensor modes is still governed by the transition at
Hubble radius and its amplitude, given by (121), is unchanged. The tensor to scalar
ratio is thus

r ≡ PT
PR

= 16 ε cscos2Θ . (221)

Interestingly this expression combines the result of k-inflation [65], where the ratio
is suppressed by a small sound speed cs, and that of multi-field inflation with
standard kinetic terms [70], where the ratio is suppressed by a large transfer from
entropy to adiabatic modes.

6.5 The Curvaton Scenario

The transfer from entropy into adiabatic perturbations can occur during inflation,
as we have seen in scenarios with multiple inflatons, but it can also take place long
after the end of inflation. A much studied example of this possibility is the curvaton
scenario [71–73] (see also [74]).

The curvaton is a weakly coupled scalar field, σ , which is light relative to the
Hubble rate during inflation, and hence acquires an almost scale-invariant spectrum
and effectively Gaussian distribution of perturbations during inflation:

Pδσ =
(

H

2π

)2

, (222)

where the curvaton perturbation, δσ = Qσ , is defined here in the flat gauge.
After inflation the Hubble rate drops and eventually the curvaton becomes non-

relativistic so that its energy density grows relative to radiation, until it contributes a
significant fraction of the total energy density, Ωσ ≡ ρ̄σ /ρ̄, before it decays. Hence
the initial curvaton field perturbations on large scales can give rise to a primordial
density perturbation after it decays (Fig. 5).

The non-relativistic curvaton (mass m � H), before it decays, can be described
by a pressureless, non-interacting fluid with energy density

ρσ = m2σ 2 , (223)

where σ is the rms amplitude of the curvaton field, which oscillates on a timescale
m−1 much less than the Hubble time H−1. The corresponding perturbations are
characterized, using (136) and (222),
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Fig. 5 Evolution of the
energy density of the
radiation, ρr , produced by the
inflaton and of the energy
density of the curvaton, ρσ ,
before and after the curvaton
decay

ζσ =
(
δρσ

3ρσ

)
flat

= 2

3

δσ

σ
⇒ Pζσ � H2

9π2σ 2
. (224)

When the curvaton decays into radiation, its perturbations are converted into per-
turbations of the resulting radiation fluid. The subsequent perturbation is described
by

ζ = rσ ζσ + (1 − rσ )ζinf , rσ ≡ 3Ωσ ,decay

4 −Ωσ ,decay
. (225)

This implies that the power spectrum for the primordial adiabatic perturbation ζr
can be expressed as

Pζ = Pζinf + r2
σPζσ . (226)

where Pζinf is the spectrum of perturbations generated directly by the inflaton fluc-
tuations.

In the case of single-field inflation, Pζinf is given in (117) and one can rewrite the
total power spectrum as we have

Pζ = (1 + λ)Pζinf , λ ≡ 8

9
r2
σ ε∗

(
σ∗
MP

)−2

. (227)

The limit λ � 1 corresponds to the original curvaton scenario where the inflaton
perturbations are negligible: since rσ and ε∗ are bounded by 1, this requires σ∗ 

MP.

A value of λ of order 1 or smaller is possible if rσ or ε∗ are sufficiently small
and/or σ∗ is of the order of MP. In the latter case the curvaton starts to oscillate at
about the same time as it decays and cannot be described as a dust field. A more
refined treatment [75] shows that the curvature perturbation due to the inflaton and
curvaton perturbations is given
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R = − V

M2
PV ′ δφ − 3

2
f (σ∗)

δσ∗
MP

, (228)

where the function f (σ∗) interpolates between the limiting situations of a pure cur-
vaton and of a secondary inflaton

f (σ∗) �
⎧⎨
⎩

4
9

MP
σ∗ , σ∗ 
 MP

σ∗
3MP

, σ∗ � MP.
(229)

Interestingly, the curvaton scenario can also produce entropic, or isocurvature,
perturbations [76]. It can produce a CDM isocurvature perturbation if the CDM is
created before the curvaton decay and thus inherits the perturbations of the inflaton
so that Scdm = 3(ζinf−ζr); or, on the contrary, if the CDM is created by the curvaton
decay, in which case Scdm = 3(ζχ−ζr). Similarly, baryon isocurvature perturbations
can be generated if the baryon asymmetry exists before the curvaton decay.

6.6 Modulaton

In the curvaton scenario, the primordial perturbations are mainly due to the curvaton
perturbations if the curvaton was the dominant species at some epoch in the past of
the Universe. But one can also envisage scenarios where the primordial perturba-
tions are due to the perturbations of a scalar field, which has never dominated the
matter content of the Universe but has affected one transition in the cosmological
history. We will name this field a modulaton.

The best example is the modulated reheating scenario [77, 78] where the decay
rate of the inflaton, Γ , depends on a modulaton σ , which has acquired classical
fluctuations during inflation. From one super-Hubble patch to another, the decay
rate is thus slightly different, which generates a curvature perturbation.

A simple way to quantify this effect is to compute the number of e-folds between
some initial time ti during inflation, when the scale of interest crossed out the Hubble
radius and some final time tf . For simplicity, we will assume that, just after the end
of inflation, at time te, the inflaton behaves like pressureless matter (as is the case
for a quadratic potential) until it decays instantaneously at the time td characterized
by Hd = Γ . At the decay, the energy density is thus ρd = ρe exp [ − 3(Nd − Ne)]
and is transferred into radiation, so that, at time tf , one gets

ρf = ρde−4(Nf −Nd) = ρee−3(Nf −Ne)−(Nf −Nd). (230)

Using the relation Γ = Hd = Hf exp [2(Nf − Nd)] to eliminate (Nf − Nd) in (230),
we finally obtain
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Nf = Ne − 1

3
ln
ρf

ρe
− 1

6
ln

Γ

Hf
. (231)

If one ignores the inflaton fluctuations, the final curvature perturbation is therefore

ζ = N,σ δσ∗ = −1

6

Γ,σ

Γ
δσ∗, (232)

which yields the curvature power spectrum

Pζ = 1

36

(
Γ,σ

Γ

)2 (H∗
2π

)2

. (233)

The dependence on the modulaton can alternatively show up in the mass of the
particles created by the decay of the inflaton [79, 80].

The modulaton can also affect the cosmological evolution during inflation, as in
the modulated trapping scenario [81], which is based on the resonant production
of particles during inflation [82]. If the inflaton is coupled to some particles, whose
effective mass becomes zero for a critical value of the inflaton, then there will be
a burst of production of these particles when the inflaton crosses the critical value.
These particles will be quickly diluted but they will slow down the inflaton. This
effect, which increases the number of e-folds until the end of inflation, can depend
on a modulaton, for example, via the coupling between the inflaton and the particles,
and a significant curvature perturbation might be generated (see [81] for details).

6.7 “Initial” Adiabatic and Entropic Perturbations

In contrast with single-field inflation, multi-field inflation can generate isocurvature
“initial” perturbations in the radiation era. Note that this is only a possibility but
not a necessity; purely adiabatic initial conditions are perfectly compatible with
multi-field scenarios.

The CMB is a powerful way to study isocurvature perturbations because (pri-
mordial) adiabatic and isocurvature perturbations produce very distinctive features
in the CMB anisotropies. On large angular scales, one can show, for instance, that
[63]

δT

T
� 1

5
(R− 2S) . (234)

On smaller angular scales, an adiabatic initial perturbation generates a cosine oscil-
latory mode in the photon-baryon fluid, leading to an acoustic peak at � � 220 (for
a flat Universe), whereas a pure isocurvature initial perturbation generates a sine
oscillatory mode resulting in a first peak at � � 330. The unambiguous observation
of the first peak at � � 220 has eliminated the possibility of a dominant isocurvature
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perturbation. The recent observation by WMAP of the CMB polarization has also
confirmed that the initial perturbation is mainly an adiabatic mode. But this does
not exclude the presence of a subdominant isocurvature contribution, which could
be detected in future high-precision experiments such as Planck.

The combined impact of adiabatic and entropic perturbations crucially depends
on their correlation [63, 83]

β = PS,R√
PSPR

. (235)

Parametrizing the relative amplitude between the two types of perturbations by a
coefficient α,

PS

PR
≡ α

1 − α
, (236)

the WMAP5 data [84] yield the following constraints on the entropy contribution

β = 0: α0 < 0.067 (95% CL) β = −1: α−1 < 0.0037 (95% CL) (237)

in the uncorrelated case (β = 0) and in the totally anti-correlated case (β = −1),
respectively.

7 Primordial Non-Gaussianities

One of the most promising probes of the early Universe, which has been investi-
gately very actively in the last few years, is the non-Gaussianity of the primordial
perturbations (see [85] for a review, but the field has grown considerably in the last
few years). Whereas the simplest models of inflation, based on a single field with
standard kinetic term, produce undetectable levels of non-Gaussianity [35, 86], a
significant amount of non-Gaussianity can be produced in scenarios with (i) non-
standard kinetic terms; (ii) multiple fields; (iii) a non standard vacuum; (iv) a non
slow-roll evolution.

7.1 Higher Order Correlation Functions

The most natural estimate of non-Gaussianity is the bispectrum defined, in Fourier
space, by

〈ζk1ζk2ζk3〉 ≡ (2π )3δ(3)

(∑
i

ki

)
Bζ (k1,k2,k3) , (238)
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where the Fourier modes are defined by

ζk =
∫

d3x e−ik·x ζ (x) . (239)

Equivalently, one often uses the so-called fNL parameter, which can be defined in
general by

Bζ (k1,k2,k3) ≡ 6

5
fNL(k1,k2,k3)

[
Pζ (k1)Pζ (k2) + Pζ (k2)Pζ (k3) + Pζ (k3)Pζ (k1)

]
,

(240)
where Pζ is the power spectrum4 defined by

〈ζk1ζk2〉 = (2π )3δ(3)(k1 + k2) P(k1) . (241)

The fNL parameter was initially introduced in [87] for a very specific type of
non-Gaussianity characterized by

ζ (x) = ζG(x) + 3

5
fNLζ

2
G(x) , (242)

in the physical space, where ζG is Gaussian and the factor 3/5 appears because
fNL was originally defined with respect to the gravitational potential Φ = (3/5)ζ ,
instead of ζ . In this particular case, fNL, as defined in (240), is independent of the
vectors ki. But, in general, fNL is a function of the three vectors ki (which define
a triangle in Fourier space since they are constrained by k1 + k2 + k3 = 0 as
a consequence of homogeneity), and the “shape” of the three-point function is an
important characterization of how non-Gaussianity was generated [88].

In the context of multi-field inflation, the so-called δN-formalism [89, 52] is
particularly useful to evaluate the primordial non-Gaussianity generated on large
scales [90]. The idea is to describe, on scales larger than the Hubble radius, the non-
linear evolution of perturbations generated during inflation in terms of the perturbed
expansion from an initial hypersurface (usually taken at Hubble crossing during
inflation) up to a final uniform-density hypersurface (usually during the radiation-
dominated era). Using the Taylor expansion of the number of e-folds given as a
function of the initial values of the scalar fields,

ζ �
∑

I

N,Iδϕ
I∗ +

1

2

∑
IJ

N,IJδϕ
I∗δϕJ∗ (243)

one finds [90, 91], in Fourier space,

4 In this section on non-Gaussianities, we have followed the recent literature and adopted the defi-
nition (239) for the Fourier modes, which differs slightly from our convention (69) of the previous
chapters. This changes the expression of the power spectrum, but the quantity P(k) is the same in
the two conventions.
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〈ζk1ζk2ζk3〉 =
∑
IJK

N,IN,JN,K〈δϕI
k1
δϕJ

k2
δϕK

k3
〉 +

1

2

∑
IJKL

N,IN,JN,KL〈δϕI
k1
δϕJ

k2
(δϕK ! δϕL)k3〉 + perms.

(244)

As illustrated by the first line of the above expression, one sees that significant
non-Gaussianities can arise from the three-point function of the scalar field(s). This
is the case for models with non-standard kinetic terms [92–94], leading to a specific
shape of non-Gaussianities, usually called equilateral, where the dominant contri-
bution comes from configurations where the three wavevectors have similar length
k1 ∼ k2 ∼ k3. With a non-standard vacuum for the perturbations, one finds a folded
shape, which is peaked in the limit k3 ∼ k1 + k2 [94].

Even if the three-point function of the scalar fields is negligible, the second line
can lead to sizable non-Gaussianities. Indeed substituting

〈δϕI
k1
δϕJ

k2
〉 = (2π )3δIJδ

(3)(k1 + k2)
2π2

k3
1

P∗(k1), P∗(k) ≡ H2∗
4π2

, (245)

in (244), one gets

6

5
fNL = NINJNIJ

(NKNK)2
. (246)

This corresponds to another type of non-Gaussianity, usually called local or squeezed,
for which the dominant contribution comes from configurations where the three
wavevectors form a squeezed triangle.

The present observational constraints [84] are

− 9 < f (local)
NL < 111 (95% CL), − 151 < f (equil)

NL < 253 (95% CL), (247)

for the local non-linear coupling parameter and the equilateral non-linear coupling
parameter, respectively.

Extending the Taylor expansion (243) up to third order, one can compute in a
similar way the trispectrum [95], i.e. the Fourier transform of the connected four-
point function defined by

〈ζk1ζk2ζk3ζk4〉c ≡ (2π )3δ(3)(
∑

i

ki)Tζ (k1,k2,k3,k4) . (248)

Assuming the scalar field perturbations to be quasi-Gaussian, the trispectrum can be
written in the form [96]
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Tζ (k1,k2,k3,k4) = τNL
[
P(k13)P(k3)P(k4) + 11 perms

]
(249)

+54

25
gNL

[
P(k2)P(k3)P(k4) + 3 perms

]
, (250)

with

τNL = NIJNIKNJNK

(NLNL)3
, gNL = 25

54

NIJKNINJNK

(NLNL)3
(251)

and where k13 ≡ |k1 + k3|.

7.2 A Few Examples

It is not always easy to obtain significant non-Gaussianities even in models with
several inflatons (see, e.g. [97]). But detectable local non-Gaussianity can be gen-
erated in the curvaton or modulaton scenarios, or at the end of inflation [98, 99].
Models with non-standard kinetic terms, like the DBI scenario, can produce strong
equilateral non-Gaussianities. We now discuss the curvaton case and multi-field DBI
inflation.

7.2.1 Curvaton

In the multi-field scenarios with a curvaton (or a modulaton), one can separate the
contributions of the inflaton field φ and of the curvaton/modulaton σ . In the case of
standard slow-roll inflation, the second derivatives with respect to φ are negligible
in (246) and one gets

6

5
fNL = N2

σ Nσσ

(N2
φ + N2

σ )2
= Nσσ

N2
σ (1 + λ−1)2

, (252)

where we have introduced the parameter λ ≡ N2
σ /N2

φ , which represents the ratio of
the contribution of σ with the inflaton contribution in the power spectrum (see (227)
for the curvaton).

For the curvaton, (225) tells us that Nσ = 2rσ /3σ and the extension of this
equation to second order yields

Nσσ = 4rσ
9σ 2

(
3

2
− 2rσ − r2

σ

)
. (253)

This leads to a local non-Gaussianity characterized by

6

5
fNL = 1

rσ

(
3
2 − 2rσ − r2

σ

)
(1 + λ−1)2

. (254)
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Non-Gaussianities are thus significant when the curvaton decays well before it dom-
inates, rσ 
 1. When λ � 1 and the perturbations from inflation are negligible, one
recovers the standard curvaton result [100].

Note, however, that fNL does not grow indefinitely as rσ becomes small because
both rσ and λ depend on the curvaton expectation value σ∗. Indeed, substituting
rσ ∼ (σ∗/MP)2/

√
Γσ /mσ (valid in the limit r 
 1), where Γσ is the decay rate

of the curvaton, into the definition (227), one sees that λ is proportional to σ 2∗ , like
r. One thus finds [101] that the non-linearity parameter reaches its maximal value
fNL( max ) ∼ ε∗/

√
Γσ /mσ for λ ∼ 1, i.e. for σ∗ ∼ √

Γσ /(mσ ε∗)MP. A significant
non-Gaussianity is thus possible if ε∗ � √

Γσ /mσ . It is easy to extend the above
procedure for the computation of the trispectrum [102].

Moreover, in the curvaton scenarios, isocurvature perturbations can be present.
Even if their contribution to the power spectrum is constrained to be small, they
could contribute significantly to non-Gaussianities. It is thus interesting to study the
non-Gaussianities of isocurvature perturbations as well (see, e.g. [103–106]).

Non-Gaussianities in modulaton scenarios have also been investigated (see e.g.,
[107, 108, 81]).

7.2.2 Multi-field DBI Inflation

Multi-field DBI inflation is another multi-field example where non-Gaussianities
have been investigated. In this case, the three-point correlation functions of the
scalar fields are not negligible and they can be computed from the third-order action,
which is given, in the small sound speed limit, by [69, 51]

S(3) =
∫

dt d3x

{
a3

2c5
s σ̇

[
(Q̇σ )3 + c2

s Q̇σ (Q̇s)
2
]

− a

2c3
s σ̇

[
Q̇σ (∂Qσ )2 − c2

s Q̇σ (∂Qs)
2 + 2c2

s Q̇s∂Qσ ∂Qs

]}
, (255)

in terms of the instantaneous adiabatic and entropic perturbations, respectively. The
contribution from the scalar field three-point functions to the coefficient fNL is

f (3)
NL = − 35

108

1

c2
s

1

1 + T2
RS

= − 35

108

1

c2
s

cos2Θ , (256)

which is similar to the single-field DBI result, but with a suppression due to the
transfer between the entropic and adiabatic modes.

Interestingly, multi-field DBI inflation could also produce a local non-Gaussianity
in addition to the equilateral one (see [109] for an explicit illustration). The trispec-
trum in multi-field DBI inflation has also been computed [110].
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8 Conclusions

As these notes have tried to emphasize, inflation provides an attractive framework
to describe the very early Universe and to account for the “initial” seeds of the
cosmological perturbations, which we are able to observe today with increasing
precision. In particular, the idea that the present structures in the Universe arose
from the gravitational amplification of quantum vacuum fluctuations is especially
appealing.

At present, inflation is more a general framework than a specific theory and there
exists a plethora of models, based on various types of motivation, which can all
satisfy the present observational data. The simplest models, based on a slow-rolling
single field, produce only adiabatic perturbations, with negligible non-Gaussianities,
but with a possibly detectable amount of gravitational waves for the large-field sub-
class.

More sophisticated models, involving multiple scalar fields or non-standard
kinetic terms, can lead to a much richer spectrum of possibilities: isocurvature per-
turbations that could be correlated with the adiabatic ones or a detectable level of
non-Gaussianities.

Any clear evidence in the future of one or several of these additional features
(gravitional waves, isocurvature perturbations and/or primordial non-Gaussianities)
would allow us to discriminate between the main species of inflationary models and
would thus have a huge impact on our understanding of the early Universe.
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M. Sullivan

Summary Type Ia Supernovae (SNe Ia) provide cosmologists with a precise cali-
brateable “standard candle” with which to probe the expansion history of the uni-
verse on large scales. Pioneering astronomical surveys in the late 1990s exploited
these distant cosmic explosions to directly reveal the presence of a “dark energy,”
opposing the attractive, slowing force of gravity and instead accelerating the uni-
verse’s rate of expansion. Dark energy has since emerged as being responsible for
more than 70% of the universe’s mass–energy: the lack of a viable theoretical expla-
nation has sparked an intense observational effort to understand its nature. In this
chapter we review the use of SNe Ia in cosmology and dark energy studies. We begin
by placing the SNe Ia in a cosmological context, introducing the framework in which
their physical fluxes are interpreted, and discussing their underlying physics which
leads to their near-uniform peak brightness, exploited by astronomers to estimate
distances. We show how advances in the empirical understanding of SNe Ia led to
the direct discovery of the accelerating universe and how modern SN Ia searches and
distance estimation techniques, combined with complementary probes of large-scale
structure such as baryon acoustic oscillations, have measured the average equation
of state of dark energy to better than 5% (statistical error). Systematics are now of
increasing importance and we discuss the main sources of these, both experimental
and astrophysical, together with an experimental error budget typical of that in a
modern SN Ia survey. Finally, we outline the future prospects for measuring dark
energy with SN Ia using the next generation of planned experiments.

1 Introduction

The newest puzzle in cosmology is the observed acceleration of the expansion of the
universe. The universe has been known to be expanding, and not static and unchang-
ing, since the beginning of the twentieth century. The early work of Slipher, Hubble,
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and Humason [1, 2] showed that nearby “spiral nebulae” are receding from the Earth
in every direction on the sky with velocities proportional to their inferred distance,
implying that the universe is getting larger over time, expanding in every direction.
For a universe filled with matter and radiation, general relativity (GR) predicts that
the gravitational attraction of the matter in the universe should lead to a deceleration
in this expansion rate as the universe grows and ages. However, observations over
the last decade have shown the exact opposite: the rate of the expansion is increasing
with time; the expansion of the universe is accelerating. This “cosmic acceleration”
has been confirmed with a wide variety of different astrophysical observations, and
the data indicating this acceleration are now not seriously in question. However, the
physical reason for the observed cosmic acceleration remains a complete mystery.

Two broad possibilities are generally considered. The first is that around 70% of
the matter–energy density of the universe exists in an as yet unknown form, coined
“dark energy,” the key characteristic of which is a strong negative pressure which
pushes the universe apart. There exists no compelling or elegant explanation for the
presence or nature of this dark energy, or the magnitude of its observed influence,
although various theoretical possibilities have been postulated [e.g., 3, 4]. Dark
energy could be in the form of a vacuum energy, filling the universe and constant
in space and time – a “Cosmological Constant.” Alternatively, dark energy may be
dynamical, a rolling scalar energy field which varies with both time and location
(“quintessence” theories).

A second possibility is that the observed cosmic acceleration is an artifact of our
incomplete knowledge of physical laws of gravity in the universe, in particular that
the laws of GR, a foundation of modern physics, simply break down on the largest
scales. The implication of this is that the cosmological framework in which we inter-
pret astronomical observations is incorrect, and this is manifested in observational
data as an acceleration in the expansion rate. These ideas are collectively known
as “modified gravity” theories. Such theories are constrained in that they must be
essentially equivalent to GR on scales of the solar system, where GR is stunningly
successful, and also in the early universe where the predictions of standard cos-
mology match observational effects such as the properties of the cosmic microwave
background and the growth of large-scale structure [5]. Nonetheless, a confirmation
of this alternative explanation for the observed acceleration would be as profound
as the existence of dark energy itself.

Either of these possibilities would revolutionize our understanding of the laws
governing the physical evolution of the universe. Understanding the cosmic accel-
eration has, therefore, rapidly developed over the last decade into a key goal of
modern science [6–9]. This chapter is aimed at the observational part of this effort
and, in particular, the use of Type Ia Supernovae (SNe Ia) to probe the expansion
history. (We do not tackle the theoretical possibilities for explaining the cosmic
acceleration in any great detail; excellent reviews of these can be found elsewhere
[e.g., 4].)

Type Ia Supernovae (SNe Ia) are a violent endpoint of stellar evolution, the result
of the thermonuclear destruction of an accreting carbon–oxygen white dwarf star
approaching the Chandrasekhar mass limit, the maximum theoretical mass that a
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white dwarf star can attain before the electron degeneracy pressure supporting it
against gravitational collapse, is no longer of sufficient strength. As the white dwarf
star gains material from a binary companion and approaches this mass limit, the
core temperature of the star increases leading to a runaway fusion of the nuclei in
the white dwarf’s interior. The kinetic energy release from this nuclear burning –
some 1044 J – is sufficient to dramatically unbind the star. The resulting violent
explosion and shock wave appears billions of times brighter than our Sun, comfort-
ably outshining the galaxy in which the white dwarf resided.

Remarkably, SNe Ia are also extraordinary examples of a class of objects known
as standard candles, objects with a uniform intrinsic brightness. For SNe Ia, this
homogeneity is presumably due to the similarity of the triggering white dwarf mass
(i.e., the Chandrasekhar mass, ∼1.4 solar masses or M�) and consequently the
amount of nuclear fuel available to burn. This makes SNe Ia the best (or at least most
practical) example of “standard candles” in the distant universe, objects to which a
distance can be inferred from only a measurement of the apparent brightness on the
sky. This allows them to be used to directly trace the expansion rate of the universe.

In this chapter, I will introduce the framework within which SN Ia observations
can be interpreted and show how they can be used to constrain the cosmic expansion
history. In particular, I will concentrate on the potential systematic issues that could
affect their use and show how future cosmological surveys are being designed to
mitigate these effects.

2 Context and Basic Concepts

The key problem with understanding dark energy is its very low density – less than
10−29 gcm−3 – which makes detecting it in a laboratory, let alone studying it in
detail, currently impossible. The only reason that dark energy has such an important
measurable effect on the physical evolution of the universe is that it is thought to
uniformly fill the cosmos. When this low density is integrated over cosmological
distances, its effect dominates over that of matter, which is extremely clustered in
stars and galaxies. The influence of dark energy can therefore only be observed over
cosmological scales, which in turn makes astronomy the only experimental field
currently capable of making headway in studying it.

Although there has been much excitement over the last decade, cosmic accel-
eration is neither a new nor novel concept. Its history can be traced back to the
development of the theory of GR, and the idea has re-emerged several times in the
intervening century [for a “pre-1998” review see 10]. At the time of the publication
of GR, contemporary thinking indicated that the universe was a static place. Einstein
perceived that solutions to the field equations of GR did not allow for these static
solutions where space is neither expanding nor contracting but rather is dynami-
cally stable. The effects of gravity in any universe containing matter would cause
that universe to eventually collapse. Hence, Einstein famously added a repulsive
“cosmological constant” term to his equations – �.
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This cosmological constant has the same effect mathematically as an intrinsic
energy density of the vacuum with an associated pressure. A positive vacuum energy
density implies a negative pressure (and vice versa). If the vacuum energy density is
positive, this negative pressure will drive an accelerated expansion of empty space,
acting against the slowing force of gravity. Hence, static universe solutions in GR
could now be permitted, at least in principle. Following observations in the late
1920s that the universe was not a static place but instead expands with time, the
perceived need for a � term in GR was removed. Einstein famously remarked in his
later life that modifying his original equations of GR to include � was his “biggest
blunder.”

Despite Einstein’s retraction of�, in the early 1990s it was realized that, in fact, a
cosmological constant could potentially explain many puzzling observational effects
in astronomical data. Many cosmologists were disturbed by the low matter density
implied by observations of the large-scale structure of the universe – if "M < 1,
where was the rest of the matter–energy? Was the universe non-flat or was the inter-
pretation of the observations at fault? The apparent ages of globular clusters were
another puzzle, seemingly older than the accepted age of the universe in the then
standard cosmological models. This indirect evidence generated a renewed interest
in the cosmological constant, which could explain many of these inconsistencies
[e.g., 11–13]. However, the first direct evidence did not come until a few years later
with observations of SNe Ia.

2.1 Cosmological Framework

In the solutions to Einstein’s field equations of GR known as the Friedmann–
Lemaitre–Robertson–Walker (FLRW) metric, the universe is described as homo-
geneous and isotropic, possibly expanding or contracting, and filled with a perfect
fluid, one that can be completely characterized by an equation of state w, with
an energy density ρ and an isotropic pressure p (w = p/ρ). In these solutions,
the growth of the universe over time is parametrized by a dimensionless scale fac-
tor parameter a(t), essentially describing how the universe “stretches” over time,
defined so that at the present day a = 1. The equations which govern the expansion
are known as the Friedmann equations

ä

a
= −4πG

3
(ρ (a)+ 3p(a)) (1)

and

(
ȧ

a

)2

≡ H2 (a) = 8πGρ (a)

3
− k

a2
. (2)

The left-hand side of this second equation is the Hubble parameter H(a), which
measures the relative expansion rate of the universe as a function of a. Despite a



Type Ia Supernovae and Cosmology 63

contentious history, the present-day value of H, the Hubble constant H0, is generally
agreed to be close to 70 km s−1 Mpc−1 using a wide variety of different techniques
[e.g., 14]. The right-hand side of (2) determines the expansion rate from the matter–
energy contents of the universe. ρ(a) describes the evolution of the mean density
of each of the different components of the universe – baryonic matter, dark matter,
radiation, neutrinos, dark energy, etc. (G is Newton’s gravitational constant). The
effect of spatial curvature parametrized by k: k = 0 indicates a flat universe.

The density of each component, ρ, evolves with the scale factor a as

ρ (a) ∝ a−3(1+w) , (3)

with w the (constant) equation of state of each given component.
More conveniently, each of the different components of ρ can be written in terms

of energy density parameters " defined as a fraction of the “critical energy density”
ρc, the current energy density of a flat (k = 0) universe

" ≡ ρ

ρc
= 8πGρ

3H2
. (4)

Non-relativistic matter has an equation state of wM = 0. From (3), its energy density
"M will be diluted as the universe expands as a−3 or by the volume. Ultrarelativistic
matter, such as radiation and neutrinos, has wrad = 1/3. Its energy density "rad is
diluted more quickly by the expansion than matter as a−4, decreasing faster than a
simple volume expansion as radiation has momentum and therefore a wavelength,
stretched by a factor of a. The final component "DE, dark energy, must have a strong
negative pressure to explain the observed cosmic acceleration and hence a negative
(but not precisely known) w. Equation (2) is then written as (in a flat universe with
k = 0)

H2 (a) = H2
0

[
"Ma−3 +"rada−4 +"DEa−3(1+w)

]
, (5)

where w is now the equation of state of only the dark energy component. Here w is
assumed constant; for a non-constant w, the final term is replaced by

"DE exp

(
3
∫ 1

a

da′

a′
[
1 + w

(
a′
)])

. (6)

The expansion history of the universe is therefore a “competition” between these
different components (Fig. 1). At early times, from around 3 s after the Big Bang
until an age of 50,000 years (a cosmological redshift of ∼3,500), the universe was
dominated by radiation. As the universe expanded and the radiation energy density
dropped off as a−4, the universe entered a matter-dominated era, where the gravita-
tional attraction due to matter caused a period of deceleration. The energy density
due to matter falls as a−3, and at an age of about 9 billion years (a redshift of ∼0.45)
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Fig. 1 The importance of the different components of the energy density of the universe as a
function of the age of the universe and cosmological redshift for a flat universe. The three epochs
discussed in the text are in different shades of gray. The early universe, at z > 3,500, is radiation
dominated. Between 0.45 < z < 3,500 is a matter-dominated era, and at z < 0.45 the universe is
dark energy dominated

the effect of dark energy became dominant over that of gravity (although the effects
of dark energy can be observed well before this redshift). Cosmic acceleration is,
therefore, a relatively recent phenomenon in the expansion history of the universe,
as dark energy was not important in terms of the expansion history at early times.

For the dark energy density term, the “simplest” solution is a cosmological con-
stant, mathematically identical to a vacuum energy with a negative pressure exactly
equal to its energy density unchanging with time: w = −1. This is equivalent to
the � term introduced into GR by Einstein, and for that reason dark energy is often
denoted by that term. In this case the expansion properties of a universe containing
dark energy can be described by three parameters: w, "DE , and "M (one parameter
fewer if the universe is assumed flat and "DE + "M = 1). However, attempts to
calculate the vacuum energy density from the zero-point energies of quantum fields
result in estimates that are many orders of magnitude too large – a challenge to
theories of fundamental physics.

Alternatively to vacuum energy, dark energy may be a scalar energy field of
unknown physical origin which varies over both time and space, either decreasing or
increasing in energy density, the latter leading to a “big rip” eventually tearing apart
all structure. In these cases there is no a priori reason to assume that w is unchanging
with redshift and many reasons to think that it is not.
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The variety of possibilities to explain the cosmic acceleration make compar-
isons between observations and theory challenging. Ideally, the energy density of
dark energy would be experimentally measured smoothly as a function of time,
but in practical terms this is not yet possible. Instead, measuring w(a) requires a
parametrization of its form with a. The simplest is to assume w is constant: experi-
ments then measure some average value 〈w〉. This is particularly valuable for assess-
ing whether cosmic acceleration is consistent with vacuum energy (the cosmological
constant): Is 〈w〉 consistent with −1? However, it is not particularly well motivated
for other models of dark energy where w is expected to change with time.

For these “varying w” models, more complicated parametrizations should be
used. Many simple, but useful, “two-parameter” parametrizations have been sug-
gested with a linear dependence on either a (or redshift, z). The form w(a) = w0 +
wa(1 − a) is often used [15]. Other more general and complicated parametrizations
are clearly possible [e.g., 16], including a principal component approach where w(a)
is measured over discrete intervals [17]. Other model-independent approaches such
as direct reconstruction have also been examined [e.g., 18] and tested against real
data [e.g., 19]. Each approach has advantages and drawbacks. Simpler parametriza-
tions are easier to measure observationally, but harder to compare with models other
than�. More complicated parametrizations clearly tend to result in noisier measure-
ments.

As a final point, it should be noted that this framework is only relevant in the
context of the FLRW metric and solutions to GR. If, instead, cosmic acceleration is
an artifact or an indication of problems with GR, then this concept of w becomes
meaningless. Typical approaches along these lines involve changes to the Friedmann
equation (1) and (2) and the evolution of a(t).

2.2 Distance Determination: The Standard Candle Method

Having established the simple framework necessary to measure dark energy, we now
discuss how this can be achieved using distance estimation techniques. The principle
underlying the use of standard candles to constrain the cosmological parameters
through the observational effects of dark energy is to measure the expansion his-
tory H(a) ≡ ȧ/a and compare with (5). The scale factor a is easy to measure via
an object’s redshift, z. When astronomical objects are observed, the photon wave-
lengths of the radiation that they emit are stretched (“redshifted”) by the expansion
of the universe by a factor 1/a = 1 + z. The rate of change of a, ȧ is more difficult
(time is not a measurable!). Instead, distances to objects as a function of redshift are
used, which are themselves intimately related to the expansion history. The comov-
ing distance d (the distance between two points measured along a path defined at
the present time) to an object at a cosmological redshift z is

d =
∫ z

0

c

H(z′)
dz′ = c

H0

∫ z

0

dz′√
"M (1 + z′)3 +"k (1 + z′)2 +"DE (1 + z′)3(1+w)

,

(7)
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where H(z) is the Hubble parameter from (5), and the equation is written in terms
of z rather than a. Related to this comoving distance are a variety of other distance
definitions depending on the manner in which the distance measure is made. In
particular, for SNe Ia the luminosity distance dL is particularly useful:

dL ≡ d(1 + z) . (8)

This luminosity distance can be independently estimated for an object of known
intrinsic bolometric luminosity L (a standard candle) from an observation of the
bolometric flux density f of the same object quite trivially as

dL =
√

L

4π f
. (9)

The power of distance measures is clear: when L, f , and z are all known from
measurements of a set of astrophysical objects, the only remaining unknowns in
(7), (8), and (9) are the cosmological parameters. Thus, measuring a large set of
astrophysical objects distributed in redshift which are known to be standard can-
dles (such as SNe Ia) can directly measure parameters of interest and trace out
the expansion history via the distance–redshift relation, traditionally on a Hub-
ble diagram. In practice, even a knowledge of the absolute luminosity L is not
required. Instead, relative distances between local and distant standard candles
are sufficient, which has the considerable advantage of removing any dependence
on H0.

The size of the variation in the apparent magnitude1 of a standard candle versus
redshift for different cosmological models is shown in Fig. 2. For a simple mea-
surement of 〈w〉, the “sweetspot” region is around z = 0.6 where the differences
between various models are the largest, and the redshift is still small enough that
high-quality observational data can be obtained. Above z = 1, the relative effect
of a change in w in terms of apparent magnitude difference from that at z = 1 is
very small: at these epochs the universe was decelerating and dark energy had only
a minor influence on its evolution. Clearly, when trying to measure w(a), samples of
standard candles are required across the entire redshift range: the problem is quite
degenerate if only a limited range in redshift can be observed. Figure 2 shows the
variation assuming a simple linear function in w(a).

A closely related technique to standard candles uses a different distance mea-
sure and the concept of “standard rulers,” objects of known dimensions rather than
known luminosity. Such sizes can be compared to the angular diameter distance dA,
the ratio of an object’s (transverse) physical size to its angular size. It is related to the
luminosity distance dL as dA = dL/(1 + z)2 = d/(1 + z) and can probe the expan-
sion history in a very similar way as standard candles. The method of measuring

1 An astronomer’s unit defined as −2.5 log (f )+constant. Note that smaller magnitudes represent
brighter fluxes!
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Fig. 2 The predicted variation in the apparent magnitude of a standard candle versus redshift for
various cosmological models. In the top frame are different models assuming a constant equation
of state, for w = −0.6 to w = −1.4. The current best constraints in 〈w〉 are shown in the gray
shaded area. The upper dashed–dot line shows the constraints including systematic errors and the
dashed line just the statistical error. The bottom frame is the same plot, but assuming a variable w
according to w(a) = w0 + wa(1 − a)
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baryon acoustic oscillations in the galaxy power spectrum, for example, exploits
this idea (see Sect. 3.4). Generically, distance–redshift relations d(z) provide very
strong constraints on dark energy as they directly track the expansion history.

2.3 Type Ia Supernovae: A Brief Primer

One of the best standard candles known is Type Ia Supernovae, SNe Ia. Though
an intimate knowledge of the physics of SNe Ia is not necessary for cosmological
applications, it is extremely helpful in understanding the theoretical reasons as to
why SNe Ia are such good standardized candles and in understanding the types of
systematics that may affect the analysis.

The classification scheme for SNe – Ia, Ib, Ic, II, etc. – is mostly historical acci-
dent. Type I SNe were originally those events which did not show hydrogen in their
spectra; Type II SNe have prominent H lines. The H-free Type I events were further
sub-divided over time: Type Ia show strong Si absorption, Type Ib have no Si but
instead He absorption, and Type Ic have no H, He, or Si. All SN types except SNe Ia
are believed to be the result of the catastrophic core collapse of massive >8–10M�
stars.

SNe Ia have a different physical mechanism, the result of the thermonuclear
destruction of a carbon–oxygen (C–O) white dwarf star residing in a binary system,
i.e., with a nearby companion star. Having gained material from this companion via
accretion, the mass of the white dwarf star becomes greater than that which can be
supported by the electron degeneracy pressure of the white dwarf, at which point the
core temperature of the white dwarf increases and C burning ensues in a sub-sonic
deflagration. This C fusion raises the temperature further, an increase which cannot
be regulated by the white dwarf star, where degeneracy pressure is independent
of the temperature. The burning C fusion flame then accelerates into a supersonic
detonation [20, 21] and a SN is the result.

Many details of the nature of the SN Ia explosion are still unclear, in particular
the exact role of detonation versus deflagration. However, once the explosion has
occurred, the resulting observed light curve – the luminosity evolution of the SN as
a function of time – is broadly driven by relatively well-understood nuclear physics.
The light curve is powered by the radioactive decay of 56Ni, produced during the
second or so of the SN explosion, into 56Co, with a half-life of ∼6 days, and then by
56Co into 56Fe with a half-life of ∼77 days [e.g., 22], a process that can be confirmed
observationally using line ratios in the late-time SN Ia spectra [23]. This radioactive
decay deposits energetic gamma rays into the SN ejecta, which is heated and radiates
thermally to produce the light curve that we observe. The mass of 56Ni produced,
MNi, is therefore the primary determinant of the peak brightness of the SN event.
Observations indicate that for normal objects, MNi span the range 0.4–0.9M�, with
a typical value of 0.6M�. Photometrically, SNe Ia rise to maximum light in a period
of approximately 20 days, followed by a rapid decline of about three magnitudes
in the first month following maximum light and approximately one magnitude per
month thereafter.
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Though this consensus of an exploding near-Chandrasekhar mass C–O white
dwarf star residing in a binary system is seldom seriously debated, the exact con-
figuration of the progenitor system is more controversial. The companion star to the
progenitor white dwarf could be a second white dwarf star (“double degenerate”) or
a main-sequence or giant star (“single degenerate”). Evidence from observations or
theory for and against these two possibilities is ambiguous. These uncertainties are
some of the biggest drawbacks of the SN Ia technique – in the absence of any theo-
retical guidance, it must be assumed that any variation can be empirically controlled
(see Sect. 3).

Theoretical modeling of a SN Ia explosion is a complex problem, requiring the
interior physics of the exploding white dwarf star to be related to what is finally
observed: the light curves and spectra. This must be achieved by radiative transfer
calculations, an unsolved problem in many astrophysical applications; SNe Ia are
no exception. Unlike most astrophysical objects, SNe Ia contain no hydrogen, and
therefore the opacities are always dominated by electron scattering (in the optical)
or by a vast number of atomic lines (in the ultraviolet) making detailed predictions
more challenging. The radiation transport in SNe Ia is non-local and the methods
used in models of stellar atmospheres need refinement. The deposition of energy
from the light curve and the explosion itself are also likely to be non-symmetrical.
Given these complications, much of our understanding of SNe Ia is currently obser-
vationally motivated, though recent theoretical progress is now starting to provide
theoretical insight [24].

2.4 Discovery of the Accelerating Universe

Type Ia Supernovae (SNe Ia) are apparently ideal as standard candles – they are
bright, uniform, and possess a convenient approximately month-long duration dur-
ing which they can be found and observed. This makes them extremely observa-
tionally attractive and practical as calibrateable standard candles, a realization that
goes back many decades [25]. Yet, for many years following the realization of
this potential, finding distant events in the numbers required for meaningful con-
straints was a considerable logistical and technological challenge. Years of search-
ing were required to discover only a handful of distant SNe Ia [e.g., 26, 27]. The
field only came of age through improving technology: the advent of large for-
mat CCD cameras on 4-m class telescopes, capable of efficiently scanning large
areas of sky, and the simultaneous development of sophisticated image processing
routines and powerful computers capable of rapidly analyzing the volume of data
produced.

The substantial search effort culminated in the late 1990s when two indepen-
dent surveys for distant SNe Ia [27, 28] made the same remarkable discovery: the
high-redshift SNe Ia appeared about 40% fainter – or equivalently more distant –
than expected in a flat, matter-dominated universe [29, 30, see Fig. 3]. This indi-
cated that the expansion of the universe had been speeding up over the last ∼5–7
Gyr, providing compelling direct evidence for an accelerating universe. When these
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Fig. 3 The original “discovery data” which directly indicated the accelerating universe. This is
the original Type Ia Supernovae Hubble diagram compiled from data taken by the Supernova
Cosmology Project [30] and the High-z Supernova Search Team [29]. The lower panel shows
the residuals in the distance modulus relative to an open universe. The SNe Ia lie above and are
inconsistent with (fainter than) the non-accelerating universe lines. Reprinted, with permission,
from the Annual Review of Astronomy and Astrophysics, Volume 46, c© 2008 by Annual Reviews
www.annualreviews.org

observations were combined with analyses of the cosmic microwave background, a
consistent picture emerged of a spatially flat universe dominated by a “dark energy”
responsible for ∼70–75% of its energy, opposing the slowing effect of gravity and
accelerating the universe’s rate of expansion.

Since these original observations, the number of cosmologically useful SNe has
dramatically increased. The next section discusses how SNe are typically used in
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a cosmological application and shows the latest results from these next-generation
samples.

3 Cosmological Applications

Despite the claim that SNe Ia are standard candles, this is in fact a hugely over-
simplified statement. SNe Ia possess approximately a factor of two variation in their
“raw” peak brightnesses – limiting their usefulness in cosmological applications.
The key astrophysical development in the cosmological use of SNe Ia was the real-
ization that their luminosities could be further homogenized, or standardized, using
simple empirical techniques and correlations between SN luminosity and other vari-
ables. As such, SNe Ia are standardizable, rather than standard, candles. There are
two relationships commonly used to standardize SN Ia luminosities, discussed in
the next section.

3.1 Standardization

The most well-known relationship is the classic light-curve width–luminosity rela-
tionship (WLR), the “Phillips relation” [31]. Raw SN Ia peak luminosities are
strongly correlated with the width of the SN light curve – intrinsically brighter
SNe Ia typically have wider (i.e., slower declining) light curves. Equivalently, SN Ia
light curves can be described using a “stretch” parameter s [27], which stretches or
contracts a template SN light curve to match an observed light curve: high-stretch
SNe have wider and brighter light curves than average, and low-stretch SNe have
narrower and fainter light curves.

The physical origin of this relationship is not universally agreed upon, but must
be related to the mass of 56Ni, MNi, synthesized in the SN Ia explosion. Clearly,
if more 56Ni is synthesized, the SN will have an increased peak luminosity, and
therefore a higher temperature. As the SN ejecta remain optically thick for several
months following the SN explosion, the width of the light curve is therefore related
to the timescale for photons to escape from the ejecta by diffusion. Therefore, the
WLR could be explained if brighter SNe Ia have higher effective opacities, κ , and
hence a longer diffusion time, which scales as k1/2, meaning the photons take longer
to escape and a broader light curve is the result.

Several related physical mechanisms have been postulated to explain the WLR
[for an excellent summary, see 32]. The first is a simple temperature effect [e.g.,
33]: SNe Ia with a larger MNi have higher temperatures, leading to more radiation at
shorter wavelengths, in the ultraviolet rather than the optical. As line opacity is sub-
stantially higher in the blue, κ should increase with an increasing MNi. The second
mechanism is related to ionization state [e.g., 34, 35]: the diffusion time becomes
shorter when ultraviolet photons are able to fluoresce to longer wavelengths and
escape, via interactions with Fe-group elements. This fluorescence is more efficient
in singly ionized species, which are more common in cooler (smaller MNi) SNe.
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A third mechanism is simply related to the ejecta composition [36]: A larger MNi
implies more Fe-group elements and therefore larger opacities.

More recent work [32] suggests that while present, these three effects are of
secondary importance, and the WLR is instead driven primarily by the blanketing
from Fe II/Co II lines which appear earlier in cooler SNe with smaller MNi, and
therefore produce a faster decline rate. Contemporary models are now capable of
qualitatively reproducing the observational WLR [32, 24].

The second, and less well-understood, relationship is between the SN Ia lumi-
nosity and the SN color – intrinsically brighter SNe Ia typically have a bluer optical
color than their fainter counterparts [e.g., 37]. Here, color is measured as the differ-
ence in magnitudes (or ratio of fluxes) in the B2 and V bands. Naively, this is exactly
the sense that would be expected from the dimming effect of dust – dust along the
line of sight to distant SN events should both redden and dim their spectral energy
distributions (SEDs). However, there is a major complicating factor. If the dust in
distant galaxies which host SNe Ia is assumed to be the same as that present in the
Milky Way, the result should be a relationship between SN color and luminosity
much steeper than that observed. Multiple studies show that the Milky Way value
for the ratio of total to selective extinction in the rest-frame B-band (RB) of 4.1 is
not consistent with that found when analyzing SNe Ia, with all evidence pointing to
an effective RB < 4.1: the color corrections on SN Ia are incompatible with known
galactic dust properties [e.g., 39–41].

This suggests one of three possibilities. The first is that dust in galaxies which
host SNe Ia is radically different to dust in the Milky Way. However, observations
of quasars behind foreground galaxies can be used to probe extinction laws in other
galaxies and show little evidence for this effect [42]. A second possibility is that the
circumstellar dust surrounding the SN Ia progenitor white dwarf may play an impor-
tant role [43]. Finally, there may be an additional intrinsic relationship between SN
color and luminosity that does not correlate with light-curve shape. Interestingly,
recent SN simulations do show evidence for intrinsic color–luminosity relationships
in the same sense as that observed in the data [24].

So far, stretch and color are the only two photometric parameters that have been
found to correlate with SN Ia luminosity, and nearly all cosmological analyses
exploit these relationships, albeit in varying forms. The two relationships are shown
in Figs. 4 and 5 using a sample of modern SN Ia data. These relationships can be
applied to observed peak magnitudes m and take the form

mcorr = m + α (s − 1)− βC , (10)

where the stretch–luminosity is parametrized by α, and the color–luminosity rela-
tionship is parametrized by β. Applying these, or similar, calibrating relationships

2 The B-band is an optical “filter” centered at ∼450 nm and with a full width of ∼100 nm. The
V-band is redder at ∼550 nm. See [38] for typical bandpasses assumed for this and other standard
optical filters.
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Fig. 4 The relationship between SN Ia luminosity and light-curve stretch. The upper panel shows
the relationship, while the lower panel shows the trend between luminosity stretch after the best-fit
relationship (solid line in upper panel) has been removed from the data. The open circles show
data at low redshift, and the filled circles show data at high redshift

to SN Ia measurements provides distance estimates precise to ∼6–7% or 0.12–0.14
magnitudes, using various independent techniques [44–46].

3.2 Light-curve fitting

In nature, SNe Ia do not come neatly packaged in the form required for cosmological
analyses. SNe are not usually observed exactly at maximum light, where they are
best calibrated as standard candles, and the redshifting of their SEDs requires their
observed fluxes be k-corrected back to the rest frame before they can be used in
a cosmological context. Therefore, light-curve fitting is a critical component of a



74 M. Sullivan

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

m
B
 −

 m
Bm

od
 (

s,
 n

o 
C

 ) Fainter   B
righter

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

SN Color (C         )

−1.0

−0.5

0.0

0.5

m
B
 −

 m
Bm

od
 (

s,
C

)
Fainter   B

righter

Fig. 5 As Fig. 4, but for SN C instead of stretch

cosmological analysis. This requires modeling of the SN light curves and spectra,
and the importance of light curve fitting can be seen by considering the large number
of methods described in the literature: a partial sample includes MLCS/MLCS2k2
[47, 44], stretch [27, 48, 49], Δm15 [50, 51], BATM [52], CMAGIC [53], SALT2
[45], and SiFTO [46]. These approaches vary considerably. For some SNe they pro-
duce very different results, but when a reasonably large sample is considered, the
overall results are quite similar [54, 46].

The distinction between light-curve fitters and distance estimators is often not
made explicit in the literature. The majority of the published packages are light-
curve fitters, with the exception of MLCS/MLCS2k2 and BATM. A light-curve fitter
attempts to find the best fit to a given set of observed SN Ia photometry. The param-
eters of this fit are then usually converted into a distance estimate, but technically
this step is not part of the light-curve fit. A distance estimator attempts to find the
distance directly rather than trying to obtain the best fit to the data. In both cases,
only a relative distance is required.
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The advantage of a distance estimator is that the output is what is desired for most
applications of SN Ia data. Therefore, the products of such an analysis are simpler to
use, and in principle such an approach may do a better job extracting the information
directly relevant to this purpose. Their primary disadvantage is that, by their nature,
distance estimators must use distance information in their training, usually in the
form of residuals from the best-fit Hubble relation. This makes it difficult to include
very low-redshift SNe which are not in the smooth Hubble flow and high-redshift
data since here the residuals are strongly dependent on the cosmological model.
To use such data properly, it is necessary to re-train the model from scratch for
every value of the cosmological parameters one evaluates, which will be extremely
computationally expensive. Therefore, in practice, light-curve fitters have access to a
larger data set for training purposes. Neither approach is a priori obviously superior,
though the advantages of incorporating data from a range of redshifts in the training
does make light-curve fitters compelling. In particular, light-curve fitters are able to
make use of the blue/UV part of the SN Ia SED by using high-redshift SN data,
where the rest-frame UV is redshifted into optical bandpasses. Using this data in
the model training can allow a drastic improvement in the color measurement for
the most distant SN events. Depending on the data set, both light-curve fitters and
distance estimators can be used with a typical precision of ∼6–10%.

The goal of both light-curve fitters and distance estimators is to reduce each
SN Ia to a set of parameters that can then be used in cosmological fits. Here, we
concentrate on light-curve fitters, though the same basic principles apply to distance
estimators. A light-curve fitter such as SALT2 or SiFTO estimates, for each SN, its
peak magnitude in some rest-frame passband, a measure of its light-curve shape and
a measure of its color. Here we use the peak magnitude in the rest-frame B-band,
mB, the stretch s, and the B−V color at the time of maximum light in the rest-frame
B-band, C. In principle, any rest-frame passband and color could be used; in practice
the chosen passband should always correspond to a part of the SN Ia SED that is
directly measured at all redshifts under study, which currently makes the B-band the
most practical.

An integral part of any light-curve fitter (or distance estimator) is the k-correction.
This converts a flux in an observed passband (e.g., r) into one in a rest-frame pass-
band, in this case one common to all SNe (e.g., B). Given an SED model of the SN Ia
φSN , parametrized by wavelength λ and epoch t, the rest-frame apparent magnitude
m of a SN in filter B with a total system response TB is given by

mB = −2.5 log10

[∫
φSN (λ,t)TB (λ) λDλ∫
φREF (λ)TB (λ) λDλ

]
. (11)

where φREF is the SED of some known and calibrated photometric reference SED,
which places the measurement onto a known photometric system. This reference
SED is classically chosen to be the A0V star, α-Lyrae or Vega.

In practice, experimentally Vega is a poor choice of flux reference standard – at
an apparent magnitude of zero, it is far too bright to be observed by most telescopes,
saturating CCD detectors. Calibration is, therefore, performed using observations of
secondary stars that have previously been to a particular system, e.g., the Landolt
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system [55], close to a Vega-based system. Unfortunately, Vega is quite a blue star
and is unrepresentative of most of the secondary stars that have been chosen for
observational calibration purposes. Modern precision calibration often, therefore,
makes use of alternative flux reference SEDs to Vega, such as that of BD 17◦ 4708,
which are fainter, have been calibrated to a higher precision, and have colors more
similar to that of the secondary standards.

For the same SN observed in a passband r at a heliocentric redshift zhel, the
observed apparent magnitude mr is

mr = −2.5 log10

[
1

1 + zhel

∫
φSN (λ,t)Tr (λ/ (1 + zhel)) λDλ∫

φREF (λ)Tr (λ) λDλ

]
. (12)

The k-correction is then defined as the difference between the two, namely

kc = mr − mB . (13)

Thus, a conversion between observed and rest-frame magnitudes can be achieved.
These equations have two important implications. First, the SED of a typical

SN Ia must be well known, over the entire light curve or phase for which there are
photometric observations. SNe Ia demonstrate significant spectral evolution with
time, and thus many observed SN Ia spectra are required to construct a spectral
template suitable for light-curve fitting. Considerable work over the last decade has
ensured that these templates are now generally available [56, 57]. The second impli-
cation is that a well-measured photometric reference SED must exist, for which
magnitudes in a given passband must be known (see discussion above), allowing
synthetic photometry to be performed for comparison to observed measures. Any
uncertainty in which this SED is calibrated will directly impact as a systematic in
the subsequent use of the peak magnitudes (see Sect. 4.1).

The light-curve fit is then a simple χ2 minimization between the observations
and synthetic magnitudes calculated according to (12), producing a peak magnitude,
stretch, and color (together with their errors and covariances) which can be carried
forward, for each event, to the cosmological parameter estimation stage, described
in the next section.

3.3 Cosmological Parameter Estimation

A typical SN Ia cosmological fit minimizes an equation of the form

χ2 =
∑

N

(
mB − mmod

B (z;α,β,MB;"M,〈w〉,...))2
σ 2

stat + σ 2
int

, (14)

where we only include statistical errors for clarity. σstat is the total identified sta-
tistical error and includes uncertainties in both mB and mmod

B , σint parametrizes the
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intrinsic dispersion of each SN (see below), and the sum is over the N SNe Ia enter-
ing the fit. mB are the maximum-light SN rest-frame B-band apparent magnitudes
output from the light-curve fitter, and mmod

B are the model B-band magnitudes for a
SN at a redshift z given by

mmod
B = 5 log10 DL (z)− α (s − 1)+ βC +MB , (15)

where DL is the c/H0 reduced luminosity distance dL of (8). The c/H0 factor in dL is
absorbed into MB; c is the speed of light. Explicitly, MB = MB + 5 log10 (c/H0)+
25, where MB is the absolute magnitude of a SN Ia in the rest-frame B-band. Nei-
ther H0 nor MB need be assumed during the fitting process. The α and β nuisance
parameters describe the stretch and color–luminosity relationships (Figs. 4 and 5) as
described in (10). Any linear variation between SN color and stretch is also allowed
for and is absorbed into the α term. The σstat term includes identified statistical
errors affecting each SN. This typically comprises the statistical error in mB from
the light-curve fit, the statistical error in mmod

B (essentially ασs and βσC), a peculiar
velocity error, the measurement error in each SN redshift projected into magnitude
space, the uncertainty from Milky Way extinction corrections applied to mB, and
the covariances between s, C, and mB, which are correlated for an individual SN.
σstat must be updated during the fitting process as α and β nuisance parameters are
altered.

The σint term parametrizes the extra dispersion in mB above and beyond the statis-
tical and model uncertainties required to give a reduced χ2 of one in the cosmolog-
ical fits [e.g., 28]. This “intrinsic” dispersion could arise from unidentified sources
of error in the analysis, but more likely is due to the imperfect nature of SNe Ia as
standard candles – the α and β corrections do not completely eliminate the scatter
in the SN Ia magnitudes. As σint may also include contributions from unidentified
experimental errors, there is no a priori reason for its value to be the same from SN
sample to SN sample.

The best-fitting cosmological parameters can then be found by forming a grid
over the parameters of interest and computing the χ2 of (14) at every point, con-

verting into a probability via P ∝ exp
(
− 1

2χ
2
)

, with the proportionality set by

normalizing over the grid. The “nuisance parameters” α, β, and MB are marginal-
ized over when generating confidence contours in the parameters of interest. Note
that MB can be marginalized analytically [e.g., 58], but this is not possible for α
and β (doing so can bias the values found). These three parameters should not be
assumed or fixed in the fit, as the uncertainties in their values need to be propagated.

3.4 Complementarity with Other Probes

Several of the cosmological parameters can, in principle, enter the χ2 calculation of
(14): the matter density "M, the energy density of dark energy "DE and its equa-
tion of state w, and potentially the amount of curvature in the universe "k. Other
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complementary observations are, therefore, useful in conjunction with SNe Ia which
place constraints, or priors, on "M (e.g., observations of large-scale structure) or "k

(e.g., observations of the cosmic microwave background). At the time of writing, the
techniques in common use and therefore most useful are observations of the cosmic
microwave background and measurement of baryon acoustic oscillations. We briefly
discuss these in turn.

3.4.1 The Cosmic Microwave Background

The cosmic microwave background (CMB) is a nearly isotropic background radia-
tion discovered in the 1960s [59] with a near-perfect black body spectrum, peaking
in the radio with a temperature of � 2.7 K. The radiation originates from the early
universe when the universe was much hotter and denser, and almost entirely ion-
ized – photons and baryons were tightly coupled to each other, opaque to radiation.
Some 370,000 years after the Big Bang at z ∼ 1,100, the universe had expanded
sufficiently and adiabatically cooled to a temperature near 3,000 K where electrons
and protons are able to (re)combine to form neutral hydrogen (“The epoch of recom-
bination”), decoupling the photons and baryons. The photons, free from the baryons,
then propagate through the universe and appear as the CMB. As the universe has
expanded by a factor of ∼1,100 since the epoch of recombination when the CMB
was emitted, CMB photons appear considerably less energetic, redshifted into the
microwave spectral region.

The CMB is extremely isotropic, but there are small temperature fluctuations
of the order of 1/1000th of 1%. Before recombination, any initial density fluctu-
ations, or perturbations, excite gravity-driven sound wave or acoustic oscillations
in the relativistic-ionized plasma of the early universe. The matter and radiation
are attracted, by gravity, into these regions of high density. A gravitational collapse
then follows until photon pressure support becomes sufficient to halt the collapse,
causing the overdensity to rebound because of the finite pressure of the gas, gener-
ating acoustic waves. These two effects compete to create oscillating density per-
turbations, driven by gravity and countered by photon pressure. At recombination
as the photons are decoupled, those photons originating in overdense regions will
appear hotter than average, while those from less-dense regions will appear colder.
These small density fluctuations in the universe at that time are, therefore, imprinted
directly onto the photons of the CMB, appearing to us as small temperature fluctu-
ations or a temperature anisotropy.

These temperature differences can be “routinely” measured from the CMB power
spectrum, the fluctuation in the CMB temperature (anisotropy) as a function of
angular scale on the sky. This angular power spectrum of the CMB temperature
anisotropy [60, 61, Fig. 6] series of peaks and troughs arises from the gravity-driven
acoustic oscillations of the coupled photon–baryon fluid in this early universe. In
particular, a strong peak is seen in the power spectrum on an angular scale corre-
sponding to the sound horizon (rs, the maximum distance sound waves can travel
before recombination), where a perturbation crossed this horizon at exactly the time
of recombination – the scale that was first feeling the causal effects of gravity at that
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Fig. 6 The temperature anisotropy angular power spectrum from the WMAP-5 data [61]. The
small gray dots represent the unbinned data, and the solid points the binned data with 1 − σ error
bars. The overplotted line is the best-fit �CDM cosmological model. From Dunkley et al. [61],
Fig. 2. Reproduced by permission of the AAS

epoch. Smaller scales had been oscillating for longer and manifest as weaker peaks
in the angular power spectrum.

A wealth of cosmological information is contained in positions and heights of
the series of peaks and troughs [e.g., 62, 63]. The first peak, corresponding to the
physical length of the sound horizon at recombination, depends on the curvature
of space. If space is positively curved, then this sound horizon scale rs will appear
larger on the sky than in a flat universe; the opposite is true if space is negatively
curved. The third peak can be used to help constrain "M. However, the CMB by
itself provides little direct constraint on dark energy – its role is a significant contri-
bution in constraining "k and "M (as well as the size of the sound horizon) for use
in conjunction with other probes.

3.4.2 Baryon Acoustic Oscillations

Baryon acoustic oscillations (BAO) are closely related to the oscillations in the
CMB angular power spectrum (Fig. 6). Following recombination, the immediate
loss of photon pressure led to a consequent reduction in the effective sound speed
of the baryons. The acoustic waves excited by the gravitationally unstable density
fluctuations became “frozen” into the matter distribution with a characteristic size
equal to their total propagation distance – the sound horizon scale rs. This rs can
be seen in the power spectrum of the CMB temperature anisotropy, but additionally
these sound waves remain “imprinted” in the baryon distribution and, through grav-
itational interactions, in the dark matter distribution as well. As galaxies (roughly)
trace the dark matter distribution, observations of galaxy clustering can uncover this
characteristic scale. Making this observation at different redshifts, therefore, allows
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this scale rs to be used as a standard ruler (Sect. 2.2) – just as SNe Ia trace d(z) using
dL(z), BAO measure dA(z) [e.g., 64, 65].

Power spectra analyses of galaxy redshift surveys contain the acoustic oscilla-
tions and are used to measure the cosmological parameters: the conversion of red-
shifts data into real space requires a cosmology to be assumed, and an incorrect
choice will distort the power spectrum with the acoustic peaks appearing in the
incorrect places. Observations of the CMB play a critical role here, as this same
characteristic scale can be calibrated accurately by observations of anisotropy in the
CMB imprinted at the same epoch. This observed, calibrated scale can, therefore, be
used as a geometric probe of the expansion history – a measurement at low redshift
provides an accurate measurement of the distance ratio between that redshift and
z � 1,100. Spectroscopic redshift BAO surveys can also measure the change of
this characteristic scale radially along the line of sight as well as in the transverse
direction, in effect a direct measurement of H(z).

Measurements of the power spectra of galaxies are challenging. The oscillations
appear as a series of bumps with an amplitude of only about 10%. This is substan-
tially more subtle than the acoustic oscillations observed in the power spectrum of
the CMB anisotropies because the impact of baryons on the far larger dark mat-
ter component is relatively small. Hence, enormous galaxy spectroscopic redshift
surveys covering substantial volumes are required to make a constraining measure-
ment. Photometric redshift surveys could, in principle, also be used and cheaply add
hundreds of thousands of galaxies, this comes at the expense of a measurement of
H(z) and reduces the ability to measure dA(z) due to systematic errors and the higher
noise of photometric redshifts over spectroscopic measures.

Although using BAOs to measure dark energy with precision requires enormous
survey volumes and millions of galaxies, numerical simulations suggest that sys-
tematic uncertainties associated with BAO measurements are small – this method
is currently believed to be (relatively) unaffected by systematic errors. The physics
underlying the standard ruler can be understood from first principles. The main sys-
tematic uncertainties that are present in any interpretation of BAO measurements
are the effects of nonlinear gravitational evolution and scale-dependent differences
between the clustering of galaxies and of dark matter (known as bias). For spectro-
scopic redshift surveys, redshift distortions of the clustering can also shift the BAO
features. However, studies suggest the resulting shift of the scale of the BAO peak
in the galaxy power spectrum is 1% or less [e.g., 66].

3.5 Latest Cosmological Constraints

As might be expected, the quantity and quality of SN Ia data have dramatically
improved since the original surveys. Dedicated allocations of observing time on
4-m class telescopes, such as the Canada–France–Hawaii Telescope (CFHT) and
the Cerro Tololo Inter-American Observatory (CTIO) Blanco telescope, have pro-
vided homogeneous multi-color light curves of more than 500 distant SN Ia events
over z = 0.3−1.0. The principle advances in this redshift range have come from
the Supernova Legacy Survey [SNLS; 39] and ESSENCE [54]. At higher redshifts,
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above z = 1, the Hubble Space Telescope has been used to locate ∼25 SN Ia events
probing the expected epoch of deceleration [67, 68]. These latter observations also
rule out the invocation of “gray dust” to explain the SN data in place of acceleration
(see Sect. 4.1).

Lower redshift SN Ia samples are also important – and often neglected. The
absolute luminosity of a SN Ia is not known precisely as the distance must be known
independent of H0 and so cannot be used a priori. The SN Ia method instead mea-
sures relative distances. Sets of local SNe at 0.015 < z < 0.10, where the effect of
varying the cosmological parameters is small, essentially anchor the analyses and
allow relative distances to the more distant events to be measured. (At redshifts
lower than � 0.015, the peculiar velocities of the SN Ia host galaxies, or bulk
flows, can make the measurement both noisier and biased if not corrected for – see
Sect. 4.1). The Sloan Digital Sky Survey (SDSS) SN survey is set to fill in the region
from 0.1 < z < 0.3, and many hundreds of lower redshift SNe Ia in the nearby
Hubble flow (0.03 < z < 0.1) are either available or upcoming [e.g., 69–73]. The
result of these new SN Ia data sets is a comprehensive set of well-calibrated events
uniformly distributed from the local universe out to z > 1.

The current status of cosmological measurements of dark energy can be seen
in Fig. 7 [74]. This uses around 500 SN Ia distributed in redshift from different
SN Ia surveys, observations of the CMB from the WMAP-5 data release [61], and
BAO measurements from the SDSS [75]. Using this combination of techniques, the
latest results show that 〈w〉 is consistent with −1 with a sub-5% statistical precision.
Systematics increase this total error to about 7% (see Sect. 4.2), though it should be
cautioned that only systematics from the SN Ia analysis are included in this error
estimate. Of particular note is that, at the present time, the BAO measurements pro-
vide an almost orthogonal constraint to SNe Ia in "M/〈w〉 space (Fig. 7). Without

Fig. 7 Latest constraints on
the nature of dark energy
from SNe Ia and other
techniques. The contours
show the joint 1σ and 2σ
constraints in 〈w〉 and "M
from SN Ia, baryon acoustic
oscillations [75], and the
cosmic microwave
background WMAP-5 results
[76]. A flat universe is
assumed. The contours show
statistical errors only and do
not include systematic
uncertainties
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either the SN Ia constraints or the BAO, our measurement of the equation of state of
dark energy would be considerably weakened. This is currently generically true –
no single technique can yet place tight constraints on dark energy in isolation.

In the next section, we review the current systematic uncertainties which affect
the SN Ia measurement and how these might be improved and reduced with upcom-
ing surveys.

4 Systematics in SNe Ia

Though SNe Ia provided the first direct evidence for dark energy, and still provide
the most mature and constraining measurements, there are a number of potential
drawbacks to the technique – the apparently simple standard candle concept has
several non-apparent difficulties. These difficulties are fundamentally related to
the precision required (Fig. 2): detecting departures in dark energy from w = −1
requires an extremely sensitive experiment. A 10% difference in w from −1 is
equivalent to a change in SN Ia brightness at z = 0.6 of only 0.04 magni-
tudes, or <4% in flux units, a level of precision perhaps not routinely achieved
in astronomy. Therefore, systematic effects must be tightly controlled in any SN Ia
experiment.

We discuss two broad classes of systematic error in this section. The first are
identified systematics, those which are tractable, can be modeled, and the effects
of which directly included in the cosmological fits. The second are the putative
and more nebulous astrophysical systematics, related to uncertain configuration and
physics of the SN Ia progenitor and explosion.

4.1 Identified Systematics

There are many different sources of identified systematic error in SN Ia experiments.
The following is a brief summary of the most important at the time of writing. A
full discussion can be found in [77].

Photometric calibration The required calibration of the SN Ia flux data onto a stan-
dard photometric system at a 1% accuracy is a challenging task [78] and remains
the major source of systematic uncertainty in SN Ia experiments. This calibration
must be controlled to the same level in both the high-redshift and low-redshift SN Ia
samples. Calibration can be considered to consist of two steps: first, the observa-
tions must be standardized onto some photometric system by comparison to stars
of known magnitude or flux [55]. Second, it is necessary to convert from this stan-
dard system into (relative) fluxes in order to compare SNe at different redshifts
(and therefore observed at different parts of their SED). The first set is usually
referred to as zero-point uncertainties the second as flux calibration uncertainties,
which includes both bandpass uncertainties and uncertainties in the magnitudes of
the chosen flux reference in those same bandpasses (see (11) and (12)).
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Large, single instrument SN Ia surveys, such as those operating at high redshift,
have a clear advantage here: they can devote considerably more effort to internal cal-
ibration than is practical for small surveys or those which make use of many instru-
ments. In this regard, the zero-point uncertainty in calibrating to a standard system
is usually quite small. Flux calibration uncertainties are more significant. In exist-
ing low-redshift surveys, the exact filter bandpasses are often not well measured.
Further, calibrating low-redshift and high-redshift SN data onto the same system
is a challenge as the observations are made in different filter systems (low-redshift
data tend to be observed in the UBVRI photometric system, while high-redshift
data are in the griz system). There are few standard stars with calibrated magni-
tudes in both systems, making this step one of the most uncertain in the analysis
chain.

The color relation of SNe Ia Ideally, all of the measured colors for every SN Ia
would be directly used in the distance estimate. In practice, this is difficult as the
same rest-frame colors are not measured for all SNe even within the same survey.
Therefore, most light-curve fitters make use of empirical relations between different
wavelengths to build a single-color parameter for each SN (C). These color relations
have statistical uncertainties which are included in the final error budget. A partic-
ularly difficult issue relates to the fact that no SN color model perfectly reproduces
the observed colors. That is, there is additional scatter in the relation between mea-
surements at different wavelengths that is not explained by the measurement errors,
and this intrinsic scatter must be accounted for in the color relations. The error on
this scatter is very challenging to constrain and depends strongly on the functional
form assumed.

SN Ia model uncertainties Even if all of the other systematics were absent there
would still be some uncertainty in the SN Ia model used in the light-curve fitters as
it is derived, or trained, from a limited set of data. This uncertainty takes a number of
forms, such as errors in the SED (affecting the k-corrections), and errors in the rela-
tions that are used to combine different rest-frame colors into the color parameter,
C. Encouragingly, in implementations of the light-curve fitters SALT2 and SiFTO
where the fitters use the same incidental settings (such as the filter response func-
tions), the resulting fits on the same data are very similar [46]. Nonetheless, some
differences do remain, and these should be included as a systematic error in the
cosmological analysis.

Comparisons with distance estimators such as MLCS2k2 [44] are more prob-
lematic (see Sect. 3.2). Unlike SALT2 or SiFTO, MLCS2k2 explicitly attempts to
separate intrinsic and extrinsic SN colors from photometric data, assuming that the
extrinsic colors arise purely from dust, and that the remaining intrinsic color not
related to the shape of the light curve does not affect the SN luminosity. SiFTO
and SALT2 do not make this distinction. The merits of the two approaches depend
critically on how well this separation can be performed and how well SN intrinsic
color can be predicted by the light-curve shape. The former depends on accurate
models of the distribution of extinction with redshift and how they combine with
selection effects [54]. If these two conditions are met, then MLCS2k2, by incorpo-
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rating additional information beyond SN photometry, may be able to give tighter
statistical constraints on SN relative distances. A test of how well this procedure
works is to check if the MLCS2k2 prediction of AV after separation correlates with
the residual from the Hubble diagram. Currently available versions fail this test [40],
which indicates that, even if the second assumption is correct, the separation is not
working correctly. While we fully expect that this situation will be addressed, espe-
cially in light of the improved low-redshift data sets that should soon be available,
this means that comparing MLCS2k2 fits to SiFTO and SALT2 at the current time
is not a useful way to study systematic errors.

Contamination by non-SN Ia Most SNe Ia used in cosmological analyses are spec-
troscopically typed, giving both a redshift and a firm indication that the object under
study is a SN Ia and not some other transient event. Therefore, contamination by
non-SNe Ia is expected to be minimal in most analyses. However, some is inevitable,
particularly at the highest redshifts where the signal to noise of the confirmation
spectra can be quite low. The principal contaminants are expected to be bright
SNe Ib and Ic, the population demographics of which we know relatively little,
which makes estimating the effects of any contamination difficult and imperfect.
Reference [79] takes the approach of and modeling the population of bright SNe
Ib and Ic as a Gaussian distribution in magnitude space with some width σbc and a
mean offset of Δbc from the SN Ia population. For current surveys, the effects on the
cosmology are smaller than can be accurately measured, though any bias increases
strongly with redshift where observations are larger and the fraction of SNe with
more ambiguous spectra with CI 3 increases strongly. This may not be the case in
future surveys that, due to their size, may have to rely on photometric rather than
spectroscopic typing. Such efforts will require a much more precise understanding
of the properties and demographics of SN Ib and Ic if they are to compete with
spectroscopic surveys.

Malmquist bias Selection effects in SN Ia surveys, known collectively as “Malm-
quist bias,” can also act as a systematic effect and must be included. At higher
redshift, brighter (therefore bluer and higher stretch) SNe Ia will be preferen-
tially discovered and followed spectroscopically, which would lead to a system-
atic brightening in the Hubble diagram residuals if left uncorrected. Fortunately,
modern surveys such as SNLS can be simulated and the magnitude of this effect
estimated. Corrections can then be applied directly to the SN Ia magnitudes and the
uncertainties in these corrections included as a systematic error. Such simulations
are substantially harder to perform on lower redshift surveys, which are not blind,
rolling searches as at high-redshift, but instead tend to target known galaxies. This
will be rectified in the next few years as a new generation of rolling low-redshift SN
searches get underway.

Peculiar velocities The redshift lever arm needed to accurately measure the cosmic
expansion requires the use of a local sample, and coherent large-scale local (z < 0.1)
peculiar velocities add additional uncertainty to the Hubble diagram and hence to the
derived cosmological parameters. It is possible to use local data to measure the local
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velocity field and hence limit the impact on the derived cosmological parameters
by “correcting” the measured redshifts of the local SN Ia host galaxies [80, 81].
Uncertainties in this correction are propagated through the cosmological fits as a
systematic uncertainty.

Hubble bubble A related issue is the possibility of a monopole term in the local
expansion — a so-called Hubble bubble. Recently, [44] found evidence for such an
effect using light-curve fits to nearby SNe Ia. As discussed in [40], this is related
to the interpretation of SN colors and the assumption that the relation between SN
luminosity and color is well represented by a Milky Way dust law – the same issue is
discussed in Sect. 3. The result is that when the same data is analyzed in a framework
in which the relation between SN color and luminosity is determined from SN data,
no evidence for a Hubble Bubble is seen.

Milky Way extinction correction SN Ia peak magnitudes are corrected for Milky
Way extinction using the maps of [82]. In addition to the random error in their
E(B−V) values, there is a correlated uncertainty in the conversion from dust column
density to extinction of 10%. This affects the nearby and distant SN differently
because distant SN searches usually target regions of low galactic extinction and
observe at longer wavelengths.

Gravitational lensing Gravitational lensing is expected to cause increased disper-
sion in the Hubble diagram of high-redshift SNe. While the mean amount of mag-
nification is unity, when there are a small number of SN in each redshift bin, the
asymmetric nature of the lensing probability, coupled with selection effects, can
produce biases in the peak luminosities. For surveys over very small areas, lensing
will also induce correlations between different SNe. These issues are studied in [83],
who find that for current surveys, the number of SNe in each redshift range, and the
survey area are large enough that these issues are minor. Lensing does induce addi-
tional, almost uncorrelated, scatter in the peak magnitudes, which can be included
in the statistical error budget.

Gray dust Gray dust is a concept originally introduced to explain the faintness of
the high-redshift SNe Ia when discovered in 1998, dust with negligible telltale red-
dening or additional dispersion. In its simplest form it can be easily tested against
SN Ia observations, as it makes very different predictions for the Hubble diagram
at z > 1. At these epochs, the SNe Ia probe the era of deceleration and will not get
fainter at the same rate as that predicted by simple gray dust models [67].

A more pernicious kind of gray dust has been suggested by [84]. Theses are
“replenishing dust” models, in which a constant density of gray dust is replenished
at just the rate it is diluted by the expanding universe. Such models are virtually
indistinguishable from that of an accelerating universe by just using the distance–
redshift relation, as the dimming is directly proportional to distance traveled and
mathematically similar to the effects of a cosmological constant. Dust of this sort
with the required opacity, replenishing rate, and ejection velocity from galaxies
(>1,000 km s−1 for it to fill space uniformly without adding detectable dispersion) is
virtually undetectable in the Hubble diagram of SNe Ia. However, such dust models
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involve a large amount of fine tuning and appear contrived to be a simple alternative
to dark energy.

4.2 Implementation of Systematic Errors

To include these identified systematic errors in the cosmological fits, (14) can be
generalized by constructing a covariance matrix V to replace the σ terms. V is the
combination of a systematics covariance matrix Vsyst and a (diagonal) statistical
covariance matrix Vstat generated from the statistical errors described above. We
then minimize the χ2 according to

χ2 =
∑

N

(
mB − mmod

B

)T
V−1

(
mB −−− mmod

B

)
. (16)

This (clearly) makes the cosmological fits more computationally expensive, but
allows the uncertainties on the fit parameters to directly include systematic errors,
as well as correctly accounting for systematics which induce correlations between
different SNe and thus alter the position of the best-fit cosmological model.

The typical magnitude of the effect on the measurement of 〈w〉 of these identified
systematic effects can be found in Table 1, and Fig. 8 shows the effect on the cos-
mological contours [77, 74]. The typical uncertainty in 〈w〉 increases from ∼4.5%
when only considering statistical error to ∼7% when including systematics. Clearly,
systematic errors are a large component of the total error budget – current constraints
on 〈w〉 are systematics limited. However, there are many reasons to believe that this
situation will radically improve as discussed in the next section.

Table 1 Example SN Ia systematic errors on 〈w〉 for a typical SN Ia sample

Systematic
Error in 〈w〉 (stat. + this
sys.)a

Extra error from this
systematicb

Stat. only 4.3 . . .
High-z zero points 4.5 1.3
Low-z zero points 4.7 1.9
Filter responses 4.5 0.9
Photometric reference colors 5.1 2.6
SN color relation 5.0 2.5
Peculiar velocities 4.4 0.5
Malmquist bias 4.4 0.7
Non-Ia contamination 4.4 0.7
Total 7.0 5.8
a The total error on 〈w〉 when considering the statistical only error, plus the additional error from
this systematic.
b The additional error in 〈w〉 from this systematic error alone.
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Fig. 8 As Fig. 7, but showing
the effect of including SN Ia
systematic errors when
performing the cosmological
fits. The filled contours are
statistical only, and the
dashed contours include the
SN systematic errors

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ΩM

−2.0

−1.5

−1.0

−0.5

<
w

>

SNe, stat only
SNe, with sys
BAO
WMAP−5
Combined

4.3 Prospects for Improvement

A careful reading of Sect. 4.1 will reveal that most of the dominant systematics
are related to the current low-redshift data set and the necessity to cross-calibrate
them to higher-redshift surveys such as SNLS. Since a large number of dramatically
improved low-redshift data samples should become available in the next few years,
observed in the same photometric system as the high-redshift data, it is worth asking
exactly which aspects of these samples will help us reduce these errors.

The dominant systematics are the colors of the photometric reference standard
BD 17◦ 4708, the differences between light-curve fitters and the zero points of the
low-redshift samples. How will new low-redshift samples help with all of these?
The uncertainties related to the color of BD 17◦ 4708 include large terms related to
how well the Landolt magnitudes of this sub-dwarf can be transferred to the SNLS
system. Because it is a slightly unusual star, and because the SNLS bandpasses are
very unlike the Landolt ones used for measurements of the standard stars, these
errors are large. Furthermore, the bandpasses of the Landolt system are simply not
well understood, and never will be, putting a fundamental limit on how well this
uncertainty can be characterized. Were the low-redshift sample replaced with one
observed on a better understood system more similar to the SNLS or SDSS systems,
these transfer effects would be minimized, substantially reducing the calibration
errors. The low-redshift sample zero points can obviously be improved by better
nearby samples. The effects on the SNLS/SDSS zero points are more subtle, but
if these surveys are calibrated directly against a more similar system, they will be
moderately reduced.
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The differences between light-curve models will also be reduced with better
training samples. While including high-redshift SN data in the training has been
very useful, especially in the near-UV, new low-redshift samples can improve the
situation even further. A particular lack in high-redshift data is multiple epochs of
spectroscopy at different phases of the light curve. The uncertainty in the SN Ia color
relations should also be substantially improved by new low-redshift samples simply
because they dramatically increase the available pool of observations. These larger
samples may allow an understanding of the various degeneracies between intrinsic
and extrinsic SN Ia color by studying SNe Ia in a variety of environments, which
could lead to qualitative improvements in SN Ia models.

The Hubble Space Telescope CALSPEC calibration used for BD 17◦ 4708 will
also be refined and extended to more stars, particularly fainter examples that can be
observed directly by modern survey telescopes, and of normal spectral types in the
color range well sampled by standard star catalogs so that their magnitudes can be
accurately transferred between systems. This program needs to be performed while
the natural systems for high-redshift SN surveys (e.g., SDSS, SNLS) still exist; a
major problem with the Landolt system is that its natural system does not – there
will always be limitations as to how accurately any given flux standard can be tied
to this system. This has implications for future absolute calibration programs. From
the standpoint of SN observations, it is currently more important that the calibrated
flux standard be tied to the magnitude system in use than how well the SED itself
is calibrated, so good quality observations of fainter (and hence directly observable)
standards are vastly preferable to improved observations of very bright standards
such as Vega.

4.4 Further Astrophysical Systematics?

While the challenge of photometrically calibrating the physical SN Ia fluxes is
considerable (Sect. 4.1), this is at least a well-defined and tractable problem on
which substantial progress has been made. More concerning and pernicious is the
possibility of intrinsic variability in the SN Ia population that cannot be empirically
controlled. The most significant concerns are related to the unknown, or at least
uncertain, astrophysical nature of the SN Ia events [e.g., 21].

Dramatic evolution in SN Ia properties is, however, ruled out. The spectra of
SNe Ia are very similar across the entire redshift range in which they have been
studied [e.g., 85–88], implying that the underlying physical process governing their
explosions is not changing dramatically. Furthermore, SNe Ia in different type of
host galaxies show very similar best-fitting cosmological models [89]. Different
galaxy environments probe a large range of potential progenitor SN Ia stellar pop-
ulations, from starburst galaxies with dominant young populations of stars, through
normal galaxies with a substantial fraction of evolved stellar mass, to the old,
evolved elliptical galaxies comprised of more homogeneous and old stellar popu-
lations. Hence their broad similarity among galaxy types is a powerful limit on the
degree to which they can evolve.
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However, it is well known that SNe Ia do have some connection with their host
galaxy types. Although some SNe Ia occur in passive systems with no ongoing star
formation, consistent with a long “delay time” from stellar birth to SN explosion,
most events occur in star-forming galaxies, suggesting a shorter delay time [90,
91]. A strong correlation between the SN Ia rate and host galaxy star-formation
rate is seen at all redshifts (Fig. 9). The most straightforward interpretation of this
environmentally dependent SN Ia rate is a wide range of delay times, but the exact
physical implications are unclear. For example, the SNLS relation between the SN Ia
rate and star-formation rate implies that around 1% of all white dwarfs end their lives
as SNe Ia [92], independent of their initial mass. As the single degenerate model
typically has lower conversion efficiencies at lower masses, this suggests that some
other mechanism is responsible for the production of at least some SNe Ia. However,
the precise implication for the progenitor systems must await the construction of
more detailed delay-time distributions, requiring more precise data on their host
galaxies.

The “prompt” and “delayed” SNe Ia also possess different light curves. A trend
of SN Ia luminosity – or equivalently stretch – versus galaxy morphological type
has been observed [e.g., 93]: high-stretch SNe Ia are preferentially located in
morphologically late-type galaxies (Fig. 10). This trend has also been observed
when using host galaxy specific star-formation rates (sSFR; the SFR per unit stellar
mass) instead of morphology [91]. The evidence suggests that prompt SNe Ia appear
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brighter with broader (higher stretch) light curves, while the delayed component are
fainter with fast light curves – recall “stretch” is a key observable affecting the
utility of SNe Ia as cosmological probes (see Sect. 3.1), correcting the luminosity
of SNe Ia according to the width of their light curves. It is unclear whether the
trends are primarily driven by progenitor age (passive systems hosting older stars)
or progenitor metallicity (passive systems being the most massive and likely metal
rich).

Regardless of the physical cause, the dependence of stretch on the apparent age
of the SN Ia progenitor will lead to a subtle shift in the demographics of the SN Ia
population. As the star-formation rate of the universe increases dramatically with
look-back time, there will be many more prompt SNe Ia at high redshift than would
be expected in the local universe. The consequence is that the high-redshift universe
should have a more prevalent population of younger, higher stretch SNe than seen
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at low redshift – the mean stretch of the SN Ia population should evolve to be larger
at higher redshift (Fig. 11).

Using data from various searches, this has now been tested using SN Ia data [94].
An increase in the average stretch with redshift is seen in the data, consistent with
the empirical models, corresponding to ∼10% increase in the intrinsic SN Ia lumi-
nosity with redshift. Note that this difference is calibrated via the stretch–luminosity
relationship, however, the degree to which the correction functions across the entire
redshift range is still being studied.

There are also open questions as to how the metallicity or age of the progenitor
star may influence the observed properties and luminosities of the SN Ia explo-
sion, again leading to possible biases as the demographics of the SN Ia population
shifts slightly with look-back time [94, 95]. Reference [96] argue dramatic changes
in SN Ia physics with metallicity. They argue that synthesized 56Ni mass should
be linearly proportional to progenitor metallicity. Since the decay of 56Ni drives
the luminosity, SNe Ia in high metallicity environments should be less luminous.
This is because stars from higher metallicity environments will end up with larger
mass fractions of 22Ne and 56Fe after helium burning. Since these isotopes have
excess neutrons, the authors argue that in these cases fewer radioactive elements are
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produced during the process of burning to nuclear statistical equilibrium during a
SN Ia. Note that these results are in sharp contrast to other studies which found no
significant increase in 56Ni with increasing metallicity [e.g., 97, 98]

Reassuringly, no definitive evidence for a dependence of SN Ia luminosity on
inferred host galaxy metallicity has yet been uncovered [e.g., 99, 100]. Figure 12
shows the Hubble diagram residual as a function of inferred SN host galaxy metal-
licity for a sample of SNe Ia from the first year of the SNLS; no trend is apparent.
Improved samples of SN data at both low and high redshifts should provide further
constraints on the role of metallicity in influencing SN Ia luminosities.

An alternative approach is to explore the possible effects of progenitor metal-
licity through blanketing and wavelength-dependent features in the rest-frame UV
spectra, corresponding to λλ 290–350 nm. This is a relatively unexplored region
observationally as the atmosphere is opaque at these wavelengths: indeed the most
complete studies have been conducted on high-redshift events where the UV spec-
tral region is redshifted into the optical. Reference [97] argue that direct traces of
the progenitor metallicity can best be seen in the unburned SN layers which are
only observable significantly before maximum light. However, they also predict
that an increase in progenitor metallicity will cause an increase in the amount
of 54Fe synthesized in the explosion, and this will result in an increase in line
opacity in the UV region which may be observable at maximum light. The net
effect is that an increased metallicity will result in an increase in the UV pseudo-
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continuum at maximum light. Reference [101] examines the spectroscopic impli-
cations in greater detail. They simultaneously change the progenitor metallicity in
the unburned C+O region and increase the amount of 54Fe in the partially burned
region. They find an increase in the level of the UV pseudo-continuum: as metal-
licity decreases so the line opacity decreases with the result that lines form deeper
in the atmosphere and therefore from a lower velocity region. Such an effect is
opposite to the effect predicted by [97]. However, [101] caution that the overall
UV flux level is not necessarily a good indicator of metallicity, as it is depen-
dent on many variables such as the temperature, density, and velocity of the C+O
layer.

Various authors predict that the SN Ia rate should be affected by metallic-
ity, although they do not make explicit predictions about the resulting effects on
SN Ia properties. Reference [102] argues that in very low metallicity environments
([Fe/H] < −1) the white dwarf wind that they believe is essential for producing
SNe Ia will be inhibited, thus leading to fewer SNe Ia. Reference [103] find that
metallicity differences should alter the range of progenitor masses that produce
SNe Ia.

In summary, therefore, theory cannot yet offer a clear consensus as to the effects
of metallicity on SNe Ia. Indeed, there is disagreement not only about which effects
are the most important, but also about the sign of any possible effect. This is a
very challenging theoretical problem hindered by correlations between the wanted
effect of metallicity and other correlations such as the viability of certain progenitor
systems, the explosion mechanism and radiative transfer in an atmosphere under a
variety of mixing conditions. Full simulations of all these effects may soon become
feasible, but substantial campaigns will still be needed to track statistical shifts with
metallicity.

Finally, there is the complex question of SN Ia colors. Their host galaxies span
the full range of age from dwarf irregular galaxies through to giant ellipticals and
contain vastly different amounts of dust. As discussed in Sect. 3.1, this dust has the
effect of dimming the light from objects as it passes through, preferentially in the
ultraviolet and blue spectral regions. But observed SN Ia properties seem inconsis-
tent with known dust properties of the Milky Way. Probably, the question of dust
represents the most serious challenge to SN Ia cosmology.

Observing SNe Ia at redder wavelengths where the effect of dust is smaller is one
obvious potential solution. Observations of SNe in the rest-frame J and H band-
passes, which probe above 1μm into the near infrared (IR), show a dramatically
decreased dispersion on Hubble diagrams [e.g., 104]. SN Ia theory also suggests
that any intrinsic variability in the population is smaller at these wavelengths [32];
in fact SNe Ia may be true standard candles without any need for a light-curve
shape correction [24]. The problem with this approach is that near-IR observations
are very challenging from the ground due to the increased sky brightness: to date
observations are limited to a redshift of about 0.5. Space-based missions will be
required to push this further for large samples of SNe.

While these potential systematics may appear serious, in part, this is because the
SN Ia technique is the most mature and tested probe of dark energy. Despite many
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decades of intensive searching, no fatal flaw has yet been identified – and SNe Ia
have, so far, passed many detailed examinations of systematic effects with flying
colors.

5 Concluding Remarks

Current SN Ia data sets play an integral part in making the most precise measure-
ments of the dark energy driving the accelerating universe. At the same time, modern
SN surveys also allow new insights into the astrophysics governing SN Ia progeni-
tors. No effect has yet been uncovered that challenges the conclusions drawn from
the use of SNe Ia in cosmological applications, but some open questions do remain.
Why are the brightest SNe Ia associated with short delay times and young galaxies?
How well do SNe Ia from different environments inter-calibrate in a cosmologi-
cal analysis? A tantalizing possibility is the existence of more than one progenitor
mechanism. The key to making progress is to pinpoint any fundamental environ-
mental differences between the delayed and prompt events; several programs are
underway to probe these questions.

In this regard, SN Ia observations seem in a particularly healthy state given the
large number of proposed SN Ia surveys (Table 2). At low redshift, at least three new
rolling SN Ia surveys are either planned or have commenced operation – the Palomar
Transient Factory, the SkyMapper, and the La Silla SN Search. These surveys will
generate many thousands of new SN Ia events, and ultimately studying these objects
in details will lead to new insights into their progenitor systems and physics. At
higher redshift, the Dark Energy Survey will eventually supplant the existing SNLS
data set over the course of the next 5–7 years. The prospects for an eventual space-
based mission to study dark energy are good, and SNe Ia are likely to be studied in
detail by such an experiment.

As with any experimental technique, the final precision of the SN Ia cosmologi-
cal results is governed by both statistical and systematic uncertainties. As discussed
in this chapter, as more SNe Ia are used in the analysis and the statistical error
decreases, the contribution of systematic errors has become increasingly important.
Ultimately, the challenge of controlling systematics in SN cosmology is twofold.

Table 2 A selection of upcoming and planned SN Ia experiments

Time z < 0.1 0.1 < z < 1.0 z > 1

Now KAIT/CfA/CSP ∼300 SNLS ∼450 HST/GOODS ∼20
SNFactory ∼100 Essence ∼200 HST/Clusters ∼20

SDSS ∼ 250
2009–2013 SkyMapper DES HST/WFC3

PTF PANSTARRS
La Silla

2013++ LSST ∼ n × 104 JDEM
JDEM JWST

TMT/ELTs
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The first is photometric calibration; future, planned experiments will require a cal-
ibration of better than 1% in both the distant and nearby samples. The second is
understanding the limitations of SNe Ia by investigating their astrophysical prop-
erties and, ultimately, controlling any subtle evolutionary effects that may emerge.
This is the challenge for the next few years of SN Ia observation and theory.
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Summary We review the recent progress for modified gravity models of dark
energy – including f (R) gravity, scalar-tensor theories, and braneworld models.
In f (R) gravity, where the Lagrangian density f is a function of the Ricci scalar R, the
coupling strength between dark energy and non-relativistic matter is of order 1 (Q =
−1/

√
6) in the Einstein frame. Even in this situation it is possible for f (R) models to

be consistent with local gravity constraints under the chameleon mechanism, while
at the same time satisfying conditions for the cosmological viability. We present a
number of viable f (R) models that satisfy cosmological and local gravity constraints.

We also study a class of scalar-tensor dark energy models based on Brans–Dicke
theory with a scalar-field potential. The action in the Einstein frame can be viewed
as a coupled quintessence scenario with a constant coupling Q that is related to a
Brans–Dicke parameter ωBD via 3+2ωBD = 1/(2Q2). We show that, even when |Q|
is of the order of 1, it is possible for these models to be consistent with cosmological
and local gravity constraints as long as the field potential is designed in a suitable
way.

We investigate the evolution of matter density perturbations for f (R) and scalar-
tensor models and show that model parameters as well as the strength of the cou-
pling Q can be constrained from matter/CMB power spectra due to the enhanced
growth rate of perturbations compared to the �CDM model.

Finally, we discuss the DGP braneworld model as a candidate for dark energy.
While the late-time cosmic acceleration is possible, this model is under strong
pressure from joint constraints using the data of SNLS, BAO, and the CMB shift
parameter. Moreover, a ghost mode is present for such a self-accelerating universe.
Thus the original DGP model is effectively ruled out from observational constraints
as well as from the ghost problem.

S. Tsujikawa (B)
Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
e-mail: shinji@rs.kagu.tus.ac.jp

Tsujikawa, S.: Modified Gravity Models of Dark Energy. Lect. Notes Phys. 800, 99–145 (2010)
DOI 10.1007/978-3-642-10598-2_3 c© Springer-Verlag Berlin Heidelberg 2010



100 S. Tsujikawa

1 Introduction

The origin of dark energy (DE) has been one of the most serious problems in modern
cosmology [1–6]. The first step toward understanding the nature of DE is to clarify
whether it is a simple cosmological constant or it originates from other sources
that dynamically change in time. The dynamical DE models can be distinguished
from the cosmological constant by considering the evolution of the equation of state
of DE (= wDE). The scalar-field models of DE such as quintessence [7–11] and
k-essence [12, 13] predict a wide variety of variations of wDE, but still the current
observational data are not sufficient to provide some preference of such models over
the �CDM model. Moreover, it is generally difficult to construct viable scalar-field
models in the framework of particle physics because of a very low energy scale of
the field potential.

There exists another class of dynamical DE models that modify Einstein grav-
ity. The models that belong to this class are f (R) gravity [14–17] (f is function
of the Ricci scalar R), scalar-tensor theories [18–22], braneworld models [23], and
Gauss–Bonnet gravity [24]. The attractive feature of these models is that cosmic
acceleration can be realized without recourse to a dark energy component. If we
modify gravity from General Relativity, however, there are tight constraints coming
from local gravity tests as well as a number of observational constraints. Hence
the restriction on modified gravity models is, in general, very tight compared to
modified matter models (such as quintessence and k-essence).

For example an f (R) model of the form f (R) = R − μ2(n+1)/Rn was proposed
to explain the late-time cosmic acceleration, but it became clear that this model is
unable to satisfy local gravity constraints [25, 26] and that it also suffers from a
number of problems such as the instability of density perturbations [27–30] as well
as the absence of a matter-dominated epoch [31, 32]. Over the past few years there
has been a burst of activity in the search for viable f (R) models [27–30, 33–38]. The
conditions for the viability of f (R) DE models have been clarified by such extensive
works, which stimulated to propose a number of workable models [39–42].

The simplest version of scalar-tensor theory is the so-called Brans–Dicke theory
in which a scalar field ϕ is coupled to the Ricci scalar R with the Lagrangian density
L = ϕR/2 − (ωBD/2ϕ) (∇ϕ)2, where ωBD is a so-called Brans–Dicke parameter
[43]. If we allow the field potential U(ϕ) in Brans–Dicke theory, the f (R) models (in
the metric formalism) are equivalent to this generalized Brans–Dicke theory with the
Brans–Dicke parameter ωBD = 0. If we transform the Brans–Dicke action (“Jordan
frame”) to the so-called Einstein frame action by a conformal transformation, the
theory in the Einstein frame is equivalent to a coupled quintessence scenario [44]
with a constant coupling Q satisfying the relation 1/(2Q2) = 3 + 2ωBD [45]. For
example, the f (R) gravity corresponds to the constant coupling Q = −1/

√
6. For

the couplings |Q| of the order of unity it is generally difficult to satisfy local gravity
constraints unless there is some mechanism to suppress the propagation of the fifth
force between the field and non-relativistic matter. As we will see in this review, it
is possible for such large coupling models to be consistent with local gravity tests
[39, 46, 47] through the so-called chameleon mechanism [48, 49], provided that the
field has a large mass in the region of high density.
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A braneworld model of dark energy was proposed by Dvali, Gabadadze, and
Porrati (DGP) by embedding a 3-brane in the five-dimensional (5D) Minkowski bulk
space-time [23]. In this scenario the gravitational leakage to the extra dimension
leads to the modification of gravity for large distances, which causes the late-time
cosmic acceleration on the 3-brane. While this self-accelerating universe is attrac-
tive, it became clear that the DGP model is disfavored by the joint observational con-
straints from Supernova Ia (SN Ia), baryon acoustic oscillations (BAO), and cosmic
microwave background (CMB) [50–54]. Moreover, the analysis of cosmological
perturbations shows that the DGP model contains a ghost mode [55–57].

In the following sections, we shall review a number of cosmological and gravita-
tional aspects of f (R) gravity, scalar-tensor theory, and the DGP braneworld model.
We also discuss observational signatures of such models to distinguish them from
the �CDM model.

2 f (R) Gravity

Let us first start with the action in f (R) gravity:

S = 1

2κ2

∫
d4x

√−gf (R) + Sm(gμν ,$m), (1)

where κ2 = 8πG (G is a bare gravitational constant) and Sm is a matter action with
matter fields $m. The field equation can be derived by varying the action (1) with
respect to gμν :

F(R)Rμν(g) − 1

2
f (R)gμν − ∇μ∇νF(R) + gμν�F(R) = κ2Tμν , (2)

where F(R) ≡ ∂f /∂R and Tμν is an energy momentum tensor of matter. The trace
of (2) is given by

3 �F(R) + F(R)R − 2f (R) = κ2T , (3)

where T = gμνTμν = −ρ + 3P. Here ρ and P are the energy density and the
pressure of the matter, respectively.

Note that there is another approach called the Palatini formalism in which gμν
and the affine connection %α

βγ are treated as independent variables when we vary
the action (1) [58–61]. The f (R) theory in the Palatini formalism gives rise to a large
coupling between a scalar-field degree of freedom and ordinary matter [60–62],
which is difficult to be compatible with standard particle physics. In the follow-
ing we focus on the metric variational approach (so-called the metric formalism)
given above. The Einstein gravity without the cosmological constant corresponds to
f (R) = R and F(R) = 1, so that the term �F(R) in (3) vanishes. In this case we
have R = −κ2T = κ2(ρ − 3P) and hence the Ricci scalar R is directly determined
by the matter (the trace T). In modified gravity models the term �F(R) does not
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vanish in (3), which means that there is a propagating scalar degree of freedom,
ψ ≡ F(R). The trace equation (3) allows the dynamics of the scalar field ψ (dubbed
“scalaron” [63]).

The de Sitter point corresponds to a vacuum solution at which the Ricci scalar is
constant. Since �F(R) = 0 at this point, we obtain

F(R)R − 2f (R) = 0. (4)

The model f (R) = αR2 satisfies this condition, so that it gives rise to an exact de
Sitter solution [63]. In the model f (R) = R+αR2, the accelerated cosmic expansion
ends when the term αR2 becomes smaller than the linear term R.

2.1 Cosmological Dynamics in f (R) Gravity

We first study cosmological dynamics of f (R) gravity models. It is possible to carry
out a general analysis without specifying the form of f (R) and then to derive the
conditions for the cosmological viability of f (R) models. We take a Friedmann–
Lemaître–Robertson–Walker (FLRW) space-time

ds2 = −dt2 + a(t)2dx2, (5)

where a(t) is a scale factor. As a matter action Sm in (1) we take into account non-
relativistic matter and radiation, whose energy densities satisfy the usual conserva-
tion equations ρ̇m + 3Hρm = 0 and ρ̇r + 4Hρr = 0, respectively (a dot represents a
derivative with respect to cosmic time t). From (2) and (3), we obtain the following
equations

3FH2 = κ2 (ρm + ρr) + (FR − f )/2 − 3HḞ, (6)

2FḢ = −κ2 [ρm + (4/3)ρr
]− F̈ + HḞ, (7)

where H ≡ ȧ/a is the Hubble parameter and

R = 6(2H2 + Ḣ). (8)

Let us introduce the following variables:

x1 ≡ − Ḟ

HF
, x2 ≡ − f

6FH2
, x3 ≡ R

6H2
, x4 ≡ κ2ρr

3FH2
, (9)

together with the density parameters

"m ≡ κ2ρm

3FH2
= 1 − x1 − x2 − x3 − x4, "r ≡ x4, "DE ≡ x1 + x2 + x3. (10)

It is straightforward to derive the following equations [36]:
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dx1

dN
= −1 − x3 − 3x2 + x2

1 − x1x3 + x4 , (11)

dx2

dN
= x1x3

m
− x2(2x3 − 4 − x1) , (12)

dx3

dN
= −x1x3

m
− 2x3(x3 − 2) , (13)

dx4

dN
= −2x3x4 + x1 x4, (14)

where N = log (a) and

m ≡ d log F

d log R
= Rf,RR

f,R
, (15)

r ≡ − d log f

d log R
= −Rf,R

f
= x3

x2
. (16)

From (16), one can express R as a function of x3/x2. Since m is a function of R, it
follows that m is a function of r, i.e., m = m(r). The �CDM model, f (R) = R−2�,
corresponds to m = 0. Hence the quantity m characterizes the deviation from the
�CDM model.

The effective equation of state of the system is given by

weff = −(2x3 − 1)/3. (17)

In the absence of radiation (x4 = 0), the fixed points for the dynamical system (11),
(12), (13), and (14) are

P1:(x1,x2,x3) = (0, − 1,2), "m = 0, weff = −1, (18)

P2:(x1,x2,x3) = ( − 1,0,0), "m = 2, weff = 1/3, (19)

P3:(x1,x2,x3) = (1,0,0), "m = 0, weff = 1/3, (20)

P4:(x1,x2,x3) = ( − 4,5,0), "m = 0, weff = 1/3, (21)

P5:(x1,x2,x3) =
(

3m

1 + m
, − 1 + 4m

2(1 + m)2
,

1 + 4m

2(1 + m)

)
, (22)

"m = 1 − m(7 + 10m)

2(1 + m)2
, weff = − m

1 + m
, (23)

P6:(x1,x2,x3) =
(

2(1 − m)

1 + 2m
,

1 − 4m

m(1 + 2m)
, − (1 − 4m)(1 + m)

m(1 + 2m)

)
,

"m = 0, weff = 2 − 5m − 6m2

3m(1 + 2m)
. (24)

The points P5 and P6 are on the line m(r) = −r − 1 in the (r,m) plane.
Only the point P5 can be responsible for the matter-dominated epoch ("m � 1

and weff � 0), which can be realized for m close to 0. In the (r,m) plane this point
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exists around (r,m) = (−1,0). Either the point P1 or P6 can lead to the late-time cos-
mic acceleration. The former corresponds to a de Sitter point (weff = −1) with r =
−2, in which case the condition (4) is in fact satisfied. The point P6 is able to give
the accelerated expansion depending on the values of m. In the following we shall
focus on the case in which the matter point P5 is followed by the de Sitter point P1.

The stability of the fixed points is known by considering small perturbations δxi

(i = 1,2,3) around them [36]. For the point P5 the eigenvalues for the 3×3 Jacobian
matrix of perturbations are

3(1 + m′
5),

−3m5 ±
√

m5(256m3
5 + 160m2

5 − 31m5 − 16)

4m5(m5 + 1)
, (25)

where m5 ≡ m(r5) and m′
5 ≡ dm

dr (r5), with r5 ≈ −1. In the limit |m5| 
 1, the latter
two eigenvalues reduce to −3/4 ±√−1/m5. The f (R) models with m5 < 0 show a
divergence of the eigenvalues as m5 → −0, in which case the system cannot remain
for a long time around the point P5. For example, the model f (R) = R − α/Rn with
n > 0 and α > 0 falls into this category. On the other hand, if 0 < m5 < 0.327, the
latter two eigenvalues in (25) are complex with negative real parts. Then, provided
that m′

5 > −1, the point P5 corresponds to a saddle point with a damped oscillation.
Hence the universe can evolve toward the point P5 from the radiation era and leave
for the late-time acceleration. Then the condition for the existence of the saddle
matter era is

m(r) ≈ +0,
dm

dr
> −1, at r = −1. (26)

The first condition implies that the f (R) models need to be close to the �CDM
model during the matter era.

The eigenvalues for the Jacobian matrix of perturbations about the point P1 are

− 3, − 3

2
±

√
25 − 16/m1

2
, (27)

where m1 = m(r = −2). This shows that the condition for the stability of the de
Sitter point P1 is

0 < m(r = −2) ≤ 1. (28)

The trajectories that start from the saddle matter point P5 satisfying the condition
(26) and then approach the stable de Sitter point P1 satisfying the condition (28) are
cosmologically viable.

Let us consider a couple of viable f (R) models in the (r,m) plane. The �CDM
model, f (R) = R − 2�, corresponds to m = 0, in which case the trajectory is a
straight line from P5: (r,m) = ( − 1,0) to P1: (r,m) = ( − 2,0). The trajectory (ii) in
Fig. 1 represents the model f (R) = (Rb−�)c [64], which corresponds to the straight
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Fig. 1 Four trajectories in the (r,m) plane. Each trajectory corresponds to the models: (i) �CDM,
(ii) f (R) = (Rb −�)c, (iii) f (R) = R−αRn with α > 0,0 < n < 1, and (iv) m(r) = −C(r+1)(r2 +
ar + b). Here PM , PA, and PB are the matter point P5, the de Sitter point P1, and the accelerated
point P6, respectively

line m(r) = [(1− c)/c]r + b− 1 in the (r,m) plane. The existence of a saddle matter
epoch requires the condition c ≥ 1 and bc ≈ 1. The trajectory (iii) represents the
model [36, 37]

f (R) = R − αRn (α > 0, 0 < n < 1), (29)

which corresponds to the curve m = n(1 + r)/r. The trajectory (iv) in Fig. 1 shows
the model m(r) = −C(r + 1)(r2 + ar + b), in which case the late-time accelerated
attractor is the point P6 with (

√
3 − 1)/2 < m < 1.

In [36] it was shown that the variable m needs to be close to 0 during the
radiation-dominated epoch as well. Hence the viable f (R) models are close to the
�CDM model, f (R) = R − 2�, in the region R � R0 (where R0 is the present
cosmological Ricci scalar). The Ricci scalar given in (8) remains positive from the
radiation era to the present epoch, as long as it does not oscillate. Note that we
require the condition f,R > 0 to avoid anti-gravity. Then the condition m > 0 for
the presence of the matter era translates into f,RR > 0. The model f (R) = R − α/Rn

(α > 0, n > 0) is not viable because the condition f,RR > 0 is violated.
In order to derive the equation of state of dark energy to confront with SN Ia

observations for the cosmologically viable models, we rewrite (6) and (7) as follows:

3AH2 = κ2 (ρm + ρr + ρDE) , (30)

−2AḢ = κ2 [ρm + (4/3)ρr + ρDE + PDE
]

, (31)
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where A is some constant and

κ2ρDE ≡ (1/2)(FR − f ) − 3HḞ + 3H2(A − F), (32)

κ2PDE ≡ F̈ + 2HḞ − (1/2)(FR − f ) − (3H2 + 2Ḣ)(A − F). (33)

Defining ρDE and PDE in the above way, we find that these satisfy the usual conti-
nuity equation

ρ̇DE + 3H(ρDE + PDE) = 0. (34)

The dark energy equation of state, wDE ≡ PDE/ρDE, is directly related to the one
used in SN Ia observations. From (30) and (31) it is given by

wDE = −2AḢ + 3AH2 + κ2ρr/3

3AH2 − κ2(ρm + ρr)
� weff

1 − (F/A)"m
, (35)

where the last approximate equality in (35) is valid in the regime where the radia-
tion density ρr is negligible relative to the matter density. The viable f (R) models
approach the �CDM model in the past, i.e., F → 1 as R → ∞. In order to repro-
duce the standard matter era for z � 1, we can choose A = 1 in (30) and (31).
Another possible choice is A = F0, where F0 is the present value of F. This choice
is suitable if the deviation of F0 from 1 is small (as in the scalar-tensor theory with
a massless scalar field [65]). In both cases the equation of state wDE can be smaller
than −1 before reaching the de Sitter attractor [39, 64, 66]. Thus f (R) gravity models
give rise to a phantom equation of state without violating stability conditions of the
system.

2.2 Local Gravity Constraints on f(R) Gravity Models

It is required that f (R) gravity models satisfy local gravity constraints as well as the
conditions for the cosmological viability. In an environment of high density such as
Earth or Sun, the Ricci scalar R is much larger than the background cosmological
value R0. In such a non-linear regime the effect of the chameleon mechanism is
crucially important. It is possible for f (R) models to be consistent with local gravity
constraints under the chameleon mechanism.

In order to discuss the chameleon mechanism in f (R) gravity, it is convenient
to transform the action (1) to the so-called Einstein frame action via the conformal
transformation [67]:

g̃μν = "2gμν , (36)

where " is a so-called conformal factor. In the Einstein frame the Lagrangian
includes a linear term in R̃ (the tilde represents quantities in the Einstein frame).
The Ricci scalars in the two frames have the following relation:
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R = "2(R̃ + 6�̃ω − 6g̃μνω,μω,ν), (37)

where

ω,μ ≡ ∂μ"

"
, �̃ω ≡ 1√−g̃

∂μ(
√−g̃ g̃μν∂νω). (38)

The action (1) can be written as

S =
∫

d4x
√−g

(
1

2κ2
FR − U

)
+ Sm(gμν ,$m), (39)

where

U = (RF − f )/(2κ2). (40)

Using (37) and the relation
√−g = "−4

√−g̃, the action (39) is transformed to be

S =
∫

d4x
√−g̃

[
1

2κ2
F"−2(R̃ + 6�̃ω − 6g̃μνω,μω,ν) −"−4U

]
+ Sm(gμν ,$m).

(41)
We obtain a linear action in R̃ for the choice

"2 = F. (42)

We also introduce a new scalar field φ defined by

φ ≡ √3/2 ln F. (43)

Since " = √
F and ω,μ = ",μ/", it follows that ω,μ = (1/

√
6)κφ,μ. The integral,∫

d4x
√−g̃ �̃ω, vanishes due to the Gauss’s theorem by using (38). Then the action

in the Einstein frame is

SE =
∫

d4x
√−g̃

[
1

2κ2
R̃ − 1

2
g̃μν∂μφ∂νφ − V(φ)

]
+ Sm(gμν ,$m), (44)

where

V(φ) = (RF − f )/(2κ2F2). (45)

In the following we use the unit κ2 = 1. In the Einstein frame the scalar field φ

directly couples with non-relativistic matter. The strength of this coupling depends
on the field dependence of the conformal factor " in (36). Let us define the coupling
Q as

Q ≡ −",φ

"
= −F,φ

2F
= − 1√

6
, (46)
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whose strength is of the order of unity in f (R) gravity. In the absence of the field
potential V(φ) it is not possible to satisfy local gravity constraints because the field
propagates freely with a large coupling Q. Since a potential V(φ) with a gravita-
tional origin is present in f (R) gravity, local gravity tests can be escaped through
the chameleon mechanism [48, 49], provided that the form of f (R) is appropriately
chosen [35, 39, 46, 47].

In the following we shall discuss how the chameleon mechanism can make the
f (R) models consistent with local gravity constraints. In a spherically symmetric
space-time under the weak gravitational background (i.e., neglecting the back reac-
tion of gravitational potentials), the variation of the action (44) with respect to the
scalar field φ gives

d2φ

dr̃2
+ 2

r̃

dφ

dr̃
= dVeff

dφ
, (47)

where r̃ is a distance from the center of symmetry and

Veff(φ) = V(φ) + eQφρ∗. (48)

Here ρ∗ is a conserved quantity in the Einstein frame, which is related to the energy
density ρ̃ in the Jordan frame via the relation ρ∗ = e3Qφρ̃.

We assume that a spherically symmetric body has a constant density ρ∗ = ρA

inside the body (r̃ < r̃c) and that the energy density outside the body (r̃ > r̃c)
is ρ∗ = ρB. The mass Mc of the body and the gravitational potential &c at the
radius r̃c are given by Mc = (4π/3)r̃3

cρA and &c = Mc/8π r̃c, respectively. The
effective potential Veff(φ) has two minima at the field values φA and φB satisfying
V ′

eff(φA) = 0 and V ′
eff(φB) = 0, respectively. The former corresponds to the region

with a high density that gives rise to a heavy mass squared m2
A ≡ V ′′

eff(φA), whereas
the latter to the lower density region with a lighter mass squared m2

B ≡ V ′′
eff(φB).

Note that when we consider the “dynamics” of the field φ according to (47), we
need to consider the effective potential (−Veff) so that it has two maxima at φ = φA

and φ = φB.
We impose the following boundary conditions:

dφ

dr̃
(r̃ = 0) = 0, φ(r̃ → ∞) = φB. (49)

The field φ is at rest at r̃ = 0 and begins to roll down the potential when the matter-
coupling term QρAeQφ becomes important at a radius r̃1 in (47). As long as r̃1 is
close to r̃c so that 'r̃c ≡ r̃c − r̃1 
 r̃c, the body has a thin shell inside the body.
The field acquires a sufficient kinetic energy in the thin-shell regime (r̃1 < r̃ < r̃c)
and hence the field climbs up the potential hill outside the body (r̃ > r̃c).

The field profile can be obtained by matching the solutions of (47) at the radius
r̃ = r̃1 and r̃ = r̃c. Neglecting the mass term mB, the thin-shell field profile outside
the body is given by [68]
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φ(r) = φB − 2Qeff
GMc

r̃
, (50)

where

Qeff � 3Qεth, εth ≡ φB − φA

6Q&c
. (51)

Here εth is called the thin-shell parameter. Under the conditions 'r̃c/r̃c 
 1 and
1/(mAr̃c) 
 1, the thin-shell parameter is approximately given by [68]

εth � 'r̃c

r̃c
+ 1

mAr̃c
. (52)

As long as εth 
 1, the amplitude of the effective coupling Qeff can be much smaller
than 1. Hence it is possible for the large coupling models (|Q| = O(1)) to be consis-
tent with local gravity experiments if the body has a thin shell. In the original papers
of Khoury and Weltman [48, 49] the thin-shell solution was derived by assuming
that the field is frozen in the region 0 < r̃ < r̃1. In this case the thin-shell parameter
is given by εth � 'r̃c/r̃c, which is different from (52). However, this difference
is not important because the condition 'r̃c/r̃c � 1/(mAr̃c) is satisfied for most of
viable models [68].

To be concrete let us consider the constraint on the thin-shell parameter from the
possible violation of the equivalence principle (EP). The tightest bound comes from
the solar system tests of weak EP using the free-fall acceleration of Moon (aMoon)
and Earth (a⊕) toward Sun [49]. The experimental bound on the difference of two
accelerations is given by [69]

2
|aMoon − a⊕|
aMoon + a⊕

< 10−13. (53)

Under the conditions that Earth, Sun, and Moon have thin shells, the field profiles
outside the bodies are given by (50) with the replacement of corresponding quan-
tities. The acceleration induced by a fifth force with the field profile φ(r) and the
effective coupling Qeff is afifth = |Qeff∇φ(r)|. Using the thin-shell parameter εth,⊕
for Earth, the accelerations a⊕ and aMoon toward Sun (mass M�) are

a⊕ � GM�
r2

[
1 + 18Q2ε2

th,⊕
&⊕
&�

]
, (54)

aMoon � GM�
r2

[
1 + 18Q2ε2

th,⊕
&2⊕

&�&Moon

]
, (55)

where &� � 2.1 × 10−6, &⊕ � 7.0 × 10−10, and &Moon � 3.1 × 10−11 are the
gravitational potentials of Sun, Earth, and Moon, respectively. Hence the condition
(53) translates into
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εth,⊕ <
8.8 × 10−7

|Q| . (56)

Since the condition |φB| � |φA| is satisfied for viable f (R) models we study in the
following, we have εth,⊕ � φB/6Q&⊕ from (51). Then the condition (56) translates
into

|φB,⊕| < 3.7 × 10−15. (57)

In the following, we list some viable f (R) models that can be consistent with
local gravity tests as well as cosmological constraints:

(A) f (R) = R − μRc
(R/Rc)2n

(R/Rc)2n + 1
with n > 0 and Rc > 0, (58)

(B) f (R) = R − μRc

[
1 −

(
1 + R2/R2

c

)−n
]

with n > 0 and Rc > 0, (59)

(C) f (R) = R − μRctanh (R/Rc) with Rc > 0. (60)

The models (A), (B), and (C) have been proposed in [39, 40], and [42], respectively.
A model similar to (C) has been also proposed in [41]. In the models (A) and (B)
the function f (R) asymptotically behaves as

f (R) � R − μRc[1 − (R2/R2
c)−n] for R � Rc. (61)

In the model (C) the function f (R) rapidly approaches f (R) → R−μRc in the region
R � Rc.

Let us consider local gravity constraints on the f (R) models given in (58) and
(59). In the region of high density where local gravity experiments are carried out,
it is sufficient to use the asymptotic form given in (61). In order for these models
to be responsible for the present cosmic acceleration, Rc is roughly the same order
as the cosmological Ricci scalar R0 today for μ and n of the order of unity. For the
functional form (61), we have the following relations:

F = e2φ/
√

6 = 1 − 2nμ(R/Rc)−(2n+1), (62)

Veff(φ) � 1

2
μRce−4φ/

√
6

[
1 − (2n + 1)

( −φ√
6nμ

)2n/(2n+1)
]
+ ρ∗e−φ/

√
6. (63)

Inside and outside the body the effective potential (63) has minima at

φA � −√
6nμ(Rc/ρA)2n+1, φB � −√

6nμ(Rc/ρB)2n+1, (64)

which satisfies |φB| � |φA| for ρA � ρB.
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The bound (57) translates into

nμ

x2n+1
1

(
R1

ρB

)2n+1

< 1.5 × 10−15, (65)

where x1 is defined by x1 ≡ R1/Rc. Let us consider the case in which the Lagrangian
density is given by (61) for R ≥ R1. If we use the original models of Hu and Sawicki
[39] and Starobinsky [40], then there are small modifications for the estimation of
R1, but this change is insignificant when we place constraints on model parameters.

The de Sitter point for the model (61) corresponds to μ = x2n+1
1 /[2(x2n

1 −n−1)].
Substituting this relation into (65), it follows that

n

2(x2n
1 − n − 1)

(
R1

ρB

)2n+1

< 1.5 × 10−15. (66)

For the stability of the de Sitter point we require that m(R1) < 1, which translates
into the condition x2n

1 > 2n2 + 3n + 1. Hence the term n/[2(x2n
1 − n − 1)] in (66) is

smaller than 0.25 for n > 0.
Now it is possible to make an approximation that R1 and ρB are of the orders of

the present cosmological density 10−29 g/cm3 and the baryonic/dark matter density
10−24 g/cm3 in our galaxy, respectively. From (66) we obtain the constraint [46]

n > 0.9. (67)

Thus n does not need to be much larger than unity. Under the condition (67) one can
see an appreciable deviation from the �CDM model cosmologically as R decreases
to the order of Rc.

Thus, we have shown that the models (58) and (59) are consistent with local
gravity tests for n > 0.9. The deviation from the �CDM model appears when R
decreases to the order of Rc. The model (60) also shows similar behavior. If we
consider the model (29), it was shown in [46] that the bound (57) gives the constraint
n < 3 × 10−10. This means that the deviation from the �CDM model is very
small. The models (58) and (59) are carefully constructed to satisfy local gravity
constraints, while at the same time the deviation from the �CDM model appears
even for n = O(1).

3 Scalar-Tensor Theories

There is another class of modified gravity called scalar-tensor theories in which the
Ricci scalar R is coupled to a scalar field ϕ. The simplest example is the so-called
Brans–Dicke theory with the action

S =
∫

d4x
√−g

[
1

2
ϕR − ωBD

2ϕ
(∇ϕ)2 − U(ϕ)

]
+ Sm(gμν ,$m), (68)
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where ωBD is the Brans–Dicke parameter, U(ϕ) is the field potential, and Sm is a
matter Lagrangian that depends on the metric gμν and matter fields $m. The original
Brans–Dicke theory [43] does not have the field potential. As we will see below, the
f (R) gravity we have discussed in the previous section is equivalent to the Brans–
Dicke theory with ωBD = 0.

The general action for scalar-tensor theories can be written as

S =
∫

d4x
√−g

[
1

2
f (ϕ,R) − 1

2
ζ (ϕ)(∇ϕ)2

]
+ Sm(gμν ,$m), (69)

where f is a general function of the scalar field ϕ and the Ricci scalar R and ζ

is a function of ϕ. We choose the unit κ2 = 1. The action (69) includes a wide
variety of theories such as f (R) gravity (f (ϕ,R) = f (R), ζ = 0) and Brans–Dicke
theory (f = ϕR and ζ = ωBD/ϕ). The action (69) can be transformed to that in the
Einstein frame under the conformal transformation (36) with the choice

"2 = F ≡ ∂f

∂R
, (70)

where F is positive as long as gravity is attractive.
We consider theories of the type

f (ϕ,R) = F(ϕ)R − 2U(ϕ), (71)

in which case the conformal factor " depends on ϕ only. Under the conformal trans-
formation (70) the action in the Einstein frame is given by

SE =
∫

d4x
√−g̃

[
1

2
R̃ − 1

2
(∇̃φ)2 − V(φ)

]
+ Sm(g̃μνF−1,$m), (72)

where

V = U/F2. (73)

Note that we have introduced a new scalar field φ in order to make the kinetic term
canonical:

φ ≡
∫

dϕ

√
3

2

(
F,ϕ

F

)2

+ ζ

F
. (74)

We define the coupling between dark energy and non-relativistic matter:

Q ≡ −F,φ

2F
= −F,ϕ

F

[
3

2

(
F,ϕ

F

)2

+ ζ

F

]−1/2

. (75)
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Recall that in f (R) gravity we have that Q = −1/
√

6. If Q is a constant, the following
relations hold from (74) and (75):

F = e−2Qφ , ζ = (1 − 6Q2)F

(
dφ

dϕ

)2

. (76)

Then the action (69) in the Jordan frame reduces to [45]

S =
∫

d4x
√−g

[
1

2
F(φ)R− 1

2
(1− 6Q2)F(φ)(∇φ)2 −U(φ)

]
+ Sm(gμν ,$m). (77)

In the limit Q → 0, the action (77) reduces to the one for a minimally coupled scalar
field φ with the potential U(φ). The transformation of the Jordan frame action (77)
via a conformal transformation g̃μν = F(φ)gμν gives rise to the Einstein frame
action (72) with a constant coupling Q. Note that this is equivalent to the action (44)
with g̃μν = e−2Qφgμν .

One can compare (77) with the action (68) in Brans–Dicke theory. Setting ϕ =
F = e−2Qφ , one finds that two actions are equivalent if the parameter ωBD is related
to Q via the relation [45]

3 + 2ωBD = 1

2Q2
. (78)

Using this relation, we find that the General Relativistic limit (ωBD → ∞) corre-
sponds to the vanishing coupling (Q → 0). Since Q = −1/

√
6 in f (R) gravity, this

corresponds to the Brans–Dicke parameter ωBD = 0 [25].
In the following we shall study the cosmological dynamics and local gravity

constraints on the constant coupling models based on the action (77) with F(φ) =
e−2Qφ .

3.1 Cosmological Dynamics

We study the cosmological dynamics for the Jordan frame action (77) in the pres-
ence of a non-relativistic fluid with energy density ρm and a radiation fluid with
energy density ρr. The Jordan frame is regarded as a physical frame due to the usual
conservation of non-relativistic matter (ρm ∝ a−3). In the flat FLRW background
the variation of the action (77) with respect to gμν and φ gives the following equa-
tions of motion:

3FH2 = (1/2)(1 − 6Q2)Fφ̇2 + U − 3HḞ + ρm + ρr, (79)

2FḢ = −(1 − 6Q2)Fφ̇2 − F̈ + HḞ − ρm − (4/3)ρr, (80)

(1 − 6Q2)F
[
φ̈ + 3Hφ̇ + (Ḟ/2F)φ̇

]+ U,φ + QFR = 0. (81)
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Let us introduce the following variables:

x1 ≡ φ̇√
6H

, x2 ≡ 1

H

√
U

3F
, x3 ≡ 1

H

√
ρr

3F
, (82)

and

"m ≡ ρm

3FH2
, "rad ≡ x2

3, "DE ≡ (1 − 6Q2)x2
1 + x2

2 + 2
√

6Qx1. (83)

These satisfy the relation "m +"rad +"DE = 1 from (79). On using (79), (80), and
(81), we obtain the differential equations for x1, x2, and x3:

dx1

dN
=

√
6

2
(λx2

2 −
√

6x1)

+
√

6Q

2

[
(5 − 6Q2)x2

1 + 2
√

6Qx1 − 3x2
2 + x2

3 − 1
]
− x1

Ḣ

H2
, (84)

dx2

dN
=

√
6

2
(2Q − λ)x1x2 − x2

Ḣ

H2
, (85)

dx3

dN
= √

6Qx1x3 − 2x3 − x3
Ḣ

H2
, (86)

where λ ≡ −U,φ/U and

Ḣ

H2
= −1 − 6Q2

2

(
3 + 3x2

1 − 3x2
2 + x2

3 − 6Q2x2
1 + 2

√
6Qx1

)
+ 3Q(λx2

2 − 4Q),

(87)

from which the effective equation of state of the system can be found by weff =
−1 − 2Ḣ/3H2.

If λ is a constant, one can derive the fixed points of the system (84), (85), and
(86) in the absence of radiation (x3 = 0) [45]:

• (a)

(x1,x2) =
( √

6Q

3(2Q2 − 1)
,0

)
, "m = 3 − 2Q2

3(1 − 2Q2)2
, weff = 4Q2

3(1 − 2Q2)
. (88)

• (b)

(x1,x2) =
(

1√
6Q ± 1

,0

)
, "m = 0, weff = 3 ∓√

6Q

3(1 ±√
6Q)

. (89)
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• (c)

(x1,x2) =
( √

6(4Q − λ)

6(4Q2 − Qλ− 1)
,

[
6 − λ2 + 8Qλ− 16Q2

6(4Q2 − Qλ− 1)2

]1/2)
, "m = 0,

weff = −20Q2 − 9Qλ− 3 + λ2

3(4Q2 − Qλ− 1)
. (90)

• (d)

(x1,x2) =
⎛
⎝
√

6

2λ
,

√
3 + 2Qλ− 6Q2

2λ2

⎞
⎠ , "m = 1 − 3 − 12Q2 + 7Qλ

λ2
, weff = −2Q

λ
.

(91)
• (e)

(x1,x2) = (0,1), "m = 0, weff = −1. (92)

The point (e) corresponds to the de Sitter point. This exists only for λ = 4Q, which
can be confirmed by setting φ̇ = 0 in (79), (80), and (81). This is the special case of
the scalar-field dominated point (c).

We first study the case of non-zero values of Q with constant λ, i.e., for the
exponential potential U(φ) = U0e−λφ . We do not consider the special case of
λ = 4Q. The matter-dominated era can be realized either by the point (a) or by
the point (d). If the point (a) is responsible for the matter era, the condition Q2 
 1
is required. We then have "m � 1+ 10Q2/3 > 1 and weff � 4Q2/3. When Q2 
 1
the scalar-field-dominated point (c) yields an accelerated expansion of the universe
provided that −√

2 + 4Q < λ <
√

2 + 4Q. Under these conditions the point (a)
is followed by the late-time cosmic acceleration. The scaling solution (d) can give
rise to the equation of state, weff � 0 for |Q| 
 |λ|. In this case, however, the
condition weff < −1/3 for the point (c) gives λ2 < 2. Then the energy fraction of
the pressureless matter for the point (d) does not satisfy the condition "m � 1. From
the above discussion the viable cosmological trajectory for constant λ corresponds
to the sequence from the point (a) to the scalar-field-dominated point (c) under the
conditions Q2 
 1 and −√

2 + 4Q < λ <
√

2 + 4Q.
We shall proceed to the case where λ varies with time. The fixed points derived

above in the case of constant λ can be regarded as the “instantaneous” fixed points,
provided that the timescale of the variation of λ is smaller than that of the cosmic
expansion. It is then possible that the matter era is realized by the point (d) with
|Q| 
 |λ| and that the solutions finally approach either the de Sitter point (e) with
λ = 4Q or the accelerated point (c).

In the following we focus on the case in which the matter solution (d) is followed
by the de Sitter solution (e). In order to study the stability of the point (e) we define
a variable x4 ≡ F, satisfying the following equation:
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dx4

dN
= −2

√
6Qx1x4. (93)

Considering the 3 × 3 matrix for perturbations δx1, δx2, and δx4 around the point
(e), we obtain the eigenvalues

− 3, − 3

2

[
1 ±

√
1 − 8

3
F1Q

dλ

dF
(F1)

]
, (94)

where F1 ≡ F(φ1) is the value of F at the de Sitter point with the field value φ1.
Since F1 > 0, we find that the de Sitter point is stable for

Q
dλ

dF
(F1) ≥ 0, i.e.,

dλ

dφ
(φ1) ≤ 0. (95)

Let us recall the f (R) model (61), which recovers the models (58) and (59) in the
regime R � Rc. Since e2φ/

√
6 = 1 − 2nμ(R/Rc)−(2n+1) in this case, the potential

U = (FR − f )/2 is given by

U(φ) = μRc

2

[
1 − 2n + 1

(2nμ)2n/(2n+1)

(
1 − e2φ/

√
6
)2n/(2n+1)

]
, (96)

in which case the slope of the potential, λ = −U,φ/U, is

λ = − 4ne2φ/
√

6

√
6(2nμ)2n/(2n+1)

[
1 − 2n + 1

(2nμ)2n/(2n+1)

(
1 − e2φ/

√
6
)]−2n/(2n+1)

×
(

1 − e2φ/
√

6
)−1/(2n+1)

. (97)

In the deep matter era during which the condition R/Rc � 1 is satisfied, the field
φ is very close to zero. For n and μ of the order of unity, we have |λ| � 1 at this
stage. Hence the matter era can be realized by the instantaneous fixed point (d). As
R/Rc gets smaller, |λ| decreases to the order of unity. If the solutions reach the point
λ = 4Q = −4/

√
6 and satisfy the stability condition dλ/dF ≤ 0, then the final

attractor corresponds to the de Sitter fixed point (e).
For the theories with general couplings Q, it is possible to construct a scalar-field

potential that is the generalization of (96). One example is [45]

U(φ) = U0

[
1 − C(1 − e−2Qφ)p

]
(U0 > 0, C > 0, 0 < p < 1). (98)

The f (R) model (61) corresponds to Q = −1/
√

6 and p = 2n/(2n + 1). The slope
of the potential is given by
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λ = 2Cp Qe−2Qφ(1 − e−2Qφ)p−1

1 − C(1 − e−2Qφ)p
. (99)

We have U(φ) → U0 for φ → 0 and U(φ) → U0(1 − C) in the limits φ → ∞ (for
Q > 0) and φ → −∞ (for Q < 0).

The field is nearly frozen around the value φ = 0 during the deep radiation and
matter epochs. In these epochs we have R � ρm/F from (79), (80), and (81) by
noting that U0 is negligibly small compared to ρm or ρr. Using (81), it follows that
U,φ + Qρm � 0. Hence, in the high-curvature region, the field φ evolves along the
instantaneous minima given by

φm � 1

2Q

(
2U0pC

ρm

) 1
1−p

. (100)

The field value |φm| increases for decreasing ρm. As long as the condition ρm �
2U0pC is satisfied, we have |φm| 
 1 from (100).

Equation (99) shows that |λ| � 1 for field values around φ = 0. Hence the
instantaneous fixed point (d) can be responsible for the matter-dominated epoch
provided that |Q| 
 |λ|. The variable F = e−2Qφ decreases in time irrespective of
the sign of the coupling Q and hence 0 < F < 1. The de Sitter solution corresponds
to λ = 4Q, that is

C = 2

(1 − F1)p−1
[
2 + (p − 2)F1

] . (101)

The de Sitter solution is present as long as the solution of this equation exists in the
region 0 < F1 < 1.

From (99) the derivative of λ with respect to φ is

dλ

dφ
= −4CpQ2F(1 − F)p−2[1 − pF − C(1 − F)p]

[1 − C(1 − F)p]2
. (102)

The de Sitter point is stable under the condition 1− pF1 > C(1−F1)p. Using (101)
this condition translates into

F1 > 1/(2 − p). (103)

When 0 < C < 1, it is possible to show that dλ/dφ < 0 is always satisfied. Hence
the solutions approach the de Sitter attractor after the end of the matter era. When
C > 1, the de Sitter point is stable under the condition (103). If this condition is
violated, the solutions choose another stable fixed point [such as the point (c)] as an
attractor.

The above discussion shows that, when 0 < C < 1, the matter point (d) can be
followed by the stable de Sitter solution (e) for the model (98). In Fig. 2 we plot
the evolution of "DE, "m, "rad, and weff for Q = 0.01, p = 0.2, and C = 0.7.
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Fig. 2 The evolution of "DE, "m, "rad, and weff for the model (98) with parameters Q = 0.01,
p = 0.2, and C = 0.7, and initial conditions x1 = 0, x2 = 2.27 × 10−7, x3 = 0.7, and x4 − 1 =
−5.0 × 10−13

This shows that the viable cosmological trajectory can be realized for the potential
(98). In order to confront with SN Ia observations, it is possible to rewrite (79) and
(80) in the forms of (30) and (31) by defining the dark energy density ρDE and the
pressure PDE in the similar way. It was shown in [45] that the phantom equation of
state as well as the cosmological constant boundary crossing can be realized for the
field potentials U(φ) satisfying local gravity constraints.

3.2 Local Gravity Constraints

We study the local gravity constraints (LGC) for the scalar-tensor theories given
by the action (77). In the absence of the potential U(φ) the Brans–Dicke parameter
ωBD is constrained to be ωBD > 4.0×104 from solar system experiments. Note that
this bound also applies to the case of a nearly massless field with the potential U(φ)
in which the Yukawa correction e−Mr is close to unity (where M is the scalar-field
mass and r is an interaction length). Using the bound ωBD > 4.0 × 104 in (78), we
find

|Q| < 2.5 × 10−3. (104)

This is a strong constraint under which the cosmological evolution for such theories
is difficult to be distinguished from the Q = 0 case.



Modified Gravity Models of Dark Energy 119

In the presence of the field potential, it is possible for large coupling models
(|Q| = O(1)) to satisfy the local gravity constraints provided that the mass M of
the field φ is sufficiently large in the region of high density. In fact the scalar-tensor
potential (98) is designed to have a large mass in the high-density region so that it
can be compatible with experimental tests for the violation of equivalence principle
through the chameleon mechanism even for |Q| = O(1). In the following, let us
consider the model (98) and derive the conditions under which the local gravity
constraints can be satisfied. If we make a conformal transformation for the action
(98), the Einstein frame action is given by the action (77) with F(φ) = e−2Qφ . We
can use the results obtained in Sect. 2.2 because we derived thin-shell solutions for
the general coupling Q.

As in the case of f (R) gravity, we consider a configuration in which a spherically
symmetric body has a constant density ρA inside the body and that the energy den-
sity outside the body is given by ρ = ρB ( 
 ρA). Under the condition |Qφ| 
 1,
we have V,φ � −2U0QpC(2Qφ)p−1 for the potential V = U/F2 in the Einstein
frame. Then the field values at the potential minima inside and outside the body are

φA � 1

2Q

(
2U0 p C

ρA

)1/(1−p)

, φB � 1

2Q

(
2U0 p C

ρB

)1/(1−p)

. (105)

In order to realize the accelerated expansion today, U0 needs to be roughly the same
order as the square of the present Hubble parameter H0, so we have U0 ∼ H2

0 ∼ ρ0,
where ρ0 � 10−29 g/cm3 is the present cosmological density. The baryonic/dark
matter density in our galaxy corresponds to ρB � 10−24 g/cm3. Hence the condi-
tions |QφA| 
 1 and |QφB| 
 1 are in fact satisfied unless C � 1. The field mass
squared m2

A ≡ V,φφ at φ = φA is approximately given by

m2
A � 1 − p

(2p pC)1/(1−p)
Q2
(
ρA

U0

)(2−p)/(1−p)

U0, (106)

which means that mA can be much larger than H0 because of the condition ρA � U0.
This large mass allows the chameleon mechanism to work so that the condition
1/(mAr̃c) 
 1 is satisfied.

The bound (57) coming from the violation of equivalence principle in solar sys-
tem translates into

(2U0pC/ρB)
1/(1−p) < 7.4 × 10−15 |Q|. (107)

We shall consider the case in which the solutions finally approach the de Sitter
point (e). At the de Sitter point (e), one has 3F1H2

1 = U0[1 − C(1 − F1)p] with C
given in (101). Then we get the following relation:

U0 = 3H2
1

[
2 + (p − 2)F1

]
/p. (108)
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Plugging this into (107), we find

(R1/ρB)
1/(1−p) (1 − F1) < 7.4 × 10−15|Q|, (109)

where R1 = 12H2
1 is the Ricci scalar at the de Sitter point. Since the term (1−F1) is

smaller than 1/2 from the condition (103), we obtain the inequality (R1/ρB)1/(1−p) <

1.5 × 10−14|Q|. Using the values R1 = 10−29 g/cm3 and ρB = 10−24 g/cm3, we
obtain the following bound:

p > 1 − 5

13.8 − log10 |Q| . (110)

When |Q| = 10−1 and |Q| = 1, we have p > 0.66 and p > 0.64, respectively. Thus
the model can be compatible with local gravity experiments even for |Q| = O(1).

4 Braneworld Models of Dark Energy

In this section we discuss braneworld models of dark energy motivated by string the-
ory. In braneworlds standard model particles are confined on a 3D brane embedded
in 5D bulk space-time with large extra dimensions. Dvali, Gabadadze, and Porrati
(DGP) [23] proposed a braneworld model in which the 3-brane is embedded in a
Minkowski bulk space-time with infinitely large extra dimensions. Newton’s law
can be recovered by adding a 4D Einstein–Hilbert action sourced by the brane
curvature to the 5D action [70]. The presence of such a 4D term may be induced
by quantum corrections coming from the bulk gravity and its coupling with matter
on the brane. In the DGP model the standard 4D gravity is recovered for small
distances, whereas the effect from the 5D gravity manifests itself for large distances.
Interestingly, it is possible to realize the late-time cosmic acceleration without intro-
ducing a dark energy component [71, 72].

The action for the DGP model is given by

S = 1

2κ2
(5)

∫
d5X

√−g̃ R̃ + 1

2κ2
(4)

∫
d4X

√−gR −
∫

d5X
√−g̃Lm, (111)

where g̃AB is the metric in the 5D bulk and gμν = ∂μXA∂νXBg̃AB is the induced
metric on the brane with XA(xc) being the coordinates of an event on the brane
labelled by xc. The 5D and 4D gravitational constants, κ2

(5) and κ2
(4), are related wth

the 5D and 4D Planck masses, M(5) and M(4), via

κ2
(5) = 1/M3

(5), κ2
(4) = M2

(4). (112)

The first and second terms in (111) correspond to Einstein–Hilbert actions in the 5D
bulk and on the brane, respectively.
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There is no contribution to the Lagrangian Lm from the bulk matter because
we are considering a Minkowski bulk. Then the matter action consists of a brane-
localized matter whose action is given by

∫
d4x

√−g (σ + Lbrane
m ), where σ is the

3-brane tension and Lbrane
m is the Lagrangian density on the brane. Since the tension

is not related to the Ricci scalar R, it can be adjusted to be zero, as we do in the
following.

To study cosmological dynamics on the brane (located at y = 0), we take a metric
of the form:

ds2 = −n2(τ ,y)dτ 2 + a2(τ ,y) γijdxidxj + dy2, (113)

where γij represents a maximally symmetric space-time with a constant curvature
K. The 5D Einstein equations are given by

G̃AB ≡ R̃AB − 1

2
R̃ g̃AB = κ2

(5)T̃AB, (114)

where R̃AB is the 5D Ricci tensor, T̃AB is the sum of the energy momentum tensor
T (brane)

AB on the brane and the contribution ŨAB coming from the scalar curvature of
the brane:

T̃AB = T (brane)
AB + ŨAB. (115)

Since we are considering a homogeneous and isotropic universe on the brane, one

can write TA
B

(brane)
in the form

TA
B

(brane) = δ(y) diag(− ρM ,PM ,PM ,PM ,0). (116)

Note that ρM and PM are function of τ only. The non-vanishing components coming
from the Ricci scalar R of the brane are

Ũ00 = − 3

κ2
(4)

(
ȧ2

a2
+ K

n2

a2

)
δ(y), (117)

Ũij = − 1

κ2
(4)

[
a2

n2

(
− ȧ2

a2
+ 2

ȧ

a

ṅ

n
− 2

ä

a

)
− K

]
γij δ(y), (118)

where a dot represents a derivative with respect to τ . The non-vanishing components
of the 5D Einstein tensor G̃AB are [73, 74, 71]
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G̃00 = 3

[
ȧ2

a2
− n2

(
a′′

a
+ a′2

a2

)
+ K

n2

a2

]
, (119)

G̃ij =
[

a2
(

2
a′′

a
+ n′′

n
+ a′2

a2
+ 2

a′n′

an

)
+ a2

n2

(
−2

ä

a
− a′2

a2
+ 2

ȧṅ

an

)
− K

]
γij,

(120)

G̃05 = 3

(
ȧn′

an
− ȧ′

a

)
, (121)

G̃55 = 3

(
a′2

a2
+ a′n′

an

)
− 3

n2

(
ä

a
+ ȧ2

a2
− ȧṅ

an

)
− 3

K

a2
, (122)

where a prime represents a derivative with respect to y.
Assuming no flow of matter along the fifth dimension, we have T̃05 = 0 and

hence G̃05 = 0. We then find that (119) and (122) can be written as

G̃00 = − 3n2

2a3a′
I′, G̃55 = − 3

2a3ȧ
İ, (123)

where

I ≡ (a′a)2 − (ȧa)2

n2
− Ka2. (124)

Since we are considering the Minkowski bulk, we have G̃00 = 0 and G̃55 = 0 locally
in the bulk. This then gives I′ = 0 and İ = 0. The integration of these equations
leads to

(a′a)2 − (ȧa)2

n2
− Ka2 + C = 0, (125)

where C is a constant independent of τ and y.
Let us find solutions of the Einstein equations (114) in the vicinity of y = 0.

The metric needs to be continuous across the brane in order to have a well-defined
geometry. Note, however, that its derivatives with respect to y can be discontinuous
at y = 0. The Einstein tensor is made of the metric up to the second derivatives with
respect to y, so the Einstein equations with a distributional source are written in the
form [71, 73, 74]

g′′ = T δ(y), (126)

where δ(y) is a Dirac’s delta function. Integrating this equation across the brane
gives

[g′] = T , where [g′] ≡ g′(0+) − g′(0−). (127)
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The jump of the first derivative of the metric is equivalent to the energy momentum
tensor on the brane.

Equations (119) and (120) include the second derivatives a′′ and n′′ of the metric.
Integrating the Einstein equations, G̃00 = κ2

(5)T̃00 and G̃ij = κ2
(5)T̃ij, across the brane,

we obtain

[a′]
ab

= −κ2
(5)

3
ρM + κ2

(5)

κ2
(4)n

2
b

(
ȧ2

b

a2
b

+ K
n2

b

a2
b

)
, (128)

[n′]
nb

= κ2
(5)

3
(3PM + 2ρM) − κ2

(5)

κ2
(4)n

2
b

(
ȧ2

b

a2
b

+ 2
ȧb

ab

ṅb

nb
− 2

äb

ab
+ K

n2
b

a2
b

)
, (129)

where the subscript “b” represents the quantities on the brane.
We assume the symmetry y ↔ −y, in which case [a′] = 2a′(0+) and [n′] =

2n′(0+). Substituting (128) into (125), we obtain the modified Friedmann equation
on the brane:

ε

√
H2 + K

a2
b

− C

a4
b

= κ2
(5)

2κ2
(4)

(
H2 + K

a2
b

)
− κ2

(5)

6
ρM , (130)

where H ≡ ȧb/(abnb) is the Hubble parameter and ε = ±1 is the sign of [a′]. The
constant C can be interpreted as the term coming from the 5D bulk Weyl tensor
[71, 72, 75]. Since the Weyl tensor vanishes for the Minkowski bulk, we set C = 0
in the following discussion. We also introduce a length scale

rc ≡
κ2

(5)

2κ2
(4)

= M2
(4)

2M3
(5)

. (131)

Then (130) can be written as

ε

rc

√
H2 + K

a2
= H2 + K

a2
− κ2

(4)

3
ρM , (132)

where we have omitted the subscript “b” for the quantities at y = 0.
Plugging the junction conditions (128) and (129) into the (05) component of the

Einstein equations, G̃05 = 0, the following matter conservation equation holds on
the brane:

dρM

dt
+ 3H(ρM + PM) = 0, (133)

where t is the cosmic time related to the time τ via the relation dt = nbdτ . If the
equation of state, wM = PM/ρM , is specified, the cosmological evolution is obtained
by solving (132) and (133).
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For a flat geometry (K = 0), (132) reduces to

H2 − ε

rc
H = κ2

(4)

3
ρM . (134)

If the crossover scale rc is much larger than the Hubble radius H−1, the first term in
(134) dominates over the second one. In this case the standard Friedmann equation,
H2 = κ2

(4)ρM/3, is recovered. Meanwhile, in the regime rc < H−1, the presence of
the second term in (134) leads to a modification to the standard Friedmann equa-
tion. In the universe dominated by non-relativistic matter (ρM ∝ a−3), the universe
approaches a de Sitter solution for ε = +1:

H → HdS = 1

rc
. (135)

Hence it is possible to realize the present cosmic acceleration provided that rc is of
the order of the present Hubble radius H−1

0 .
Equation (132) can be written as

H2 + K

a2
=
⎛
⎝
√
κ2

(4)

3
ρM + 1

4r2
c
+ 1

2rc

⎞
⎠

2

. (136)

For the matter on the brane, we consider non-relativistic matter with the energy
density ρm and the equation of state wm = 0. We then have ρm = ρ

(0)
m (1 + z)3 from

(133). We introduce the following present value quantities:

"
(0)
K = − K

a2
0H2

0

, "(0)
rc

= 1

4r2
c H2

0

, "(0)
m = κ2

(4)ρ
(0)
m

3H2
0

. (137)

Then (136) reads

H2(z) = H2
0

[
"

(0)
K (1 + z)2 +

{√
"

(0)
m (1 + z)3 +"

(0)
rc +

√
"

(0)
rc

}2
]

. (138)

The normalization condition at z = 0 is given by

"(0)
m +"

(0)
K + 2

√
1 −"

(0)
K

√
"

(0)
rc = 1. (139)

For the flat universe (K = 0) this relation corresponds to
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Fig. 3 Observational
constraints on the DGP model
from the SNLS data (solid
thin), the BAO (dotted), and
the CMB shift parameter
from the WMAP 3-year data
(dot-dashed). The thick line
represents the curve (140) for
the flat model ("(0)

K = 0). The
figure labels "m and "rc

correspond to "(0)
m and "(0)

rc ,
respectively. From [52]
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The parametrization (138) of the Hubble parameter together with the normaliza-
tion (139) can be used to place observational constraints on the DGP model at the
background level [51, 52, 54]. In [50], the authors found a significantly worse fit
to supernova data and the distance to the last-scattering surface in the pure DGP
model as compared to the �CDM model. A similar conclusion was reached in [51]
and [53], where the two groups have also tried to constrain the DGP model using
SN Ia data and the baryon acoustic peak in the Sloan Digital Sky Survey. In Fig. 3
the joint constraints from observational data of SNLS, BAO, and the CMB shift
parameter are plotted [52]. While the flat DGP model can be consistent with the SN
Ia data, it is under strong observational pressure by adding the data of the BAO and
the CMB shift parameter. The open DGP model gives a slightly better fit relative to
the flat model [52, 54].

As we will see in the next section, the analysis of 5D cosmological perturbations
shows that the DGP model contains a ghost mode in the scalar sector of the grav-
itational field [55–57]. Hence the original DGP model is effectively ruled out as a
viable dark energy model by the observational pressure and by the ghost problem.

5 Other Modified Gravity Models

There are other classes of modified gravity models in which the Lagrangian density
f is an arbitrary function of R, P ≡ RμνRμν and Q ≡ RμναβRμναβ , where Rμν

and Rμναβ are Ricci tensor and Riemann tensor, respectively [76]. In order to avoid



126 S. Tsujikawa

the appearance of spurious spin-2 ghosts, we need to take a Gauss–Bonnet (GB)
combination [77–80], i.e.,

R2
GB = R2 − 4RμνRμν + RμναβRμναβ . (141)

The simple model that can give rise to cosmic acceleration is provided by the action

S =
∫

d4x
√−g

[
1

2
R − 1

2
(∇φ)2 − V(φ) − f (φ)R2

GB

]
+ Sm, (142)

where V(φ) and f (φ) are the functions of a scalar field φ and Sm is a matter action.
For the exponential potential V(φ) = V0e−λφ and the coupling f (φ) = (f0/μ)eμφ ,
the cosmological dynamics has been extensively studied in [24, 81–84]. In particu-
lar, it was found in [81, 82] that a scaling matter era can be followed by a late-time
de Sitter solution that appears due to the presence of the GB term.

Koivisto and Mota [81] placed observational constraints on the above model
using the Gold data set of SN Ia together with the CMB shift parameter data of
WMAP. The parameter λ is constrained to be 3.5 < λ < 4.5 at the 95% confidence
level. In the second paper [83], they included the constraints coming from the BBN,
LSS, BAO, and solar system data and showed that these data strongly disfavor the
GB model discussed above. Moreover, it was shown in [82] that tensor perturbations
are subject to negative instabilities in the above model when the GB term dominates
the dynamics (see also [85]). The paper [86] studied local gravity constraints on the
GB models with couplings of the form f (φ)R2

GB and showed that the energy contri-
bution coming from the GB term needs to be strongly suppressed to be compatible
with solar system experiments. This is typically of the order of "GB < 10−30 and
hence the GB term of the coupling f (φ)R2

GB cannot be responsible for the current
accelerated expansion of the universe. The above discussions show that the GB term
with the scalar-field coupling f (φ)R2

GB can hardly be the source for dark energy.
The models based on the Lagrangian density L = R/2+ f (G), where G = R2

GB is
the GB term, have been studied by a number of authors [87–89]. In order to ensure
the stability of a late-time de Sitter solution and radiation/matter solutions, we need
to satisfy the condition ∂2f /∂G2 > 0 [89]. In [89] the authors presented a number
of f (G) models that are cosmologically viable at least at the background level (see
also [90]). One of such viable models is given by

f (G) = λ
G√
G∗

arctan

( G
G∗

)
− αλ

√
G∗, (143)

where α, λ, and G∗ are constants. It will be of interesting to study whether such
models can be consistent with local gravity tests.
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6 Observational Signatures of Modified Gravity

In order to confront modified gravity models with observations such as large-scale
structure and CMB, we discuss the evolution of density perturbations in three
modified gravity models: (i) f (R) gravity, (ii) scalar-tensor gravity, and (iii) DGP
braneworld model. This is important to distinguish modified gravity models from
the�CDM model. We also discuss observables to confront with weak lensing obser-
vations.

6.1 f (R) Gravity

Let us consider the case of f (R) gravity in the metric formalism in the presence of
non-relativistic matter. We adopt the following perturbed metric with scalar metric
perturbations & and $ in a longitudinal gauge about the flat FLRW background

ds2 = a2[ − (1 + 2$)dη2 + (1 + 2&)δij dxi dxj] , (144)

where η = ∫
a−1dt is the conformal time. The energy momentum tensors of non-

relativistic matter are decomposed into background and perturbed parts as T0
0 =

−(ρm + δρm) and T0
α = −ρmvm,α , where vm is a velocity potential.

The Fourier-transformed perturbation equations for matter perturbations are
given by [91, 92]

δρ̇m + 3Hδρm = −ρm

(
3&̇+ k2

a
vm

)
, (145)

v̇m + Hvm = 1

a
$, (146)

where k is a comoving wavenumber. We define the gauge-invariant matter density
perturbation δm as

δm ≡ δρm

ρm
+ 3Hv, where v ≡ avm. (147)

Then (145) and (146) yield

δ̇m = − k2

a2
v − 3(&− Hv)·, (148)

v̇ = $, (149)

from which we obtain

δ̈m + 2Hδ̇m + k2

a2
$ = 3B̈ + 6HḂ, (150)
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where B ≡ −& + Hv. For the modes deep inside the Hubble radius (k � aH) the
r.h.s. of (150) can be neglected relative to the l.h.s., so that we approximately obtain

δ̈m + 2Hδ̇m + k2

a2
$ = 0. (151)

In f (R) gravity the quantity F(R) = ∂f /∂R has a perturbation δF. In the following
we use the unit κ2 = 8πG = 1, but we restore gravitational constant G when it is
required. Perturbing (2), we obtain the following equations [92]:

− k2

a2
&+ 3H(H$ − &̇)

= 1

2F

[
3H ˙δF −

(
3Ḣ + 3H2 − k2

a2

)
δF − 3HḞ$ − 3Ḟ(H$ − &̇) − δρm

]
,

(152)

¨δF + 3H ˙δF +
(

k2

a2
− R

3

)
δF

= 1

3
δρm + Ḟ(3H$ + $̇ − 3&̇) + (2F̈ + 3HḞ)$ − 1

3
FδR, (153)

$ +& = −δF

F
. (154)

For the sub-horizon modes satisfying k � aH, the terms including k2/a2 and δρm

in (152) are the dominant contributions. We then obtain the following approximate
relations from (152) and (154) :

& = 1

2F

(
a2

k2
δρm − δF

)
, $ = − 1

2F

(
a2

k2
δρm + δF

)
. (155)

As long as the conditions |Ḟ| < |HF| and |F̈| < |H2F| are satisfied, the second and
third terms on the r.h.s. of (153) are much smaller than δρm and (k2/a2)δF for the
modes deep inside the Hubble radius. Using the relation δR = δF/f,RR, we find that
(153) is approximately given by

¨δF + 3H ˙δF +
(

k2

a2
+ M2

)
δF = 1

3
δρm, (156)

where

M2 ≡ f,R
3f,RR

. (157)



Modified Gravity Models of Dark Energy 129

In order to derive (156), we have used the following condition:

{
k2

a2
,M2
}
� R ∼ H2. (158)

The condition M2 � R is satisfied for viable f (R) models in the past cosmic
expansion history of the universe [40, 42]. We recall that the conditions f,R > 0 and
f,RR > 0 need to be satisfied for R > R1 for the consistency with cosmological and
local gravity constraints, so that the mass squared M2 is positive. In the following
we shall discuss two cases: (A) M2 � k2/a2 and (B) M2 
 k2/a2, separately. For
viable f (R) models the mass squared M2 is large in the past and gradually decreases
with time. Hence the transition from the region (A) to the region (B) can occur in
the past, depending on the modes k. In the following we consider the model (61)
that corresponds to the asymptotic form of the models (58) and (59) in the region
R � Rc.

6.1.1 Evolution of Perturbations in the Regime: M2 � k2/a2

The solutions for (156) are given by the sum of the oscillating solution δFosc
obtained by setting δρm = 0 and the special solution δFind of (156) induced by
the presence of matter perturbations δρm. The oscillating part δFosc satisfies the
equation (a3/2δFosc)·· + M2(a3/2δFosc) � 0. Using the WKB approximation, the
solution is given by [40]

δFosc ∝ a−3/2 f 1/4
,RR cos

(∫
1√

3f,RR
dt

)
, (159)

where we have used f,R � 1 because the viable f (R) models are close to the �CDM
model in the region of high density.

During the matter era in which the background Ricci scalar evolves as R(0) =
4/(3t2), the quantity f,RR has a dependence f,RR ∝ R−2(n+1) ∝ t4(n+1) for the model
(61). Then the evolution of the perturbation, δRosc = δFosc/f,RR, is given by

δRosc � c t−(3n+4) cos (c0 t−2(n+1)), (160)

where c and c0 are constants. Unless the coefficient c is chosen to be very small, the
perturbation δRosc dominates over R(0)( ∝ t−2) as we go back to the past. This leads
to the violation of the stability conditions (f,RR > 0 and f,R > 0) because the Ricci
scalar can be negative.

The special solution δFind for (156) can be derived by neglecting the first and
second terms relative to others, giving

δFind � δρm

3M2
, δRind � δρm. (161)
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Under the condition |δFosc| 
 |δFind|, we have δF � δρm/(3M2) so that (155)
reduces to

$ = −& = − 1

2F

a2

k2
δρm. (162)

Plugging (162) into (151), we find that the matter perturbation obeys the following
equation:

δ̈m + 2Hδ̇m − 4πGρmδm/F = 0, (163)

where we have reproduced the gravitational constant G for clarity. During the
matter-dominated era ("m = ρm/(3FH2) = 1), this has the growing-mode solution

δm ∝ t2/3. (164)

From (161) we get

δFind ∝ t4(n+2/3), δRind ∝ t−4/3. (165)

Compared to the oscillating mode (160), the matter-induced mode δRind decreases
more slowly and thus dominates at late times. Relative to the background value R(0),
the perturbation δR = δRosc + δRind evolves as

δR

R(0)
� c1 t−(3n+2) cos (c0t−p) + c2 t2/3, (166)

where c1 and c2 are constants. In order to avoid the dominance of the oscillating
mode at the early epoch, the coefficient c1 needs to be suppressed relative to c2
[40, 42].

6.1.2 Evolution of Perturbations in the Regime: M2 � k2/a2

Since the scalaron mass decreases as M ∝ t−2(n+1), the modes that initially exist
in the region M2 � k2/a2 can enter the regime M2 
 k2/a2 during the matter-
dominated epoch. It is sufficient to consider the matter-induced mode because the
oscillating mode is already suppressed during the evolution in the regime M2 �
k2/a2. The matter-induced special solution of (156) in the regime M2 
 k2/a2 is
approximately given by

δFind � a2

3k2
δρm. (167)

From (155) the gravitational potentials satisfy
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$ = −4

3
· 1

2F

a2

k2
δρm, & = 2

3
· 1

2F

a2

k2
δρm. (168)

Plugging (168) into (151), the matter perturbation obeys the following equation:

δ̈m + 2Hδ̇m − 4

3
· 4πGρmδm/F = 0. (169)

During the matter-dominated epoch with "m � 1 and a ∝ t2/3, we obtain the
following evolution:

δm ∝ t
√

33−1
6 . (170)

The growth rate of δm gets larger compared to (164).

6.1.3 Matter Power Spectra

If the transition from the regime M2 � k2/a2 to the regime M2 
 k2/a2 occurs
during the matter era, the evolution of matter perturbations changes from δm ∝ t2/3

to δm ∝ t(
√

33−1)/6. We use the subscript “k” for the quantities at which k is equal
to aM, whereas the subscript “�” is used at which the accelerated expansion starts
(ä = 0). While the redshift z� is independent of k, zk depend on k and also on the
mass M.

For the model (61) the variable m = Rf,RR/f,R can grow fast from the regime
m 
 (aH/k)2 (i.e., M2 � k2/a2) to the regime m � (aH/k)2 (i.e., M2 
 k2/a2).
In fact, m can grow to as large as the order of 0.1 even if m is much smaller than
10−6 in the deep matter era. For the sub-horizon modes relevant to the galaxy power
spectrum, the transition at M2 = k2/a2 typically occurs at the redshift zk larger than
1 (provided that n = O(1)). For the mode k/(a0H0) = 300, one has zk = 4.83 for
n = 1 and zk = 2.49 for n = 2. As n gets larger, the period of a non-standard
evolution of δm becomes shorter because zk tends to be smaller. Since the scalaron
mass evolves as M ∝ t−2(n+1) for the model (61), the time tk has a scale dependence

tk ∝ k−
3

6n+4 . This means that the smaller-scale modes cross the transition point
earlier. The matter power spectrum Pδm = |δm|2 at the time t� shows a difference
compared to the case of the �CDM model:

Pδm(t�)

P�CDM
δm

(t�)
=
(

t�
tk

)2
(√

33−1
6 − 2

3

)
∝ k

√
33−5

6n+4 . (171)

The galaxy matter power spectrum is modified by this effect. Meanwhile the
CMB spectrum is hardly affected except for very large scales (for the multipoles
� = O(1)) at which the integrated Sachs–Wolfe (ISW) effect becomes important.
Hence there is a difference for the spectral indices of two power spectra, i.e.,



132 S. Tsujikawa

'n(t�) =
√

33 − 5

6n + 4
. (172)

For larger n the redshift zk can be as close as z�, which means that the estimation
(172) is not necessarily valid in such cases. Moreover, the estimation (172) does not
take into account the evolution of δm after z = z� to the present epoch (z = 0). It was
found in [42] that the estimation (172) agrees well with the numerically obtained
'n(t�) for n ≤ 2.

After the system enters the epoch of cosmic acceleration, the momentum k can
again become smaller than aM. Hence the k-dependence is not necessarily negli-
gible even for z < z�. However, we find that 'n(t0) is not much different from
'n(t�) derived by (172). Thus the analytic estimation (172) is certainly reliable to
place constraints on model parameters except for n � 1. Observationally, we do not
find any strong difference for the slopes of the spectra of LSS and CMB. If we take
the mild bound 'n(t�) < 0.05, we obtain the constraint n ≥ 2. In this case the local
gravity constraint (67) is also satisfied.

The modified growth of matter perturbations also affects the evolution of the
gravitational potentials $ and &. The effective potential ψ ≡ &−$ is important to
discuss the ISW effect on the CMB as well as the weak lensing observations [93].
From (155) this potential is given by

ψ = 3a2H2

k2
"mδm. (173)

In the �CDM model the potential ψ remains constant during the standard matter
era, but it decays after the system enters the accelerated epoch, producing the ISW
contribution for low multipoles on the CMB power spectrum. In f (R) gravity the
additional growth of matter perturbations in the region z < zk changes the evolution
of ψ.

From CMB observations, however, we do not obtain a constraint on n tighter
than the one derived by the spectral index of matter perturbations [94]. This comes
from the fact that the ISW effect is important only for the modes with k/(a0H0) =
O(1) whose transition redshift zk is smaller than the modes relevant to the galaxy
power spectrum. In the weak lensing observations, the modified evolution of the
lensing potential ψ directly leads to the change even for the small-scale shear power
spectrum [95, 96]. Hence this can be a powerful tool to constrain f (R) gravity models
from future observations.

6.2 Scalar-Tensor Gravity

We shall next discuss the case of scalar-tensor gravity. To be concrete we shall study
the evolution of matter perturbations for the Jordan frame action (77), i.e., Brans–
Dicke theory with the potential U(φ) and the coupling F(φ) = e−2Qφ . We define the
field mass squared to be
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M2 ≡ U,φφ . (174)

If the scalar field is light such that the condition M < H0 is always satisfied irrespec-
tive of high- or low-density regions, the coupling Q is constrained to be |Q| < 10−3

from local gravity tests. Meanwhile, if the mass M in the region of high density is
much larger than that on cosmological scales, it is possible to satisfy local gravity
constraints by the chameleon mechanism even if |Q| is of the order of unity. Cos-
mologically the mass M can decrease from the past to the present, which can allow
the transition from the “GR regime” to the “scalar-tensor regime” as it happens in
f (R) gravity. An example of field potential showing this behavior is given by (98).

As in f (R) gravity, the matter perturbation δm satisfies (151). The difference
appears in the expression of the gravitational potential $. In Fourier space the scalar
metric perturbations obey the following equations [92, 45]:

− k2

a2
&+ 3H(H$ − &̇) = − 1

2F

[
ωφ̇δφ̇ + 1

2
(ω,φφ̇

2 − F,φR + 2V,φ)δφ

+
(

3Ḣ + 3H2 − k2

a2

)
δF − 3HδḞ + (3HḞ − ωφ̇2)$ + 3Ḟ(H$ − &̇) + δρm

]
,

(175)

δφ̈ +
(

3H + ω,φ

ω
φ̇
)
δφ̇ +

[
k2

a2
+
(ω,φ

ω

)
,φ

φ̇2

2
+
(

2U,φ − F,φR

2ω

)
,φ

]
δφ

= φ̇$̇ +
(

2φ̈ + 3Hφ̇ + ω,φ

ω
φ̇2
)
$ + 3φ̇(H$ − &̇) + 1

2ω
F,φδR, (176)

$ +& = −δF

F
= −F,φ

F
δφ, (177)

where δφ is the perturbed field, ω = (1 − 6Q2)F and

δR = 2

[
3(&̇− H$)· − 12H(H$ − &̇) +

(
k2

a2
− 3Ḣ

)
$ + 2

k2

a2
&

]
. (178)

Provided that the mass M defined in (174) is sufficiently heavy to satisfy the
conditions M2 � R, we can approximate [(2U,φ − F,φR)/2ω],φ � M2/ω in (176).
The solution for (176) consists of the sum of the matter-induced mode δφind sourced
by the matter perturbation and the oscillating mode δφosc, i.e., δφ = δφind + δφosc
(as in the case of f (R) gravity).

We first derive the matter-induced mode on sub-horizon scales. We use the
approximation that the terms containing k2/a2, δρm, δR, and M2 are the domi-
nant contributions in (175), (176), (177), and (178). Note that this approximation
was first used in [65] for the scalar-tensor theory with the Lagrangian density
L = (1/2)F(φ)R − (1/2)∇(φ)2 − U(φ) in the massless limit: M2 
 k2/a2. Under
this approximation, we have δRind � 2(k2/a2)[& − (F,φ/F)δφind] from (175) and
(178), where the subscript “ind” represents the matter-induced mode. Then from
(176) we find
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δφind � − 2QF

(k2/a2)(1 − 2Q2)F + M2

k2

a2
&. (179)

Using (175) and (177) we obtain

k2

a2
$ � −δρm

2F

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2
, (180)

k2

a2
& � δρm

2F

(k2/a2)(1 − 2Q2)F + M2

(k2/a2)F + M2
. (181)

In the massive limit M2/F � k2/a2, we recover the standard result of General Rel-
ativity. In the massless limit M2/F 
 k2/a2, one has (k2/a2)$ � −(δρm/2F)(1 +
2Q2) and (k2/a2)& � (δρm/2F)(1 − 2Q2). Note that this recovers (168) in f (R)
gravity by setting Q = −1/

√
6.

Plugging (181) into (151), we obtain the equation for matter perturbations [45]

δ̈m + 2Hδ̇m − 4πGeffρmδm = 0, (182)

where the effective (cosmological) gravitational “constant” is

Geff = G

F

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2
. (183)

We have recovered the bare gravitational constant G. In the massless limit this
reduces to

Geff � G

F
(1 + 2Q2) = G

F

4 + 2ωBD

3 + 2ωBD
(M2 
 k2/a2), (184)

where in the last line we have used the relation (78) between the coupling Q and the
Brans–Dicke parameter ωBD. In f (R) gravity we have ωBD = 0 and hence Geff =
4G/(3F).

Let us derive the approximate equation for the oscillating mode. Using (175) and
(176) under the condition k2/a2 � H2, the gravitational potentials for δρm = 0
are expressed by ϕosc. Then from (178) the perturbation δR corresponding to the
oscillating mode is given by

δRosc � 6Q

(
δφ̈osc + 3Hδφ̇osc + k2

a2
δφosc

)
. (185)

Substituting this relation in (176), we find

δφ̈osc + 3Hδφ̇osc +
(

k2

a2
+ M2

F

)
δφosc � 0, (186)

which is valid in the regime M2 � R.
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When |Q| = O(1) the field potential U(φ) is required to be heavy in the region
of high density for the consistency with local gravity constraints. We shall consider
the potential (98) as an example of a viable model. During the matter era the field φ
sits at the instantaneous minima characterized by the condition (100). Then we have

the relations φ ∝ ρ
1

p−1
m and M2 ∝ ρ

2−p
1−p
m during the matter-dominated epoch. The

field φ can initially be heavy to satisfy the condition M2/F � k2/a2 for the modes
relevant to the galaxy power spectrum. Depending on the model parameters and the
mode k, the mass squared M2 can be smaller than k2/a2 during the matter era [45].

In the regime M2/F � k2/a2 the matter perturbation equation (182) reduces to
the standard one in Einstein gravity, which gives the evolution δm ∝ t2/3. For the
model (98) the matter-induced mode of the field perturbation evolves as δφind ∝
δρm/M2 ∝ t

2(4−p)
3(1−p) . Meanwhile, the WKB solution to (186) is given by δφosc ∝

t
p

2(1−p) cos
(

ct−
1

1−p

)
, where c is a constant. Since the background field φ during the

matter era evolves as φ ∝ t
2

1−p , we find

δφ/φ = (δφind + δφosc)/φ � c1t2/3 + c2t−
4−p

2(1−p) cos
(

ct−
1

1−p

)
. (187)

As long as the oscillating mode is initially suppressed relative to the matter-induced
mode, the matter-induced mode remains the dominant contribution.

In the regime M2/F 
 k2/a2 the effective gravitational constant is given by
(184), which shows that the effect of modified gravity becomes important. Solving
(182) in this case, we obtain the solution for matter perturbations

δm ∝ t

√
25+48Q2−1

6 . (188)

Setting Q = −1/
√

6, this recovers the solution δm ∝ t(
√

33−1)/6 in f (R) gravity.
The potential (98) has a heavy mass M which is much larger than H in the deep

matter-dominated epoch, but it gradually decreases to become of the order of H
around the present epoch. Depending on the modes k, the system crosses the point
M2/F = k2/a2 at t = tk during the matter era. Since for the model (98) M evolves

as M ∝ t−
2−p
1−p during the matter era, the time tk has a scale dependence given by

tk ∝ k−
3(1−p)

4−p . When t < tk the evolution of δm is given by δm ∝ t2/3, but for t > tk
its evolution changes to the form given by (188).

During the matter era the mass squared is approximately given by

M2 � 1 − p

(2p p C)1/(1−p)
Q2
(
ρm

U0

) 2−p
1−p

U0. (189)

Using the relation ρm = 3F0"
(0)
m H2

0(1 + z)3, we find that the critical redshift zk at
time tk can be estimated as
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zk �
[(

k

a0H0

1

Q

)2(1−p) 2ppC

(1 − p)1−p

1

(3F0"
(0)
m )2−p

U0

H2
0

] 1
4−p

− 1, (190)

where a0 is the present scale factor. The critical redshift increases for larger k/(a0H0).
The matter power spectrum, in the linear regime, has been observed for the scales
0.01h Mpc−1 < k < 0.2h Mpc−1, which corresponds to 30a0H0 < k < 600a0H0.
In Fig. 4 we plot the evolution of the growth rate s = δ̇m/(Hδm) for the mode
k = 600a0H0 and the coupling Q = 1.08 with three different values of p. Note
that the asymptotic values of s in the regions t 
 tk and t � tk are given by
s = 1 and s = (

√
25 + 48Q2 − 1)/4, respectively. We find that, for the scales

30a0H0 < k < 600a0H0, the critical redshift exists in the region zk > 1 and that
zk increases for smaller p. When p = 0.7 we have zk = 3.9 from (190), which is
consistent with the numerical result shown in Fig. 4. The growth rate s reaches a
maximum value smax and then begins to decrease around the end of the matter era.

The observational constraint on s reported by McDonald et al. [97] is s = 1.46±
0.49 around the redshift z = 3, whereas the more recent data reported by Viel and
Haehnelt [98] in the redshift range 2 < z < 4 show that even the value s = 2 can be
allowed in some of the observations. If we use the criterion s < 2 for the analytic
estimation s = (

√
25 + 48Q2−1)/4, we obtain the bound Q < 1.08. Figure 4 shows
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Fig. 4 Evolution of the growth rate s of matter perturbations in terms of the redshift z for Q = 1.08
and k = 600a0H0 with three different values of p. For smaller p the critical redshift zk gets larger.
The growth rate s reaches a maximum value and begins to decrease after the system enters the
accelerated epoch. For smaller p the maximum value of s tends to approach the analytic value
(
√

25 + 48Q2 − 1)/4



Modified Gravity Models of Dark Energy 137

that smax is smaller than the analytic value s = 2 (which corresponds to Q = 1.08).
When p = 0.7, for example, we have that smax = 1.74. For the values of p that
are very close to 1, smax can be smaller than 1.5. However, these cases are hardly
distinguishable from the �CDM model. In any case the current observational data
on the growth rate s are not enough to place tight bounds on Q and p.

As in the case of f (R) gravity, the matter power spectrum Pδm at time t = t� (at
which ä = 0) shows a difference compared to the �CDM model given by

Pδm(t�)

P�CDM
δm

(t�)
=
(

t�
tk

)2

(√
25+48Q2−1

6 − 2
3

)
∝ k

(1−p)(
√

25+48Q2−5)
4−p . (191)

The CMB power spectrum is also modified by the non-standard evolution of the
effective gravitational potential

ψ = &−$ = 3a2H2

k2
"mδm, (192)

which mainly affects the low multipoles because of the ISW effect. Since the smaller
scale modes in CMB relevant to the galaxy power spectrum are hardly affected by
this modification, there is a difference between the spectral indices of the matter
power spectrum and of the CMB spectrum on the scales, k > 0.01h Mpc−1:

'n(t�) = (1 − p)(
√

25 + 48Q2 − 5)

4 − p
. (193)

This reproduces the result (172) in f (R) gravity by setting Q = −1/
√

6 and p =
2n + 1. If we use the criterion 'n(t�) < 0.05, as in the case of the f (R) gravity, we
obtain the bounds p > 0.957 for Q = 1 and p > 0.855 for Q = 0.5. As long as p
is close to 1, it is possible to satisfy both cosmological and local gravity constraints
for |Q| < 1.

6.3 DGP Braneworld Model

In this section we discuss the evolution of linear matter perturbations in the DGP
braneworld model. The perturbed metric in the 5D longitudinal gauge with four
scalar metric perturbations $, &, B, E is given by [56, 99]

ds2 = −(1+ 2$)n(t,y)2dt2 + (1+ 2&)A(t,y)2δijdxidxj + 2rcB,idxidy+ (1+ 2E)dy2,
(194)

where the brane is located at y = 0 in the fifth dimension characterized by the
coordinate y (we are considering a flat FLRW space-time on the brane). Note that
B can be identified as a brane bending mode describing a perturbation of the brane
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location and that rc is the crossover scale defined in (131). The solution for the
background metric describing the self-accelerating universe is [71]

n(t,y) = 1 + H(1 + Ḣ/H2)y, A(t,y) = a(t)(1 + Hy). (195)

Recall that the Hubble parameter H = ȧ/a satisfies (134) with ε = +1.
In the following we shall neglect the terms suppressed by the factor aH/k 
 1

because we are considering sub-horizon perturbations. We also neglect the terms
such as (A′/A)&′, where a prime represents a derivative with respect to y. This
comes from the fact that &′ is of the order of (k/a)&, as we will show later. The
time-derivative terms can also be dropped under a quasi-static approximation. Then
the perturbed 5D Einstein tensors δG̃A

B obey the following equations locally in the
bulk [99]:

δG̃0
0 = 3&′′ + 2

A2
∇2&+ ∇2

A2
(E − rcB′) − 2

rc

A2

(
A′

A

)
∇2B = 0, (196)

δG̃i
j = − 1

A2
(∇ i∇j − δi

j∇2)(&+$ + E − rcB′) + δi
j($

′′ + 2&′′)

+ rc

A2
(∇ i∇j − δi

j∇2)

(
A′

A
+ n′

n

)
B = 0, (197)

δG̃5
i = −($ ′ + 2&′),i = 0, (198)

δG̃5
5 = 1

A2
∇2($ + 2&) − rc

A2

(
2

A′

A
+ n′

n

)
∇2B = 0. (199)

Taking the divergence of the traceless part of (197), we get

∇2

A2
(&+$ + E − rcB′) − rc

A2

(
A′

A
+ n′

n

)
∇2B = 0. (200)

For the consistency between (198) and (199), it is required that

B′ = 0, $ ′ + 2&′ = 0. (201)

From (199) and (200), we obtain

∇2

A2
(E − rcB′) = −1

2

∇2

A2
$ + rc

2A2

n′

n
∇2B. (202)

Substituting (199) and (202) into (196) together with the use of (201), we find

$ ′′ + ∇2

A2
$ − n′

n

rc

A2
∇2B = 0. (203)
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Under the sub-horizon approximation (k/aH � 1) the solution of (203), upon the
Fourier transformation, is given by

$ − n′

n
rcB =

[
c1(1 + Hy)−k/aH + c2(1 + Hy)k/aH

]
, (204)

where c1 and c2 are integration constants. In order to avoid the divergence of the
perturbation in the limit y → ∞, we shall choose c2 = 0.

The junction condition at the brane can be expressed in terms of an extrinsic
curvature Kμν and an energy momentum tensor on the brane:

Kμν − Kgμν = −κ2
(5)

2
Tμν + rcGμν , (205)

where K ≡ Kμ
μ . Note that the extrinsic curvature is defined as Kμν = hλμ∇λ nν ,

where nν is the unit vector normal to the brane and hμν = gμν−nμnν is the induced
metric on the brane. The (0,0) and spatial components of the junction condition
(205) give

2

a2
∇2& = −κ2

(4)δρm + 1

a2
∇2B − 3

rc
&′, (206)

&+$ = B, (207)

$ ′ + 2&′ = 0, (208)

where δρm is the matter perturbation on the brane. Equation (208) is consistent with
the latter of (201).

From (204) it follows that &′ ∼ (k/a)& in Fourier space. For the perturbations
whose wavelengths are much smaller than the crossover scale rc, i.e., rc k/a � 1,
we find that the term (3/rc)&′ in (206) is much smaller than (k2/a2)&. In Fourier
space (206) is approximately given by

2k2

a2
& = κ2

(4)δρm + k2

a2
B. (209)

Using the projection of (199) as well as (207) and (209), we find that metric pertur-
bations $ and & obey the following equations:

k2

a2
$ = −κ2

(4)

2

(
1 + 1

3β

)
δρm,

k2

a2
& = κ2

(4)

2

(
1 − 1

3β

)
δρm, (210)

where

β(t) ≡ 1 − 2rc

3

(
2

A′

A
+ n′

n

)
= 1 − 2Hrc

(
1 + Ḣ

3H2

)
. (211)
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The matter perturbation δm satisfies the same form of equation as given in (151) for
the modes deep inside the horizon [55, 56]. Substituting the former of (210) into
(151), we find that the matter perturbation obeys the following equation:

δ̈m + 2Hδ̇m − 4πGeffρmδm = 0, (212)

where

Geff =
(

1 + 1

3β

)
G. (213)

Here G is 4D gravitational constant.
In the deep matter era one has Hrc � 1 and hence β � −Hrc, so that β is largely

negative (|β| � 1). In this regime the evolution of the matter perturbation is similar
to that in General Relativity (δm ∝ t2/3). The system finally approaches the de Sitter
solution characterized by HdS = 1/rc. We then have β � 1−2Hrc � −1 around the
de Sitter solution. Since 1 + 1/(3β) � 2/3, the growth rate in this regime is smaller
relative to the case of General Relativity. The index γ of the growth rate f = "

γ
m is

approximated by γ ≈ 0.68 [100], which is different from the value γ � 0.55 for the
�CDM model. If the future imaging survey of galaxies can constrain γ within 20%,
it may be possible to distinguish the �CDM model from DGP-modified gravity
observationally [101].

Comparing (213) with the effective gravitational constant (184) in Brans–Dicke
theory with a massless limit (or the absence of the field potential), we find that the
Brans–Dicke parameter ωBD has the following relation with β:

ωBD = 3

2
(β − 1). (214)

Since β < 0 for the self-accelerating DGP solution, this implies that ωBD < −3/2.
This corresponds the theory with ghosts, because the kinetic energy of a scalar field
degree of freedom is negative in the Einstein frame. Note that another normal branch
of solutions in the DGP model does not suffer from this problem because the minus
sign of (211) is replaced by the plus sign. In other words, the self-accelerating solu-
tion in the original DGP model can be realized at the expense of an appearance of
the ghost state.

6.4 Observables in Weak Lensing

In the previous sections we have shown that modified gravity models generally lead
to a change of the growth rate of matter perturbations compared to the �CDM
model. Since there are two free functions that determine the first-order metrics $
and &, dark energy models can be classified according to how the gravitational
potentials are linked to δm. In order to quantify this, we introduce two quantities
q(k,t) and ζ (k,t) defined by
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k2

a2
& = 4πGqδmρm, (215)

&+$

&
= ζ , (216)

where G is the 4D bare gravitational constant. Note that ζ characterizes the strength
of the anisotropic stress. The �CDM model corresponds to q = 1 and ζ = 0 (recall
that the cosmological constant does not cluster). Modified gravity models give rise
to different values of q,ζ relative to the �CDM model. Therefore, the functions
q and ζ characterize a gravity theory for first-order scalar perturbations on small
scales.

In the scalar-tensor model discussed in Sect. 6.2, the gravitational potentials are
given by (181) on sub-horizon scales. In this case we have

q = 1

F

(k2/a2)(1 − 2Q2)F + M2

(k2/a2)F + M2
, ζ = − 4F(k2/a2)Q2

(k2/a2)(1 − 2Q2)F + M2
, (217)

where we have used the unit 8πG = 1. In the regime M2/F � k2/a2 (and F � 1)
it follows that q � 1 and ζ � 0. In the regime M2/F 
 k2/a2 we have q �
(1 − 2Q2)/F and ζ � −4Q2/(1 − 2Q2), so that the deviation from the �CDM
model becomes important. Recall that the expression (217) covers the case of f (R)
gravity by setting Q = −1/

√
6. In [102] the quantities q and ζ have been evaluated

for the more general Lagrangian density f (R,φ,X).
In the DGP model the gravitational potentials obey (210), which gives

q = 1 − 1

3β
, ζ = 2

1 − 3β
. (218)

In the deep matter era one has |β| � 1, so that q � 1 and ζ � 0. The deviation
from (q,ζ ) = (1,0) appears when |β| decreases to the order of unity, i.e., when the
universe enters the epoch of late-time cosmic acceleration.

In order to confront dark energy models with the observations of weak lensing,
it may be convenient to introduce the following quantity [93]:

* ≡ q(1 − ζ/2). (219)

From (215) and (216) we find that the weak lensing potential ψ = & − $ can be
expressed as

ψ = 8πG
a2

k2
ρmδm*. (220)

We have * = 1 and * = 1/F for the DGP model and for scalar-tensor models.
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The effect of modified gravity theories manifests itself in weak lensing observa-
tions in at least two ways. One is the multiplication of the term * on the r.h.s. of
(220). Another is the modification of the evolution of δm. The latter depends on two
parameters q and ζ or, equivalently, on * and ζ . Thus two parameters (*,ζ ) will be
useful to detect signatures of modified gravity theories from future surveys of weak
lensing.

7 Conclusions

We have discussed cosmological viability of modified gravity models as well as
local gravity constraints on these models. In f (R) gravity the coupling strength
between dark energy and non-relativistic matter is of order 1 (Q = −1/

√
6) in

the Einstein frame. Under the chameleon mechanism it is possible for f (R) models
to be consistent with local gravity constraints as long as the models are carefully
designed. The models also need to possess a matter-dominated era followed by a
late-time acceleration. It is required that viable f (R) models satisfy the conditions
f,R > 0 and f,RR > 0 for R ≥ R1, where R1 is a Ricci scalar at a late-time de
Sitter point. Moreover, for the consistency with local gravity tests, the variable
m = Rf,RR/f,R must approach 0 as R gets larger. In addition we require the stability
condition (28) for the late-time de Sitter point. The representative models satisfying
these requirements are given in (58), (59), and (60).

We have also considered a class of dark energy models based on scalar-tensor
theories given by the action (77). In these theories, expressed in the Einstein frame,
the scalar field φ couples to non-relativistic matter with a constant coupling Q. The
action (77) is equivalent to the Brans–Dicke theory with a field potential U, where
the Brans–Dicke parameter ωBD is related to the coupling Q via the relation 3 +
2ωBD = 1/(2Q2). This includes f (R) gravity and quintessence models as special
cases where the coupling is given by Q = −1/

√
6 (i.e., ωBD = 0) and Q = 0 (i.e.

ωBD → ∞), respectively. Even when |Q| is of the order of 1, it is possible for Brans–
Dicke models to be consistent with cosmological and local gravity constraints as
long as the field potential is designed in a suitable way. One of the representative
potentials satisfying these constraints is given in (98).

For viable f (R) and Brans–Dicke models, we have shown that the quantity
F = ∂f /∂R tends to increase from its present value F0 as we go into the past,
which results in the equation of state wDE of dark energy becoming singular when
"m = F0/F. This can happen even around the redshift z = 2–3. This property is an
important signature to distinguish these models from the �CDM cosmology.

We have studied the evolution of density perturbations for viable f (R) and Brans–
Dicke models. In the deep matter era a scalar-field degree of freedom has a large
mass M to make these models compatible with local gravity constraints, but the
mass gradually gets smaller as the universe enters the accelerated epoch. In the early
cosmological epoch, there exists a “General Relativistic” phase during the matter
era characterized by the condition M2 � k2/a2 (k is a comoving wavenumber and
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a is a scale factor). At this stage the matter perturbation evolve as δm ∝ t2/3, as
in the case of Einstein gravity. Around the end of the matter-dominated epoch, the
deviation from Einstein gravity can be seen once M2 becomes smaller than k2/a2.
The evolution of perturbations during this “scalar-tensor” regime is given by δm ∝
t
√

25+48Q2−1
6 . Under the criterion s = δ̇m/Hδm < 2 for the growth rate of matter

perturbations, we obtain the bound Q < 1.08 by using the analytic estimation s =
(
√

25 + 48Q2 − 1)/4. The difference 'n of the spectral indices of CMB and matter
power spectra gives rise to another constraint on model parameters, e.g., n ≥ 2 for
the f (R) models (59) and (60).

We also discussed the DGP braneworld model as a candidate for the late-time
cosmic acceleration. While the universe exhibits a self-acceleration at late times,
the joint constraints from data of SNLS, BAO, and the CMB shift parameter show
that this model is under strong observational pressure. Moreover, this model con-
tains a ghost mode with the effective Brans–Dicke parameter ωBD smaller than
−3/2. Hence the original DGP model is effectively ruled out from observational
constraints as well as from the ghost problem.

We have seen that modified gravity models generally give rise to a number of
interesting observational signatures such as a divergence behavior of the dark energy
equation of state as well as the peculiar evolution of matter density perturbations.
We hope to find such deviations from the �CDM model in future high-precision
observations.
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Statistical Methods in Cosmology

L. Verde

Summary The advent of large data set in cosmology has meant that in the past
10 or 20 years our knowledge and understanding of the Universe has changed not
only quantitatively but also, and most importantly, qualitatively. Cosmologists are
interested in studying the origin and evolution of the physical Universe. They rely
on data where a host of useful information is enclosed, but is encoded in a non-
trivial way. The challenges in extracting this information must be overcome to make
the most of the large experimental effort. Even after having analyzed a decade or
more of data and having converged to a standard cosmological model (the so-called
and highly successful ΛCDM model) we should keep in mind that this model is
described by 10 or more physical parameters and if we want to study deviations
from the standard model the number of parameters is even larger. Dealing with
such a high-dimensional parameter space and finding parameters constraints is a
challenge on itself. In addition, as gathering data is such an expensive and difficult
process, cosmologists want to be able to compare and combine different data sets
both for testing for possible disagreements (which could indicate new physics) and
for improving parameter determinations. Finally, because experiments are always
so expansive, cosmologists in many cases want to find out a priori, before actually
doing the experiment, how much one would be able to learn from it. For all these
reasons, more and more sophisticated statistical techniques are being employed in
cosmology, and it has become crucial to know some statistical background to under-
stand recent literature in the field. Here, I will introduce some statistical tools that
any cosmologist should know about in order to be able to understand recently pub-
lished results from the analysis of cosmological data sets. I will not present a com-
plete and rigorous introduction to statistics as there are several good books which
are reported in the references. The reader should refer to those. I will take a practical
approach and I will touch upon useful tools such as statistical inference, Bayesians
vs Frequentists approach, chisquare and goodness of fit, confidence regions, like-
lihood, Fisher matrix approach, Monte Carlo methods, and a brief introduction to
model testing. Throughout, I will use practical examples often taken from recent
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literature to illustrate the use of such tools. Of course this will not be an exhaustive
guide: it should be interpreted as a “starting kit,” and the reader is warmly encour-
aged to read the references to find out more.

1 Introduction

As cosmology has made the transition from a data-starved science to a data-driven
science, the use of increasingly sophisticated statistical tools has increased. As
explained in detail below, cosmology is intrinsically related to statistics, as theories
of the origin and evolution of the Universe do not predict, for example, that a par-
ticular galaxy will form at a specific point in space and time or that a specific patch
of the cosmic microwave background will have a given temperature; any theory will
predict average statistical properties of our Universe, and we can only observe a
particular realization of that.

It is often said that cosmology has entered the precision era: “precision” requires
a good knowledge of the error bars and thus confidence intervals of a measurement.
This is an inherently statistical statement. We should try, however, to go even further,
and also achieve “accuracy” (although cosmology does not have a particularly stellar
track record in this regard). This requires quantifying systematic errors (beyond the
statistical ones) and it also requires statistical tools. For all these reasons, knowl-
edge of basic statistical tools has become indispensable to understand the recent
cosmological literature.

Examples of applications where probability and statistics are crucial in Cosmol-
ogy are (i) Is the Universe homogenous and isotropic on large scales? (ii) Are the
initial conditions consistent with being Gaussian? (iii) Is there a detection of non-
zero tensor modes? (iv) What is the value of the density parameter of the Universe
Ωm given the WMAP data for a ΛCDM model? (v) What are the allowed values
at a given confidence level for the primordial power spectrum spectral slope n? (vi)
What is the best fit value of the dark energy equation of state parameter w? (vii) Is a
model with equation of state parameter different from −1 a better fit to the data than
a model with non-zero curvature? (viii) What will be the constraint on the parameter
w for a survey with given characteristic?

The first three questions address the hypothesis-testing issue. You have an
hypothesis and you want to check whether the data are consistent with it. Some-
times, especially for addressing issues of “detection” you can test the null hypothe-
sis: assume the quantity is zero and test whether the data are consistent with it.

The next three questions are “parameter estimation” problems: we have a model,
in this example, the ΛCDM model, which is characterized by some free parameters
which we would like to measure.

The next question, (vii), belongs to “model testing”; we have two models and ask
which one is a better fit to the data. Model testing comes in several different flavors:
the two models to be considered may have different number of parameters or equal
number of parameters, may have some parameters in common or not, etc.
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Finally question (viii) is on “forecasting,” which is particularly useful for or
quickly forecasting the performance of future experiments and for experimental
design.

Here we will mostly concentrate on the issue of parameter estimation but also
touch upon the other applications.

2 Bayesians vs Frequentists

The world is divided into Frequentists and Bayesians. For Frequentists probabilities
P are frequencies of occurrence:

P = n

N
, (1)

where n denotes the number of successes and N the total number of trials.
Frequentists define probability as the limit for the number of independent trials
going to infinity. Bayesians interpret probabilities as degree of belief in a hypothesis.

Let us say that x is our random variable (event). Depending on the application, x
can be the number of photons hitting a detector, the matter density in a volume, the
Cosmic Microwave Background temperature in a direction in the sky, etc. The prob-
ability that x takes a specific value is P(x) where P is called probability distribution.
Note that probabilities (the possible values of x) can be discrete or continuous. P(x)
is a probability density: P(x)dx is the probability that the random variable x takes a
value between x and x + dx. Frequentists only consider probability distributions of
events while Bayesians consider hypothesis as events.

For both, the rules of probability apply.

1. P(x) ≥ 0
2.
∫∞
−∞ dxP(x) = 1. In the discrete case

∫ −→∑
.

3. For mutually exclusive events P(x1Ux2) ≡ P(x1.OR.x2) = P(x1) + P(x2)
4. In general P(x1,x2) = P(x1)P(x1|x2). In words, the probability of x1 AND x2 to

happen is the probability of x1 times the conditional probability of x2 given that
x1 has already happened.

The last item deserves some discussion. For example, only for independent events
where P(x2|x1) = P(x2) one can write P(x1,x2) = P(x1)P(x2). Of course in general
one can always rewrite P(x1,x2) = P(x1)P(x1|x2) by switching x1and x2. If then
one makes the apparently tautological identification that P(x1,x2) = P(x2,x1) and
substitute x1 −→ D standing for data and x2 −→ H standing for hypothesis, one
gets Bayes theorem :

P(H|D) = P(H)P(D|H)

P(D)
, (2)
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where P(H|D) is called the posterior, P(D|H) is the likelihood (the probability of
the data given the hypothesis) and P(H) is called the prior. Note that here explicitly
we have probability and probability distribution of a hypothesis.

3 Bayesian Approach and Statistical Inference

Despite its simplicity, Bayes theorem is at the base of statistical inference. For the
Bayesian point of view let us use D to indicate our data (or data set). The hypothesis
H can be a model, say for example theΛCDM model, which is characterized by a set
of parameters θ . In the Bayesian framework what we want to know is “What is the
probability distribution for the model parameters given the data?” i.e. P(θ |D). From
this information we can extract the most likely value for the parameters and their
confidence limits.1 However, what we can compute accurately, in most instances,
is the likelihood, which is related to the posterior by the prior. (At this point one
assumes that one has collected the data and so P(D)= 1). The prior, however, can
be somewhat arbitrary. This is a crucial point to which we will return below. For now
let us consider an example: the constraint from WMAP data on the integrated optical
depth to the last scattering surface τ . One could do the analysis using the variable
τ itself, however, one could also note that the temperature data (the angular power
spectrum of the temperature fluctuations) on large scale depend approximately lin-
early on the variable Z = exp (−2τ ). A third person would note that the polar-
ization data (in particular the EE angular power spectrum) depend roughly linearly
on τ 2. So person one could use a uniform prior in τ , person two a uniform prior in
exp (−2τ ), and person three in τ 2. What is the relation between P(τ ), P(Z), and
P(τ 2)?

3.1 Transformation of Variables

We wish to transform the probability distribution of P(x) to the probability distribu-
tion of G(y) with y as a function of x. Recall that probability is a conserved quantity
(we cannot create or destroy probabilities . . .) so

P(x)dx = G(y)dy, (3)

thus

P(x) = G(y(x))

∣∣∣∣dy

dx

∣∣∣∣ . (4)

Following the example above if x is τ and y is exp (τ ) then P is related to G by
a factor 2τ and if y is τ 2 by a factor 2. In other words using different priors leads to
different posteriors. This is the main limitation of the Bayesian approach.

1 At this point many Frequentists stop reading this document . . .
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3.2 Marginalization

So far we have considered probability distributions of a random variable x, but one
could analogously define multi-variate distributions, the joint probability distribu-
tion of two or more variables, e.g., P(x,y). A typical example is the description of
the initial distribution of the density perturbations in the Universe. Motivated by
inflation and by the central limit theorem, the initial distribution of density pertur-
bation is usually described by a multi-variate Gaussian: at every point in space given
by its spatial coordinates (x, y, z), P is taken to be a random Gaussian distribution.
Another example is when one simultaneously constrains the parameters of a model,
say, for example, θ = {Ωm, H0} (here H0 denotes the Hubble constant). If you have
P(Ωm,H0) and want to know the probability distribution of Ωm regardless of the
values of H0 then

P(Ωm) =
∫

dH0P(Ωm,H0). (5)

3.3 Back to Statistical Inference and Cosmology

Let us go back to the issue of statistical inference and follow the example from [1].
If you have an urn with N red balls and M blue balls and you draw one ball at the
time then probability theory can tell you what are your chances of picking a red ball
given that you have already drawn n red and m blue: P(D|H). However, this is not
what you want to do, you want to make a few draws from the urn and use probability
theory to tell you what is the red vs blue distribution inside the urn is, P(H|D). In
the Frequentist approach all you can compute is P(D|H).

In the case of cosmology it gets even more complicated.
We consider that the Universe we live in is a random realization of all the possible

Universes that could have been a realization of the true underlying model (which is
known only to Mother Nature). All the possible realizations of this true underlying
Universe make up the ensemble. In statistical inference one may sometime want
to try to estimate how different our particular realization of the Universe could be
from the true underlying one. Going back to the example of the urn with red and
blue balls, it would as if we were to be drawing from one particular urn, but the urn
is part of a large batch. On average, the batch distribution has 50% red and 50%
blue, but each urn has only an odd number of balls and so any particular urn cannot
reflect exactly the 50–50 spilt.

A crucial assumption of standard cosmology is that the part of the Universe that
we can observe is a fair sample of the whole. But the peculiarity in cosmology is
that we have just one Universe, which is just one realization from the ensemble
(quite fictitious one: it is the ensemble of all possible Universes). The fair sample
hypothesis states that samples from well-separated parts of the Universe are inde-
pendent realizations of the same physical process, and that, in the observable part
of the Universe, there are enough independent samples to be representative of the
statistical ensemble.
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In addition, experiments in cosmology are not like lab experiments: in many
cases observations cannot be easily repeated (think about the observation of a par-
ticular supernova explosion or of a Gamma ray burst) and we cannot try to perturb
the Universe to see how it reacts... After these considerations, it may be clearer why
cosmologists tend to use the Bayesian approach.

4 Chisquare and Goodness of Fit

Say that you have a set of observations and have a model, described by a set of
parameters θ , and want to fit the model to the data. The model may be physi-
cally motivated or a convenient function. One then should define a merit func-
tion, quantifying the agreement between the model and the data, by maximizing
the agreement one obtains the best fit parameters. Any useful fitting procedure
should provide: (1) best fit parameters (2) estimation of error on the parame-
ters (3) possibly a measure of the goodness of fit. One should bear in mind that
if the model is a poor fit to the data then the recovered best fit parameters are
meaningless.

Following numerical recipes ([2], Chap. 15) we introduce the concept of model
fitting (parameter fitting) using least squares. Let us assume we have a set of data
points Di, for example, these could be the band power galaxy power spectrum at a
set of k values, and a model for these data y(x, θ ) which depends on set of parameters
θ (e.g., the ΛCDM power spectrum, which depends on ns-primordial power spec-
trum spectral slope, σ8-present-day amplitude of rms mass fluctuations on scale of
8 Mpc/h–, Ωmh, etc.). Or it could be, for example, the supernovae type 1a distance
modulus as a function of redshift; see, e.g., Fig. 1 [3, 4].

Fig. 1 Left: distance modulus vs redshift for supernovae type 1A from the UNion sample [3].
Right: bandpower P(k) for DR5 SDSS galaxies, from [4]. In both cases one may fit a theory (and
the theory parameters) to the data with the chisquare method. Note that in both cases errors are
correlated. In the right panel the errors are also strictly speaking non-Gaussianly distributed
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The least squares, in its simplest incarnation is

χ2 =
∑

i

wi[Di − y(xi|θ)]2, (6)

where wi are suitably defined weights. It is possible to show that the minimum
variance weight is wi = 1/σ 2

i where σi denotes the error on data point i. In this case
the least squares is called chisquare. If the data are correlated the chisquare becomes

χ2 =
∑

ij

(Di − y(xi|θ )) Qij(Dj − y(xj|θ )), (7)

where Q denotes the inverse of the so-called covariance matrix describing the
covariance between the data. The best fit parameters are those that minimize the χ2.
See an example in Fig. 2.

For a wide range of cases the probability distribution for different values of
χ2 around the minimum of (7) is the χ2 distribution for ν = n − m degrees
of freedom where n is the number of independent data points and m the number
of parameters. The probability that the observed χ2 exceeds by chance a value χ̂

for the correct model is Q(ν,χ̂ ) = 1−Γ (ν/2,χ̂/2) where Γ denotes the incomplete
Gamma function. See the Numerical Recipes bible [2]. Conversely, the probability
that the observed χ2, even for the correct model, is less than χ̂ is 1 − Q. While
this statement is strictly true if measurement errors are Gaussian and the model is
a linear function of the parameters, in practice it applies to a much wider range of
cases.

Fig. 2 Left: example of a one-dimensional chisquare for a Gaussian distribution as a function of
a parameter and corresponding 68.3, 95.4, and 99.5% confidence levels. Right: a two-dimensional
example for the union supernovae data. Figure from Kowalski et al. [3] reproduced with permission
from the AAS. Note that in a practical application even if the data have Gaussian errors the errors
on the parameter may not be well described by multi-variate Gaussians (thus the confidence regions
are not ellipses)
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The quantity Q evaluated that the minimum chisquare (i.e., at the best fit values
for the parameters) gives a measure of the goodness of fit. If Q gives a very small
probability then there are three possible explanations:

(1) the model is wrong and can be rejected. (Strictly speaking, the data are unlikely
to have happened if the Universe was really described by the model considered)

(2) the errors are underestimated
(3) the measurement errors are non-Gaussianly distributed.

Note that in the example of the power spectrum we know a priori that the errors
are non-Gaussianly distributed. In fact, even if the initial conditions were Gaussian
and if the underlying matter perturbations were still evolving in the linear regime
(i.e., δρ/ρ 
 1) and galaxies were nearly unbiased tracers of the dark matter, then
the density fluctuation itself would obey Gaussian statistics and so would its Fourier
transform, but not its power spectrum, which is a square quantity. In reality we
know that by z = 0 perturbations grow non-linearly and that galaxies may not be
nearly unbiased tracers of the underlying density field. Nevertheless, the central
limit theorem comes to our rescue, if in each band power there is a sufficiently large
number of modes.

If Q is too large (too good to be true) it is also cause for concern:

(1) errors have been overestimated
(2) data are correlated or non-independent
(3) the distribution is non-Gaussian

Beware: this last case is very rare.
A useful “chi-by-eye” rule is the minimum χ2 should be roughly equal to ν

(number of data–number of parameters). This is increasingly true for large ν. From
this, it is easy to understand the use of the so-called reduced chisquare that is the
χ2

min/m: if m � n (i.e., number of data much larger than the number of parameters
to fit, which should be true in the majority of the cases) then m ∼ ν and the rule of
thumb is that reduced chisquare should be unity.

Note that the chisquare method, and the Q statistic, gives the probability for the
data, given a model P(D|θ ) and not P(θ |D). One can make this identification via
the prior.

5 Confidence Regions

Once the best fit parameters are obtained, how can one represent the confidence limit
or confidence region around the best fit parameters? A reasonable choice is to find
a region in the m-dimensional parameter space (remember that m is the number of
parameters) that contains a given percentage of the probability distribution. In most
cases one wants a compact region around the best fit values. A natural choice is then
given by regions of constant χ2 boundaries. Note that there may be cases (when the
χ2 has more than one minimum) in which one may need to report a non-connected



Statistical Methods in Cosmology 155

confidence region. For multi-variate Gaussian distributions, however, these are ellip-
soidal regions. Note that the fact that the data have Gaussian errors does not imply
that the parameters will have a Gaussian probability distribution . . .

Thus, if the values of the parameters are perturbed from the best fit, the χ2

will increase. One can use the properties of the χ2 distribution to define confi-
dence intervals in relation to χ2variations or Δχ2. Table 1 reports the Δχ2 for
68.3, 95.4, and 99.5% confidence levels as function of number of parameters for the
joint confidence level. In the case of Gaussian distributions these correspond to the
conventional 1, 2, and 3σ . See an example of this in Fig. 2

Beyond these values here is the general prescription to compute constant χ2

boundaries confidence levels. After having found the best fit parameters by mini-
mizing the χ2 and if Q for the best fit parameters is acceptable then

• Let m be the number of parameters, n the number of data, and p be the confidence
limit

• Solve the following equation for Δχ2:

Q(n − m, min (χ2) +Δχ2) = p (8)

• Find the parameter region where χ2 ≤ min (χ2) + Δχ2. This defines the confi-
dence region.

If the actual error distribution is non-Gaussian but it is known then it is still
possible to use the χ2 approach, but instead of using the chisquare distribution and
Table 1, the distribution needs to be calibrated on multiple simulated realization of
the data as illustrated below in Sect. 13.

Table 1 Δχ2 for the conventionals 1, 2, and 3 − σ as a function of the number of parameters for
the joint confidence levels

p (%) 1 2 3

68.3 1.00 2.30 3.53
95.4 2.71 4.61 6.25
99.73 9.00 11.8 14.2

6 Likelihood

So far we have dealt with the frequentist quantity P(D|H). If we set P(D) = 1 and
ignore the prior then we can identify the likelihood with P(H|D) and thus by max-
imizing the likelihood we can find the most likely model (or model’s parameters)
given the data. However, having ignored P(D) and the prior this approach cannot
give in general a goodness of fit and thus cannot give an absolute probability for a
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given model. However, it can give relative probabilities. If the data are Gaussianly
distributed the likelihood is given by a multi-variate Gaussian:

L = 1

(2π )n/2|detC|1/2
exp

⎡
⎣−1

2

∑
ij

(D − y)iC
−1
ij (D − y)j

⎤
⎦ , (9)

where Cij = 〈(Di − yi)(Dj − yj)〉 is the covariance matrix.
It should be clear from this that the relation between χ2 and likelihood is that, for

Gaussian distributions, L ∝ exp [ − 1/2χ2] and minimizing the χ2 is equivalent to
minimizing the likelihood. In this case likelihood analysis and χ2 coincide and by
the end of this section, it will thus be no surprise that the Gamma function appearing
in the χ2 distribution is closely related to the Gaussian integrals.

The subtle step is that now, in Bayesian statistics, confidence regions are regions
R in model space such that

∫
R P(θ |D)dθ = p where p is the confidence level we

request (e.g., 68.3, 95.4%). Note that by integrating the posterior over the model
parameters, the confidence region depends on the prior information, as seen in
Sect. 3.1 different priors give different posteriors and thus different regions R.

It is still possible to report results independently of the prior by using the like-
lihood ratio. The likelihood at a particular point in parameter space is compared
with that at the best fit value, Lmax, where likelihood is maximized. Thus a model is
acceptable if the likelihood ratio,

Λ = −2 ln

[L(θ )

Lmax

]
, (10)

is above a given threshold. The connection to the χ2 for Gaussian distribution should
be clear. In general, the threshold can be calibrated by calculating the entire distri-
bution of the likelihood ratio in the case that a particular model is the true model.
Frequently this is chosen to be the best fit model.

There is a subtlety to point out here. In cosmology the data may be Gaussainly
distributed and still the χ2 and likelihood ratio analysis may give different results.
This happens because in identifying likelihood and chisquare we have neglected the
term [(2π )n/2|detC|1/2]−1. If the covariance does not depend on the model or model
parameters, this is just a normalization factor which drops out in the likelihood ratio.
However, in cosmology often the covariance depends on the model; this happens, for
example, when errors are dominated by cosmic variance, like in the case of the CMB
temperature fluctuations on the largest scales, or on the galaxies power spectrum on
the largest scales. In this case the cosmology dependence of the covariance cannot
be neglected, but one can always define a pseudo-chisquare as −2 lnL and work
with this quantity.

Let us stress again that the likelihood is linked to the posterior through the prior;
the identification of the likelihood with the posterior is prior dependent (as we will
see in an example below). In the absence of any data it is common to assume a flat
(uniform) prior, i.e., all values of the parameter in question are equally likely, but
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other choices are possible and sometimes more motivated. For example, if a param-
eter is positive definite, it may be interesting to use a logarithmic prior (uniform in
the log).

Priors may be assigned theoretically or from prior information gathered from
previous experiments. If the priors are set by theoretical considerations, it is always
a good practice to check how much the results depend on the choice of the prior.
If the dependence is significant, it means that the data do not have much statistical
power to constrain that (those) parameter(s). Information theory helps us quantify
the amount of “information gain”; the information in the posterior relative to the
prior is

I =
∫

P(θ |D) log

[P(θ |D)

P(θ )

]
dθ . (11)

6.1 Marginalization: Examples

Some of the model parameters may be uninteresting. For example, in many analyses
one wants to include nuisance parameters (calibration factors, biases, etc.) but then
report the confidence level on the real cosmological parameters regardless of the
value of the nuisance ones. In other cases the model may have say, 10 or more real
cosmological parameters but we may be interested in the allowed range of only one
or two of them, regardless of the values of all the others. Typical examples are, e.g.,
constraints on the curvature parameter Ωk (which we may want to know regard-
less of the values of, e.g., Ωm or ΩΛ) or, say, the allowed range for the neutrino
mass regardless of the power spectrum spectral index or the value of the Hubble
constant. As explained in Sect. 3.2 one can marginalize over the uninteresting
parameters.

It should be kept in mind that marginalization is a Bayesian concept: the results
may depend on the prior chosen.

In some cases, the marginalization can be carried out analytically. An example is
reported below, this applies to the case of, e.g., calibration uncertainty, point sources
amplitude, overall scale independent galaxy bias, magnitude intrinsic brightness, or
beam errors for CMB studies. In this case it is useful to know the following results
for Gaussian likelihoods:

P(θ1..θm−1|D) = ∫ dA

(2π )
m
2 ||C|| 1

2

e

[
− 1

2 (Ci−(Ĉi+APi))Σ
−1
ij (Cj−(Ĉj+APj))

]
(12)

× 1√
2πσ 2

exp

[
−1

2

(A − Â)2

σ 2

]
,

where repeated indices are summed over and ||C|| denotes the determinant. Here,
A is the amplitude of, say, a point source contribution P to the C� angular power
spectrum, A is the mth parameter which we want to marginalize over with a Gaussian
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prior with variance σ 2 around Â. The trick is to recognize that this integral can be
written as

P(θ1..θm−1|D) = C0 exp

[
−1

2
C1 − 2C2A + C3A2

]
dA, (13)

(where C0...3 denote constants and it is left as an exercise to write them down
explicitly) and that this kind of integral is evaluated by using the substitution
A −→ A − C2/C3 giving something ∝ exp [ − 1/2(C1 − C2

2/C3)].
In cases where the likelihood surface (describing the value of the likelihood as

a function of the parameters) is not a multi-variate Gaussian, the location of the
maximum likelihood before marginalization may not coincide with the location after
marginalization. An example is shown in Fig. 3. The figure shows the probability
distribution for Ωk from WMAP5 data for a model where curvature is free and the
equation of state parameter for dark energy w is constant in time but not fixed at −1.
The red line shows the N-dimensional maximum posterior value and the black line
is the marginalized posterior over all other cosmological parameters.

It should also be added that, even in the case where we have a single-peaked pos-
terior probability distribution there are two common estimators of the “best” param-
eters: the peak value (i.e., the most probable value) or the mean, θ̂ = ∫ dθθP(θ |D).
If the posterior is non-Gaussian these two estimates need not coincide. In the same
spirit, slightly different definitions of confidence intervals need not coincide for
non-Gaussian likelihoods, as illustrated in the right panel of Fig. 3: for example,
one can define the confidence interval [θlow, θhigh], such that equal fractions of the

Fig. 3 Marginalization effects. Left panel: We consider the posterior distribution for the cosmo-
logical parameters of a dark energy + cold dark matter model where curvature is a free parameter
and so is a (constant) equation of state parameter for dark energy. The data are the WMAP 5-year
data. The solid line shows the N-dimensional maximum posterior value and the black line is the
marginalized posterior over all other cosmological parameters. Figure courtesy of LAMBDA [5].
Right panel: figure from [6]. Illustration of central credible interval (CCI) and minimum credible
interval (MCI), for the case of a ΛCDM model with free number of effective neutrino species
(ignore dotted line for this example, red line is the marginalized posterior)
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posterior volume lie in (−∞, θlow) and (θhigh,∞). This is called central credible
interval and is connected to the median. Another possibility (minimum credible
interval) is to consider the region so that the posterior at any point inside it is larger
than at any point outside and so that the integral of the posterior in this region is the
required fraction of the total. Thus remember, it is always a good practice to declare
what confidence interval one is using. This subject is explored in more details in,
e.g., [6].

7 Why Gaussian Likelihoods?

Throughout these lectures we always refer to Gaussian likelihoods. It is worth men-
tioning that if the data errors are Gaussianly distributed then the likelihood function
for the data will be a multi-variate Gaussian. If the data are not Gaussianly dis-
tributed (but still are drawn from a distribution with finite variance!) we can resort
to the central limit theorem: we can bin the data so that in each bin there is a super-
position of many independent measurements. The central limit theorem will tell us
that the resulting distribution (i.e., the error distribution for each bin) will be better
approximated by a multi-variate Gaussian. However, as mentioned before, even if
the data are Gaussianly distributed this does not ensure that the likelihood surface
for the parameters will be a multi-variate Gaussian; for this to be always true the
model needs to depend linearly on the parameters. Even without resorting to the
central limit theorem, the Gaussian approximation is in many cases recovered even
when starting from highly non-Gaussian distribution. A neat example is provided
by Cash [7] which we follow here.

Let us say you want to constrain cosmology by studying cluster number counts
as a function of redshift. The observation of a discrete number N of clusters is a
Poisson process, the probability of which is given by the product

P = ΠN
i=1[eni

i exp ( − ei)/ni!], (14)

where ni is the number of clusters observed in the i-th experimental bin and ei is
the expected number in that bin in a given model, ei = I(x)δxi with i being the
proportional to the probability distribution. Here δxi can represent an interval in
clusters mass and/or redshift. Note: this is a product of Poisson distributions, thus
one is assuming that these are independent processes. Clusters may be clustered, so
when can this be used?

For unbinned data (or for small bins so that bins have only 0 and 1 counts) we
define the quantity:

C ≡ −2 lnP = 2(E −
N∑

i=1

ln Ii), (15)
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where E is the total expected number of clusters in a given model. The quantity
ΔC between two models with different parameters has a χ2 distribution! (so all
that was said in Sect. 4 applies, even though we started from a highly non-Gaussian
distribution.)

8 The Effect of Priors: Examples

Let us consider the two figures in Fig. 4. On the left, WMAP first-year data con-
straints in theΩm,ΩΛ plane. On the right, models consistent with the WMAP 3-year
data. In both cases the model is a non-flat ΛCDM model. So why the addition of
more data (the two extra years of WMAP observations) gives worst constraints? The
key is that what is reported in the plots is a representation of the posterior proba-
bility distribution. In the left panel a flat prior on ΘA (angular size distance to the
last scattering surface, giving by the position of the first peak) was assumed. In the
figure on the right a flat prior on the Hubble constant H0 was assumed. Remember:
always declare the priors assumed!

Flat
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H0
(km s–1 Mpc–1)

40

0.0

0.2

0.4

0.6

0.8

1.0

50

30

60
70
80
90

100

Fig. 4 Left: WMAP first-year data constraints in the Ωm, ΩΛ plane, from Spergel et al. [9]. Right:
models consistent with the WMAP 3-year data, from Spergel et al. [8]. In both cases the model is
a non-flat ΛCDM model. Figures reproduced with permission from the AAS

9 Combining Different Data Sets: Examples

It has become common to “combine data sets” and explore the constraints from the
“data set combination.” This means in practice that the likelihoods can be multiplied
if the data sets are independent (if not the one should account for the appropriate
covariance). It is important to note that If the data-sets are inconsistent, the resulting
constraints from the combined data set are nonsense. An example is shown in Fig. 5.

On the left panel we show a figure from [8] constraints in the Ωm, σ8 plane for a
flat ΛCDM model for WMAP 3-year data (blue), weak lensing constraints (orange),
and combined constraints. On the right panel the figure shows the constraints in the
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Fig. 5 Left: constraints in the Ωm, σ8 plane for a flat ΛCDM model for WMAP 3-year data, weak
lensing constraints, and combined constraints. Figure from Spergel et al. [8], reproduced with
permission from the AAS. Right: Constraints in the Ωk,w plane for non-flat dark energy models
with constant w for WMAP5+supernovae data (lower curves) and WMAP5+BAO (upper curves).
Figure courtesy of LAMBDA [5]

Ωk,w plane for non-flat dark energy models with constant w for WMAP5+ super-
novae data (in black) and WMAP5+BAO (in red). Even though the WMAP data
are in common there is some tension in the resulting constraints. The two data sets
(supernovae and BAO, WMAP and weak lensing ) are not fully consistent, as the
authors themselves, note, they should not be combined.

10 Forecasts: Fisher Matrix

Before diving into the details let us re-examine the error estimates for parameters
from the likelihood. Let us assume a flat prior in the parameter so we can identify the
posterior with the likelihood. Close to the peaks we can expand the log likelihood
in Taylor series

lnL = lnL(θ0) + 1

2

∑
ij

(θi − θi,0)
∂2 lnL
∂θi∂θj

∣∣∣∣
θ0

(θj − θj0) + . . . . (16)

By truncating this expansion to the quadratic term (remember that by expanding
around the maximum we have the first derivative equal to zero) we say the likelihood
surface is locally a multi-variate Gaussian. The Hessian matrix is defined as

Hij = −∂2 lnL
∂θi∂θj

. (17)
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It encloses the information of the parameters’ errors and their covariance. If this
matrix is not diagonal it means that the parameters’ estimates are correlated. Loosely
speaking we said “the parameters are correlated”: it means that they have a similar
effect on the data and thus the data have hard time in telling them apart. The param-
eters may or may not be physically related with each other.

More specifically if all parameters are kept fixed except one (parameter i, say),
the error on that parameter would be given by 1/

√
Hii. This is called conditional

error but is almost never used or interesting.
Having understood this, we can move on to the Fisher information matrix [10].

The Fisher matrix plays a fundamental role in forecasting errors from a given exper-
imental set up and thus is the work-horse of experimental design. It is defined as

Fij = −
〈
∂2 lnL
∂θi∂θj

〉
. (18)

It should be clear that F = 〈H〉.
Here the average is the ensemble average over observational data (those that

would be gathered if the real Universe was given by the model – and model param-
eters – around which the derivative is taken). As we have seen the likelihood for
independent data sets is the product of the likelihoods, it follows that the Fisher
matrix for independent data sets is the sum of the individual Fisher matrices. This
will become useful later on.

In the one-parameter case, say only i component of θ , thinking back at the Taylor
expansion around the maximum of the likelihood we have that

Δ lnL = 1

2
Fii(θi − θ̂i)

2 (19)

when 2Δ lnL = 1 and by identifying it with the Δχ2 corresponding to 68% con-
fidence level, we see that 1/

√
Fii yields the 1 − σ displacement for θi. This is the

analogous to the conditional error from above. In the general case

σ 2
ij ≥ (F−1)ij. (20)

Thus when all parameters are estimated simultaneously from the data the marginal-
ized error is

σθi ≥ (F−1)1/2
ii . (21)

Let’s spell it out for clarity: this is the square root of the element ii of the inverse
of the Fisher information matrix.2 This assumes that the likelihood is a Gaussian

2 i.e., you have to perform a matrix inversion first.
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around its maximum (the fact that the data are Gaussianly distributed is no guaran-
tee that the likelihood will be Gaussian, see, e.g., Fig. 2). The terrific utility of the
Fisher Information matrix is that, if you can compute it, it enables you to estimate
the parameters errors before you do the experiment. If it can be computed quickly,
it also enables one to explore different experimental setups and optimize the exper-
iment. This is why the Fisher matrix approach is so useful in survey design. Also
complementarity of different, independent, and uncorrelated experiments (i.e., how
in combination they can lift degeneracies) can be quickly explored: the combined
Fisher matrix is the sum of the individual matrices. This is of course extremely
useful; however, read below for some caveats.

The ≥ is the Kramer–Rao inequality: the Fisher matrix approach always gives
you an optimistic estimate of the errors (reality is only going to be worst). And
this is not only because systematic and real-world effects are often ignored in the
Fisher information matrix calculation, but for a fundamental limitation: only if the
likelihood is Gaussian that ≥ becomes =. In some cases, when the Gaussian approx-
imation for the likelihood does not hold, it is possible to make non-linear transfor-
mation of the parameter that makes the likelihood Gaussian. Basically, if the data are
Gaussianly distributed and the model depends linearly on the parameters then the
likelihood would be Gaussian. So the key is to have a good enough understanding
of the theoretical model to be able to find such a transformation. See [11] for a clear
example.

10.1 Computing Fisher Matrices

The simplest, brute force approach to compute a Fisher matrix is as follows: write
down the likelihood for the data given the model. Instead of the data values (which
are not known) use the theory prediction for a fiducial model. This will add a
constant term to the log likelihood which does not depend on cosmology. In the
covariance matrix include expected experimental errors. Then take derivatives with
respect to the parameters as indicated in (18).

In the case where the data are Gaussianly distributed it is possible to compute
explicitly and analytically the Fisher matrix, in a much more elegant way than
above:

Fij = 1

2
Tr
[
C−1C,iC

−1C,j + C−1Mij

]
, (22)

where Mij = y,iyT
,j + y,jyT

,i and ,i denotes derivative with respect to the parameter
θi. This is extremely useful, you need to know the covariance matrix (which may
depend on the model and need not be diagonal) and you need to have a fiducial
model y which you know how it depends on the parameter θ . Then the Fisher
matrix gives you the expected (forecasted) errors. Priors or forecasts results from
other experiments can be easily included by simply adding their Fisher before
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Fig. 6 Marginalized 68% CL
constraints on the dark energy
parameters expected for the
DUNE weak lensing
(dashed), a full sky BAO
survey (solid), and their
combination (solid filled).
This figure was derived using
the Fisher matrix routines of
iCosmo. Figure from
Refregier et al. [12]

performing the matrix inversion to obtain the marginal errors. This is illustrated
in Fig. 6, from [12] and produced using the icosmo (http://www.icosmo.org/)
software.

Before we finish this section let us spell out the following prescription.
Imagine you have computed a large Fisher matrix, varying all parameters Ωk, w0,

neutrino mass mν , number of neutrino species Nν , running of the spectral index α,
etc. Now you want to compute constraints for a standard flat ΛCDM model. Simply
ignore row and columns corresponding to the parameters that you want to keep fixed
at the fiducial value before inverting the matrix.

Imagine now that you have a six parameters’ Fisher matrix (say H0, Ωm,τ , ΩΛ,
n, Ωb, σ8), and want to produce 2D plots for the confidence regions for parameters
2 and 4, say, marginalized over all other (1,3,5,6) parameters. Invert Fij. Take the
sub-matrix made by rows and columns corresponding to the parameters of interest
(2 and 4 in this case) and invert back this sub-matrix.

The resulting matrix, let us call it Q, describes a Gaussian 2D likelihood surface
in the parameters 2 and 4 or, in other words, the chisquare surface for parameters
2,4 – marginalized over all other parameters – can be described by the equation

χ̃2 =
∑

ij

(θi − θ
fid.
i )Qij(θj − θ

fid.
j ) . (23)

From this equation, getting the errors corresponds to finding the quadratic equa-
tion solution χ̃2 = Δχ2. For correspondence between Δχ2 and confidence region
see the earlier discussion. If you want to make plots, the equation for the elliptical
boundary for the joint confidence region in the sub-space of parameters of interest
is Δ = δθQ−1δθ .
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11 Example of Fisher Approach Applications

Here we are going to consider two cases of application of Fisher forecasts that are
extensively used in the literature. This section assumes that the reader is familiar
with basic CMB and large-scale structure concepts, such as power spectra, error on
power spectra, cosmic variance, window and selection function, instrumental noise
and shot noise, redshift space. Some readers may find this section more technical
than the rest of this document; it is possible to skip it and continue reading from
Sect. 12.

11.1 CMB

The CMB has become the single data set that gives most constraints on cosmology.
As the recently launched Planck satellite will yield the ultimate survey for primary
CMB temperature anisotropies, doing Fisher matrix forecasts of CMB temperature
data may very soon be obsolete. There remains the scope for forecasting constraints
from polarization experiments, however, systematic effects (e.g., foreground sub-
traction) will likely dominate the statistical errors (see, e.g., [13] for details). It is
still, however, a good exercise to see how one can set up a Fisher matrix analysis for
CMB data.

If we have a noiseless full sky survey and the initial conditions are Gaussian we
can write that the signal in the sky (i.e., the spherical harmonic transform of the
anisotropies) is Gaussianly distributed. We can write the signal as

s� = (aT
� , aE

� , aB
� ), (24)

where aell denotes the spherical harmonic coefficients for temperature and E and B
model polarization. The covariance matrix C� is then given by

C� =
⎛
⎜⎝

CTT
� CTE

� 0

CTE
� CEE

� 0

0 0 CBB
�

⎞
⎟⎠ , (25)

where C� denotes the angular CMB power spectrum. Using (22) and considering
that, for rotational invariance, for every � there are (2�+ 1) modes, it is possible to
show that the Fisher matrix for CMB experiments can be rewritten as

FCMB
ij =

∑
XY

∑
�

∂CX
�

∂θi

(
CXY
�

)−1 ∂CY
�

∂θj
, (26)
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where for the matrix C� the elements are CXY
� , where X,Y=TT, TE, EE, BB, etc.,

is given by3

C� = 2

2�+ 1

⎛
⎜⎜⎜⎝

(CTT
� )2 (CTE

� )2 CTT
� CTE

� 0

(CTE
� )2 (CEE

� )2 CEE
� CTE

� 0

CTT
� CTE

� CEE
� CTE

� 1/2[(CTE
� )2 + CTT

� CEE
� ] 0

0 0 0 (CBB
� )2

⎞
⎟⎟⎟⎠ . (27)

Note that this matrix is more complicated that what one would have obtained by
assuming a Gaussian distribution for the C� and no correlation between TT, TE,
and EE. Nevertheless, (26) is simple enough and allows one to quickly compute
forecasts from ideal CMB experiments.

In this formalism effects of partial sky coverage and of instrumental noise can be
included (approximatively) by the following substitutions:

C� −→ C� + N�, (28)

where N� denotes the effective noise power spectrum. Note that N� depends on �

even for a perfectly white noise because of beam effects. In addition the partial sky
coverage can be accounted for by considering that the number of independent modes
decreases with the sky coverage: if fsky denotes the fraction of sky covered by the
experiment, then

C� −→ C�/fsky. (29)

11.2 Baryon Acoustic Oscillations

Cosmological perturbations in the early Universe excite sound waves in the photon–
baryon fluid. After recombination, these baryon acoustic oscillations (BAO) became
frozen into the distribution of matter in the Universe imprinting a preferred scale, the
sound horizon. This defines a standard ruler whose length is the distance sound can
travel between the Big Bang and recombination. The BAO are directly observed
in the CMB angular power spectrum and have been observed in the spatial dis-
tribution of galaxies by the 2dF GRS survey and the SDSS survey [14–16]. The
BAO, observed at different cosmic epochs, act as a powerful measurement tool to
probe the expansion of the Universe, which in turn is a crucial handle to constrain
the nature of dark energy. The underlying physics which sets the sound horizon
scale (∼150 Mpc comoving) is well understood and involves only linear perturba-
tions in the early Universe. The BAO scale is measured in surveys of galaxies from
the statistics of the three-dimensional galaxy positions. Only recently have galaxy

3 I owe this proof to P. Adshead.
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surveys such as SDSS grown large enough to allow for this detection. The existence
of this natural standard measuring rod allows us to probe the expansion of the Uni-
verse. The angular size of the oscillations in the CMB revealed that the Universe is
close to flat. Measurement of the change of apparent acoustic scale in a statistical
distribution of galaxies over a large range of redshift can provide stringent new
constraints on the nature of dark energy. The acoustic scale depends on the sound
speed and the propagation time. These depend on the matter to radiation ratio and the
baryon-to-photon ratio. CMB anisotropy measures these and hence fixes the oscil-
lation scale. A BAO survey measures the acoustic scale along and across the line of
sight. At each redshift, the measured angular (transverse) size of oscillations, Δθ ,
corresponds with the physical size of the sound horizon, where the angular diameter
distance DA is an integral over the inverse of the evolving Hubble parameter, H(z).
r⊥ = (1 + z)DA(z)δθ . In the radial direction, the BAO directly measure the instan-
taneous expansion rate H(z), through r‖ = (c/H(z))Δz, where the redshift interval
(Δz) between the peaks is the oscillation scale in the radial direction. As the true
scales r⊥ and r‖ are known (given by rs, the sound horizon at radiation drag, well
measured by the CMB) this is not an Alcock–Paczynski test but a “standard ruler”
test. Note that in this standard ruler test the cosmological feature used as the ruler
is not an actual object but a statistical property: a feature in the galaxy correlation
function (or power spectrum). An unprecedented experimental effort is undergoing
to obtain galaxy surveys that are deep, larger, and accurate enough to trace the BAO
feature as a function of redshft. Before these surveys can even be designed it is cru-
cial to know how well a survey with given characteristic will do. This was illustrated
very clearly in [17], which we follow closely here. We will adopt the Fisher matrix
approach. To start we need to compute the statistical error associated to a determina-
tion of the galaxy power spectrum P(k). In what follows we will ignore the effects of
non-linearities and complicated biasing between galaxies and dark matter: we will
assume that galaxies, at least on large scales, trace the linear matter power spectrum
in such a way that their power spectrum is directly proportional to the dark matter
one: P(k) = b2PDM(k) where b stands for galaxy bias. At a given wavevector k, the
statistical error of the power spectrum is a sum of a cosmic variance term and a shot
noise term:

σP(k)

P(k)
= P(k) + 1/n

P(k)
. (30)

Here n denotes the average density of galaxies and 1/N is the white noise con-
tribution from the fact that galaxies are assumed to be a Poisson sampling of the
underlying distribution. When written in this way this expression assumes that n is
constant with position. While in reality this is not true for forecasts, one assumes
that the survey can be divided in shells in redshifts and that the selection function is
such that n is constant within a given shell. Since P(k) is also expected to change in
redshift then one should really implicitly assume that there is a z dependence in (30).
In general P(k,z) = b(z)2G2(z)PDM(k) where G(z) denotes the linear growth factor,
i.e., the bias is expected to evolve with redshift as well as clustering does, not only
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because galaxy bias changes with redshift but also because at different redshifts one
may be seeing different type of galaxies which may have different bias parameter.
We do not know a priori the form of b(z) but given a fiducial cosmological model
we know G(z). Preliminary observations seem to indicate that the z evolution of b
tends to cancel that of G(z), so it is customary to assume that b(z)G(z) ∼ constant,
but we should bear in mind that this is an assumption.

An extra complication arises because galaxy redshift surveys use the redshift as
distance indicator, and deviations from the Hubble flow therefore distort the clus-
tering. If the Universe was perfectly uniform and galaxies were test particles these
deviations from the Hubble flow would not exist and the survey would not be dis-
torted. But clustering does perturb the Hubble for and thus introduces the so-called
redshift-space distortions in the clustering measured by galaxy redshift surveys.
Note that redshift-space distortions only affect the line-of-sight clustering (it is a
perturbation to the distances) not the angular clustering. Since these distortions are
created by clustering they carry, in principle, important cosmological information.
To write this dependence explicitly

P(k,μ,z) = b(z)2G(z)2PDM(k)(1 + βμ)2, (31)

where μ denotes the cosine of the angle between the line-of-sight and the wavevec-
tor β = f /b = d ln G(z)/d ln a/b � Ωm(z)0.6/b. In the linear regime, the cos-
mological information carried by the redshift-space distortions is enclosed in the
f (z) = β(z)b(z) combination.

For finite surveys, P(k) at nearby wavenumbers are highly correlated, the cor-
relation length is related to the size of the survey volume; for large volumes the
cell size over which modes are correlated is (2π )3/V where V denotes the comov-
ing survey volume. Only over distances in k-space larger than that modes can be
considered independent. If one therefore wants to count over all the modes any-
way (for example, by transforming discrete sums into integrals in the limit of large
volumes) then each k needs to be downweighted, to account the fact that all k are
not independent. In addition one should keep in mind that Fourier modes k and
−k are not independent (the density field is real valued!), giving an extra fac-
tor of 2 in the weighings. We can thus write the error on a band power centered
around k,

σP

P
= 2π

√
2

Vk2δkΔμ

(
1 + nP

nP

)
. (32)

In the spirit of the Fisher approach we now assume that the likelihood function
for the band powers P(k) is Gaussian, thus we can approximate the Fisher matrix by

Fij =
∫ kmax

kmin

∂ ln P(k)

∂θi

∂ ln P(k)

∂θj
Veff(k)

dk
2(2π )3

. (33)
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The derivatives should be evaluated at the fiducial model and Veff denotes the effec-
tive survey volume given by

Veff(k) = Veff(k,μ) =
∫ [

n(z)P(k,μ)

n(z)P(k,μ) + 1

]2

dz =
[

nP(k,μ)

nP(k,μ) + 1

]2

V , (34)

where n = 〈n(z)〉. Equation (33) can be written explicitely as a function of k andμ as

Fij =
∫ 1

−1

∫ kmax

kmin

= ∂ ln P(k,μ)

∂θi

∂ ln P(k,μ)

∂θj
Veff(k,μ)

k2dkdμ

2(2π )2
. (35)

In writing this equation we have assumed that over the entire survey extension
the line-of-sight direction does not change: in other words, we made the flat sky
approximation. For forecasts this encloses all the statistical information anyway,
but for actual data analysis application the flat sky approximation may not hold. In
this equation kmin is set by the survey volume; for future surveys where the survey
volume is large enough to sample the first BAO wiggling the exact value of kmin
does not matter, however, recall that for surveys of typical size L (where L ∼ V1/3),
the largest scale probed by the survey will be corresponding to k = 2π/L. Keeping
in mind that the first BAO wiggle happens at ∼ 150 Mpc the survey size needs to
be L � 150 Mpc for kmin to be unimportant and for the “large volume approxi-
mation” made here to hold. As anticipated above, one may want to sub-divide the
survey into independent redshift shells, compute the Fisher matrix for each shell,
and then combine the constraints. In this case L will be set by the smallest dimen-
sion of the volume (typically the width of the shell), so one needs to make sure
that the width of the shell still guarantees a large volume and large L. kmax denotes
the maximum wavevector to use. One could, for example, impose a sharp cut to
delimit the range of validity of linear theory. In [18] this is improved as we will see
below.

Before we do that, let us note that there are two ways to interpret the parameters
θij in (35). One could simply assume a cosmological model, say, for example, a
flat quintessence model where the equation of state parameter w(z) is parameterized
by w(z) = w(0) + wa(1 − a) and take derivatives of P(k,μ) with respect to these
parameters. Alternatively, one could simply use as parameters the quantities H(zi)
and DA(zi), where zi denotes the survey redshift bins. These are the quantities that
govern the BAO location and are more general; they allow one not to choose a
particular dark energy model until the very end. Then one must also consider the
cosmological parameters that govern the P(k) shape Ωmh2, Ωbh2, and ns. Of course
one can also consider G(zi) as free parameters and constrain these either through
the overall P(k) amplitude (although one would have to assume that b(z) is known,
which is dicey) or through the determination of G(z) and β(z). The safest and most
conservative approach, however, is to ignore any possible information coming from
G(z), β(z), or ns and to only try to constrain expansion history parameters.
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The piece of information still needed is how the expansion history information
is extracted from P(k,μ). When one converts ra, dec, and redshifts into distances
and positions of galaxies of a redshift survey, one assumes a particular reference
cosmology. If the reference cosmology differs from the true underlying cosmology,
the inferred distances will be wrong and so the observed power spectrum will be
distorted:

P(k⊥, k‖) = Da(z)2
ref H(z)true

DA(z)2
trueH(z)ref

Ptrue(k⊥, k‖). (36)

Note that since distances are affected by the choice of cosmology and k vectors
are kref,‖ = H(z)ref/H(z)truektrue,‖ and kref,⊥ = DA(z)true/DA(z)refktrue,⊥. Note that
therefore in (36) we can write

Ptrue(k⊥, k‖, z) = b(z)2

(
1 + β(z)

k2
true,‖

k2
true,⊥ + k2

true,‖

)2 [
G)(z)

G(zo)

]2

PDM(k, zo), (37)

where zo is some reference redshift where to normalize P(k) typical choices can be
the CMB redshift or redshift z = 0. Not that from these equations it should be clear
that what the BAO actually measure directly is H(z)rs and DA/rs where rs is the
BAO scale, the advantage is that rs is determined exquisitely from the CMB.

How would then one convert these constraints on those on a model parameter?
Clearly, one then projects the resulting Fisher matrix on the dark energy parame-
ters space. In general if you have a set of parameters θi with respect to which the
Fisher matrix has been computed, but you would like to have the Fisher matrix for
a different set of parameters φi, where the θi are functions of the φi, the operation to
implement is

Fφi,φj =
∑
mn

∂θn

∂φi
Fθn,θm

∂θm

∂φj
. (38)

The full procedure for the BAO survey case is illustrated in Fig. 7. The slight com-
plication is that one starts off with a Fisher matrix (for the original parameter set
θi) where some parameters are nuisance and need to be marginalized over, so some
matrix inversions are needed.

So far non-linearities have been just ignored. It is, however, possible to include
then at some level in this description. Reference [18] proceed by introducing a dis-
tribution of Gaussianly distributed random displacements parallel or perpendicular
to the line-of-sight coming from non-linear growth (in all directions) and from non-
linear redshift-space distortions (only in the radial direction). The publicly available
code that implements all this (and more) is at http://cmb.as.arizona.edu/ eisenste/
acousticpeak/bao−forecast.html. In order to use the code keep in mind that in
Ref. [18] the authors model the effect of non-linearities by convolving the galaxy
distribution with a redshift dependent and μ-dependent smoothing kernel. The
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F

Q = F–1

Marginalize
over nuisance
parameters

Invert

Invert

–1

& Invert back

take a submatrixF–1 = Q

F = FBAO survery (+FCMB + F other surveys)

Project on new space
Fisher matrix for new
parameters

Covariance matrix
(i.e. errors on parameters)

Fig. 7 Steps to implement once the Fisher matrix of (35) has been computed to obtain error on
dark energy parameters

effect on the power spectrum is to multiply P(k) by exp [− k2Σ(k,μ)/2], where
Σ(k,μ) = Σ2⊥ − μ2(Σ2‖ − Σ2⊥). As a consequence the integrand of the Fisher
matrix expression of (35) is multiplied by

exp [ − k2Σ2⊥ − k2μ2(Σ2‖ −Σ2⊥)], (39)

where, to be conservative, the exponential factor has been taken outside the deriva-
tives, which is equivalent to marginalize over the parameters Σ‖ and Σ⊥ with large
uncertainties.

Note that Σ‖ and Σ⊥ depend on redshift and on the chosen normalization for
PDM(k). In particular,

Σ⊥(z) = Σ0G(z)/G(z0), (40)

Σ‖(z) = Σ0G(z)/G(z0)(1 + f (z)), (41)

Σ0 ∝ σ8 . (42)

If in your convention z0 = 0 then Σ0(z = 0) = 8.6h−1σ8,DM(z = 0)/0.8.
As an example of an application of this approach for survey design, it may be

interesting to ask the question of what is the optimal galaxy number density for a
given survey. Taking redshifts is expensive and for a given telescope time allocated,
only a certain number of redshifts can be observed. Thus is it better to survey more
volume but have a low number density or survey a smaller volume with higher
number density? You can try to address this issue using the available code. For a
cross check, Fig. 8 shows what you should obtain. Here we have assumed σ8 = 0.8
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Fig. 8 Percent error on H(z)rs and Da/rs as a function of the galaxy number density of a BAO
survey. This figure assumes full sky coverage fsky = 1 (errors will scale like 1/

√
fsky) and redshift

range from z = 0 to z = 2 in bins of Δz = 0.1

at z = 0, b(z = 0) = 1.5 and we have assumed that G(z)b(z) = constant. To interpret
this figure note that with the chosen normalizations, P(k) in real space at the BAO
scale k ∼ 0.15 h/Mpc is 6241(Mpc/h)3, boosted up by large-scale redshift-space
distortions to roughly 104(Mpc/h)3 so n = 10−4 corresponds to nP(k = 0.15) = 1.
Note that the “knee” in this figure is therefore around nP = 1. This is where this
“magic number” of reaching nP ∼> 1 in a survey comes from. Of course, there are
other considerations that would tend to yield an optimal nP bigger than unity and of
the order of few.

12 Model Testing

So far we have assumed a cosmological model characterized by a given set of cos-
mological parameters and used statistical tools to determine the best fit for these
parameters and confidence intervals. However, the best fit parameters and confi-
dence intervals depend on the underlying model, i.e., what set of parameters are
allowed to vary. For example, the estimated value for the density parameter of
baryonic matter Ωb changes depending whether in a ΛCDM model the Universe
is assumed flat or not (Fig. 9 right panel) or the recovered value for the spectral
slope of the primordial power spectrum changed depending if the primordial power
spectrum is assumed to be a power law or is allowed to have some “curvature”
or “running” (Fig. 9 left panel). It would be useful to be able to allow the data
to determine which combination of parameters gives the preferred fit to the data;
this is the problem of model selection. Here we start by following [19] which is a
clear introduction to the application of this subject in cosmology. Model selection
relies on the so-called information criteria and the goal is to make an objective
comparison of different models which may have a different number of parameters.
The models considered in the example of Fig. 9 are “nested” as one model (the
ΛCDM one) is completely specified by a sub-set of the parameters of the other
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Fig. 9 Effect of the choice of the cosmological model in the recovered values for the parameters.
Here we used WMAP5 data only: in both panels the narrow curve is for a standard flat ΛCDM
model. In the left panel we show the posterior for Ωb, the broad curve is for a non-flat ΛCDM
model. In the right panel we show the posterior for ns: the broad curve is for a ΛCDM model
where the primordial power spectrum is not a perfect power law but is allowed to have some
“curvature” also called “running” of the spectral index. Figure courtesy of LAMBDA [5]

(more general) model. In cosmology one is almost always concerned with nested
models.

Typically the introduction of extra parameters will yield an improved fit to the
data set, so a simple comparison of the maximum likelihood value will always
favor the model with more parameters, regardless of whether the extra parame-
ters are relevant. There are several different approaches often used in the litera-
ture. The simplest is the likelihood ratio test [20] see Sect. 6. Consider the quantity
2 ln [Lsimple/Lcomplex] where Lsimple denotes the maximum likelihood for the model
with less parameters and Lcomplex the maximum likelihood for the other model.
This quantity is approximately chisquare distributed and thus the considerations of
Sect. 4 can be applied.

The Akaike information criterion (AIC) [21] is defined as AIC = −2 lnL +
2k where L denotes the maximum likelihood for the model and k the number of
parameters of the model. The best model is the one that minimizes AIC.

The Bayesian information criterion (BIC)[22] is defined as BIC = −2 lnL +
k ln N where N is the number of data points used in the fit.

It should be clear that all these approaches tend to downweigh the improvement
in the likelihood value for the more complex model with a penalty that depends on
how complex is the model. Each of these approaches has its pros and cons and there
is no silver bullet.

However, it is possible to place model selection on firm statistical grounds within
the Bayesian approach by using the Bayesian factor which is the Bayesian evidence
ratio (i.e., the ratio of probabilities of the data given the two models).
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Recalling the Bayes theorem (2) we can write P(D) =∑i P(D|Mi)P(Mi) where
i runs over the models M we are considering. Then the Bayesian evidence is

P(D|Mi) =
∫

dθP(D|θ ,Mi)P(θ |Mi), (43)

where P(D|θ ,Mi) is the likelihood. Given two models (i and j), the Bayes factor is

Bij = P(D|Mi)

P(D|Mj)
. (44)

A large Bij denotes preference for model i. In general this requires complex numer-
ical calculations, but for the simple case of Gaussian likelihoods it can be expressed
analytically. The details can be found, e.g., in [23] and references therein. For a
didactical introduction see also [24].

13 Monte Carlo Methods

With the recent increase in computing power, in cosmology we resort to the appli-
cation of Monte Carlo methods ever more often. There are two main applications of
Monte Carlo methods: Monte Carlo error estimations and Markov Chains Monte
Carlo. Here I will concentrate on the first as there are several basics and detail
explanations of the second (see e.g., [25] and references therein).

Let us go back to the issue of parameter estimation and error calculation. Here
is the conceptual interpretation of what it means that an experiment measures some
parameters (say cosmological parameters). There is some underlying true set of
parameters θtrue that are only known to Mother Nature but not to the experimenter.
There true parameters are statistically realized in the observable Universe and ran-
dom measurement errors are then included when the observable Universe gets mea-
sured. This realization gives the measured data D0. Only D0 is accessible to the
observer (you). Then you go and do what you have to do to estimate the parameters
and their errors (chisquare, likelihood, etc.) and get θ0. Note that D0 is not a unique
realization of the true model given by θtrue: there could be infinitely many other
realizations as hypothetical data sets, which could have been the measured one:
D2,D2,D3 . . . each of them with a slightly different fitted parameters θ1, θ2 . . . θ0
is one parameter set drawn from this distribution. The hypothetical ensemble of
Universes described by θi is called ensemble, and one expects that the expecta-
tion value 〈θi〉 = θtrue. If we knew the distribution of θi − θtrue we would know
everything we need about the uncertainties in our measurement θ0. The goal is to
infer the distribution of θi − θtrue without knowing θtrue. Here is what we do we
say that hopefully θ0 is not too wrong and we consider a fictitious world where θ0
was the true one. So it would not be such a big mistake to take the probability
distribution of θi − θ0 to be that of θi − θtrue. In many cases we know how to
simulate θi − θ0 and so we can simulate many synthetic realization of “worlds”
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where θ0 is the true underlying model. Then mimic the observation process of these
fictitious Universes replicating all the observational errors and effects and from each
of these fictitious Universe estimate the parameters. Simulate enough of them and
from θS

i −θ0 (where S stands for “synthetic” or “simulated”) you will be able to map
the desired multi-dimensional probability distribution. With the advent of fast com-
puters this technique has become increasingly widespread. As long as you believe
you know the underlying distribution and that you believe you can mimic the obser-
vation replicating all the observational effects this technique is extremely powerful
and, I would say, indispensable. This is especially crucial when complicated effects
such as instrumental and or systematic effects can be simulated but not described
analytically by a model.

14 Conclusions

I have given a brief overview of statistical techniques that are frequently used in the
cosmological literature. I have presented several examples often from the literature
to put these techniques into context. This is not an exhaustive list nor a rigorous
treatment, but a starter kit to “get you started.” As more and more sophisticated
statistical techniques are used to make the most of the data, one should always
remember that they need to be implemented and used correctly:

• data gathering is an expensive and hard task; statistical techniques make possible
to make the most of the data

• always beware of systematic effects
• an incorrect treatment of the data will give non-sensical results
• there will always be things that are beyond the statistical power of a given data set

Remember: “Treat your data with respect!”

15 Some Useful References

There are many good and rigorous statistics books out there. In particular Kendall’s
advanced theory of statistics made of three volumes are

• Distribution Theory (Stuart and Ort 1994 [26])
• Classical Inference (Stuart and Ort 1991 [27]) and
• Bayesian Inference (O’Hagan 1994 [20]).

For astronomical and cosmological applications in many cases one may need a prac-
tical manual rather than a rigorous textbook. Although it is important to note that a
practical manual is no substitute for a rigorous introduction to the subject.

• Practical Statistics for Astronomers, by Wall and Jenkins, (2003) is a must have
[1].

• Numerical Recipes is also an indispensable “bible”: Press et al. [2]
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It also provides a guide to the numerical implementation of the “recipes” discussed.
Complementary information to what presented here can be found in

• Verde, in XIX Canary Island Winter School “The Cosmic Microwave Back-
ground: From Quantum Fluctuations to the Present Universe” [25]. In the form
of lecture notes, and

• Martinez, Saar, “Statistics of the Galaxy Distribution” [28], with a slant on
large scale structure and data analyis in cosmology, Martinez, Saar, Martinez-
Gonzalez, Pons-Porteria, Lecture Notes in Physics 665, Springer, 2009
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