Sunayev-Zeldovich
effect



Sunayev-Zeldovich effect

® The Sunyaev-Zel'dovich effect

(SZE) is a small spectral distortion

of CMB spectrum caused by the
scattering of the photons off a

distribution of high energy
electrons (e.g. cluster hot plasma).

® The inverse Compton scattering
boosts the energy of the CMB
photon by roughly kTe/mec?
causing a small ( ~1 mK)
distortion in the CMB spectrum.
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SZ detections
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Planck SZ-clusters
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South Pole Telescopes

® South Pole station : CMB telescopes visible
in the background include (left to right) the
South Pole Telescope, the BICEP2 telescope,
and the Keck Array telescope




Decl. {J2000)

-49.80

-49.82

SPT Clusters

74.88

1 L] T L 1 L] T Ll 1 L T L |

SPT-SZ 2500 deg® X .
ROSAT-All sky B
Flanck-DR1 &
ACT

lllll

X

X
XX
X

74.96

7494 74.92
R.A. (J2000)

74.80

0.€

0

8 1.0 1.2 1.4

Redshift

74.88

3.6 um = 4.5 um

1OF Spr-cl Joas9-4947 ¢ ]
SPT-CL J2040-4451 z,,,.=1.478

0.8F ‘ Tesl 1

06} . ooyt ..W i&L M

ST T T b Iy el vk B8

04':' N ¢ ‘.?' ‘ + by ++ ++ + pe

L * LM DR +'*. ”

0.2f N TRRE Y T (e

N pe M 1 . | ¢ .o..
00':. o : * . ofe? ‘. | 1
-0.2
| SNRPRRIRIRVINS SRUNI SU U - _———— | “

150 155 16.0 165 170 175 180
3.6 um



CMB Lensing

® Mass distribution
on the line of

sight will distort
the CMB light

® ChangesinT,E
and B
polarisation

® Detected in the
Planck/SPT/ACT
data

CMB Lers

ng Polentie| power spectrum

Multipole moment, L
10 100 500 1000 1500
1] |

Angular scale (degrees)

https://arxiv.org/abs/1502.01591
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https://arxiv.org/abs/1502.01591
https://arxiv.org/abs/1610.02743

Future of CMB observations

® Better polarisation measurement.

® Primordial B-modes!? (test inflation)

® Higher resolution images (larger telescope)

® Space-based projects (proposed but not successful yet)

® Ground based project:“Stage-IV”’ project led/motivated by
US DOE. (Simons Observatory in the near future)

® Mars 2025: first light of the large telescope of the “Simons
Observatory”: https://simonsobservatory.org/

® http://xxx.lanl.gov/abs/1610.02743 CMB-S4 Science Book
® https://cmb-s4.org/
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https://simonsobservatory.org/
http://xxx.lanl.gov/abs/1610.02743
https://cmb-s4.org/

LiteBIRD Space Mission

https://www.isas.jaxa.jp/en/missions/spacecraft/future/litebird.html

NSTITUTE OF SPACE AND
ASTRONAUTICAL SCIENCE

MISSIONS GALLERY FOCUS-ON IOPICS QU REACH AEOUT ISAS FOR RESEARCHERS B[

rawre | The Lite (Light) satellite for the study of B-
mode polarization and Inflation from cosmic
background Radiation Detection (LiteBIRD)

LiteBIRD will search for the evidence of cosmic inflation in the early Big Bang universe through

high sensitivity measurements of the cosmic microwave background (CMEB) polarization signal

across the entire sky.


https://www.isas.jaxa.jp/en/missions/spacecraft/future/litebird.html

Quiz

What are the first atoms (ions) formed ~3minutes after the BigBang!?

When the first neutral Hydrogen atoms form? At which redshift?
Temperature?

Can you deduce then the Temperature of the Cosmic Microwave
Background?

From which equation can we deduce the temperature of the CMB!?

What is the density of CMB photons today? And the density of
baryons!?

Who first detected the CMB?

What are the main parameters we can constraints using the CMB
anisotropies?

What is the SZ-effect? What is it sensitive to?



The Intervening Universe

Jean-Paul KNEIB




Introduction

® Direct Mass estimate is possible through:
® measuring the mass of galaxies, clusters

® different techniques can be used: dynamics,
gravitational lensing, but also X-ray, SZ ...

¢ Indirect Mass estimate is the topic today
through the absorption of light in the spectrum of
distant bright objects (mainly quasars, but also GRB
optical counterpart)



The light of quasars is absorbed
during its travel towards us

® Quasars (SMBH
accreting mass) are
used as background
light sources

® Neutral hydrogen
creates absorption
lines in their spectra
(Lyman-alpha line:
1216 Angstrom)




High z quasar spectra tell us about the Hidensity
along their line of sight
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High z quasar spectra tell us about the Hidensity
along their line of sight
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High z quasar spectra tell us about the Hidensity
along their line of sight
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High z quasar spectra tell us about the Hidensity
along their line of sight

Ly Ly Civ
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High z quasar spectra tell us about the Hidensity
along their line of sight
LyB Lyo Crv
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® Optical depth: Opaque
T(Aobs) X NH1(Zabs)
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Line Transitions

Line Angstrom
Lyman Limit 912
Ly-gamma 972,5
Ly-beta 1025,7
Ly-alpha 1215,7
Si IV 1393 1393,7
Si IV 1402 1402,8
C IV 1549 1459
Fe 11 2382 2382,8
Fe 1l 2600 2600,2
Mg Il 2796 2796,4
Mg Il 2803 2803,5




Hydrogen Atom

Electron
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Absorbing Photons

Hydrogen energy levels are quantised:

Ly
En -~ ">

I

with Eo=13.6 eV (1 eV =1.602x10-19 Joules) and n=1,2,3...

® Energy is a negative number because it takes that much
energy to ionise the electron from the nucleus.

e Unbound electron has zero (binding) energy [ionised state]

® Bound electron can only absorb photons of energies
matching exactly the energy difference, or “quantum leap”,
between 2 energy states.



Absorbing Photons

When an electron absorbs a photon it gains the
energy of the photon.

An electron in the ground state has an energy of
-13.6 ¢V. The second energy level is -3.4 e¢V. Thus it
takes E» —E1 =-3.4—-13.6 =10.2 ¢V to excite the
electron from the ground to the first excited state.

If a photon has more energy than the binding energy
of the electron, then it will ionise the atom.

The ground state is the most bound state and
therefore takes the most energy to ionise.



Emitting Photons

® EXxcited state is not the most stable state of an atom.

® An electron has a certain probability to spontaneously
drop from one excited state to a lower (i.e. more
negative) energy level.

® \When an electron drops to a lower level it transforms
the excess energy, by emitting a photon, of energy

given by the Rydberg Formula:

AE,,=E(~r-—7)  wem

n,m
n I




Hydrogen Atom Simulator

http://astro.unl.edu/naap/hydrogen/hydrogen.html
http://astro.unl.edu/naap/hydrogen/animations/hydrogen atom.html

Astronomy Education at the University of Nebraska-Lincoln

Home ClassAction NAAP Labs Interactives Video Mobile Downloads
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http://astro.unl.edu/naap/hydrogen/animations/hydrogen_atom.html
http://astro.unl.edu/naap/hydrogen/hydrogen.html

Quasar absorbers
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Optical Depth

The optical depth (OD) is given by the probability of scattering
of a photon:

dr=n.o.ds

e where n is the number density of neutral hydrogen atoms,
o is the cross-section for the Ly-alpha transition and ds is

the distance element.

e |[f OD is large (t>1), the region is optically thick -- light is
readily absorbed.

e |f OD is small (t<1), the region is optically thin, and light
passes through easily.



https://en.wikipedia.org/wiki/Number_density
https://en.wikipedia.org/wiki/Cross_section_(physics)

Column Density

The column density (a.k.a. surface density) of
material is the projected density of the material
on the observation plane.

Then the number of absorbers per unit surface
area is given by the column density:

2= fn.ds



Equivalent Width

The shape of an absorption line depends on the number of

photons that are absorbed at a particular wavelength.

To compare the strengths of the absorption lines we can use the

equivalent width.

| W, = f (1-F(A)/F.)d)

continuum level

ﬁinc profile

'/ 7 /./gq(wl) .

wavelength (1)

mntensity (I)

A=r W,



http://astronomy.swin.edu.au/cosmos/A/Absorption+Line
http://astronomy.swin.edu.au/cosmos/P/Photon
http://astronomy.swin.edu.au/cosmos/W/Wavelength
http://astronomy.swin.edu.au/cosmos/A/Absorption+Line
http://astronomy.swin.edu.au/cosmos/E/Equivalent+Width

Flux absorption

In the case of optically thin medium ( t<1):

dF'=-F.dt=-F.n.c.ds
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Line Shape

¢ Gaussian: random
velocity broadening

¢ Lorentzian: natural
broadening/collision
broadening (uncertainty
principle)

T(A) =T7(A -
8y <o>((/\_/\O)H+Q2)

® Voigt convolution of
Gaussian and Lorentzian

[ntensity

0.75}

0.5

— Gaussian

— Lorentzian




(Gaussian Line

Thermal broadening, due to random thermal motions of atoms.
For a Maxwellian velocity distribution,
the I-D projected velocity distribution is Gaussian.

® Mean value: u

® Dispersion (standard deviation): o

® Gaussian profile:

1 (z—p)*

e 202

flz | po?) = Nor=

® \VWidth at half maximum:

FWHM=26+2Tn2 ~2.35c




| orentzian Line

Natural broadening, intrinsic to the transition and
resulting from the Heisenberg uncertainty principle.
This gives rise to a Lorentzian absorption cross-section.

® |orentzian profile: L(x)= >
[+x

® \Width at half maximum: FWHM=2

p’-p
w/2

® Normalised abscisse: X=




Voigt Line

® Convolution of a Gaussian and a Lorentzian:

V(ws0o,n) = / G(c';0)L(z — 2'; ) da’

o0

® Width of Gaussian and Lorentzian: o,y



Link between velocity
and Doppler shift

® Link between the Doppler velocity shift
and the variation in wavelength:

Av  A)
c A
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Equivalent
Width as a
function of

column density
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https://ned.ipac.caltech.edu/level5/Charlton/Charlton1_1.html

Damped Lyman-alpha (DLA) system

Damped Lyman alpha systems are concentrations of neutral
hydrogen gas, detected in the_spectra of guasars. They are defined to
be systems where the column density (density projected along the line
of sight to the quasar) of hydrogen is larger than 2 x 1020 atoms/cm?
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https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Spectrum
https://en.wikipedia.org/wiki/Quasar

The neutral hydrogen
density parameter

We can define the HI density parameter:

SnG.
(2= , ).oOH]
3H"
The volume density of HI can be expressed by:

H.um |
Puil2)= Oi, = f Nyf (Nypz)dNy,

Where f is the column density distribution of
Lyman-alpha clouds as a function of HI density
and redshift.




The neutral hydrogen density parameter
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Gunn-Peterson effect

The Gunn-Peterson trough

iS a feature Of the SpeCtra Of DETERMINING THE REIONIZATION REDSHIFT
guasars due to the presence
of neutral hydrogen in the O o S SET

Intergalactic Medium (IGM).
The trough Is characterized

by suppression of Spectium
electromagnetic emission |
from the quasar at Mw\ m
wavelengths less than that of ||

the Ly-alpha line. _—

This effect was originally
predicted in 1965 by James
Gunn and Bruce Peterson.
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Optical Depth as a
function of redshift

[ ..

optical depth from the x Ly
high redshift Sloan

quasars.

The dashed line £ ©

shows a redshift L

evolution of =(1+z)43.

Atz > 5.5, the best-fit "
evolution has

=(1+z)> 109 indicating

an accelerated o

Evolution of the Y LY ke i T

evolution.



HI fraction
evolution

The cosmological fraction
of neutral hydrogen (HI)
in the diffuse intergalactic
medium as a function of
redshift.

For higher redshift, the
universe Is increasingly
neutral.

A late and rapid
reionisation is favoured.
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Reionization

Cosmic Dark Ages Reionization IGM mostly ionized
z > 15-307? z=6-157 z=0-6,t>1Gyr
t < 100-270 Myr t<1Gyr .
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(z = 10-307) Dense, neutral pockets

Reionization is the process that reionized the matter in
the universe after the "dark ages”. It is now believed to
happen at z~7-9.

As the majority of baryonic matter is in the form of
hydrogen, reionization usually refers to the reionization
of hydrogen gas.



2| cm spin-flip transition

There is a slight difference In
energy of the ground state
depending whether the spins of
the proton and electron are in the %
same or opposing sense. T e

The transition between them 21(\ i’

gives rise to a line close to emission

1.42 GHz - 21cm in wavelength.

This is called the 21cm line and is

a most powerful tool for studying Energy difference
the dynamics of galaxies. is ~10-6 eV

Before

After




2l cm reionisation

e The 21cm line is observable in
radio domain, even when
redshifted to z>10.

 During reionization, the 21cm
line could be in emission or in
absorption depending on the
thermal history of the gas.

 We expect a 21cm-forest
analogous to a Lyman-alpha
forest.
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Reionization histories (Tp in mK as a
function of frequency or redshift) are
plotted for mini-gso, stellar and hybrid
sources, respectively.



2| cm spin-flip transition

e The 21cm line is observable in
radio domain, even when
redshifted to z>10.

 During reionization, the 21cm 5
line could be in emission or in
absorption depending on the
thermal history of the gas.

e We expect a 21cm-forest
analogous to a Lyman-alpha
forest.




Redshift
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Dark age: the gas cools
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Specifics of Radio
Astronomy

® The airy disk is given by:

A
0 =1.220—
D

Airy - Disk

® At |cm wavelength, D=2.5km to resolve |”
® At 2lcm (Hydrogen Line), D=50km

® At Im,D=250km (to resolve the hydrogen line in a
galaxy at z~5)

- https://www.edx.org/course/radio-sky-1
e https://www.edx.org/course/the-radio-sky-i1-observational-radio-astronomy



https://www.edx.org/course/radio-sky-1
https://www.edx.org/course/the-radio-sky-ii-observational-radio-astronomy
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Jansky Very Large Array (JVLA)

-0, New Mexico, USA




MeerKat (South Africa)

SNR | SNR
8 G359.1-0.5




Square Kilometer Array
Observatory

The SKAO will be the largest and most complex
astronomical instrument, with individual antennas spread
over continental scales.

Collecting surface area of ~ <1 km?




Switzerland joined the SKAO on
January 2022
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512 stations
of 256

antennas
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Low
frequency
telescope
AcCross 65km

Epoch of
Reionization§

Western
Australia To be completed in 2029



144 dish
antennas of
15m
diameter

SKAO

Mid
frequency
telescope

ACross
150km

Magnetism, &
galaxy
mapping

To be completed in 2029

South Africa



Sensitivity Comparison

N ||||| | | T |||| | | T |||| | | I

i = = SKAZ g i

R R s i EEs e e =

< SKA1—MID

g 10% =

> - -
>

Z 100 =

2 } =

Z : :

: i i

T1 10 =

= / 2lcm =

_I l Illli l l I Illi l l 1 Illli l l l IT

0.1 1 10
Frequency (GHz)
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Survey Speed Comparison
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Image Quality Comparison

'nodF)kJ 2s.ska 1 mod8kOvev.vlaABCD
' 1] " I 1 " A

SKA1 M|d-snap -shot
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e Single SKA1-Mid snap-shot compared to combination of snap-
shots in each of VLA A+B+C+D

Exploring the Universe with the world's largest radio telescope 64




