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ESO: The European
Southern Observatory

® |nter Governmental Organisation funded in 1962
(following the CERN model) - |7 countries.

https://www.eso.org/

® Based in Garching near Munich

® 4 ssites: La Silla, Paranal (VLT), Charnantor (ALMA),
Cerro Armazones (E-ELT)

® FSO PhD studentship (DL April 20 and Oct 20)

https://recruitment.eso.org/



https://www.eso.org/

ESO Very Large Telescopes

https://www.eso.org/

http://www.eso.org/sci/activities/FeSt-overview/ESOstudentship.html



https://www.eso.org/
http://www.eso.org/sci/activities/FeSt-overview/ESOstudentship.html

ALMA radio interferometer




The European Extremely Large Telescope

AT e https://elt.eso.org/ e



https://elt.eso.org/

Quiz

What is the unit of A ?What is its value!
What is the equation of state of Matter?! of radiation!?

How the density of matter/radiation scales with the
scale factor?

How the scale factor scales with time?

When the Matter/Radiation dominates the mass/energy
density?

What is the critical density?

How to write the Friedman equation with Omegas?



Outline

® More on distances

® Cosmological tests



More on the
expression of distances

® Dark Energy parametrization
o E(z)

® Comoving Distance

® Proper distance

® Angular diameter distance

® | uminosity distance

® Comoving Volume element

® | ookback time



General Dark Energy parametrization

® The equation of state of DE is a priori not a
constant (general case):

pla)=a
w represent the equation of state:
w=0  for matter,
w=1/3 for radiation,
w=-1  for the cosmological constant

w=w(a) if non constant (Dark Energy)
* Possible parametrisation:

-3(1+w)

£
o

w=w,+w, (l-a)=w,+w
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There are uncertainties of what kind of
possible Dark Energy,

Equation of State possible is: w=-7/+0.2
But aim to measure this with high accuracy



DESI -

March 2025:

Indication of
an evolving
Dark Energy!?
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Normalized Hubble Parameter

¢ Definition: Normalized (or reduced) Hubble
parameter E(z):

H(z)=H,E(z)
Expression of E(z) as a function of the reduced densities

EZ(z)zﬂM(] +z)3+QR(] +z)4+£2k(] +z)2+£2A

E(z)=(1+z2)° [Qu(1+2)+Qu(1+7)"+Q €Q) (] +®

The Omegas here are those measured today!



Comoving Distance

® The comoving distance is the distance between
two points measured along a path defined at

the present time (ds=0):

cdt 2 cdz ¢ [+ dz

¢
d(.-mnu\.’ing: J:U Cl(t) o () H(:) - HO 0 E(:)

Indeed
d da dz

[ — -
a(t) Hda®  H(z)




Proper Distance

® r s the proper distance

7 z dz

COMoOV ms, 0 0 E(/\') f '\/IT _f(r)

f(r)=r (k=0), sin(r) (k>0), sinh(r) (k<O)

_f k ( (omovmg,



Angular Diameter
Distance

® Angular diameter distance

d,(z)=r(z)/(1+z)




Angular Diameter and
Luminosity Distance

® Angular diameter distance
d,(z)=r(2)/(1+z)

® | uminosity distance

d;(z)=r(z)(1+z)

d(z)=d,(z)(1+z)°




Surface brightness

® The surface brightness is the flux received by
unit of surface:

F_ L d L dy 1
Q  4gd? S A4S & (1+z)°

]0:

This is the cosmological surface brightness dimming,
making high-redshift galaxies difficult to observe



Comoving Volume

® The comoving volume V¢ is the volume measure in which

number densities of non-evolving objects locked into Hubble
flow are constant with redshift.

® |t corresponds to the proper volume times: (1+z)3.

- r(z)drdQ
V 1-kr?
® (Can be rewritten as:

-~ C (]+Z)2di
V=T TEw)

dV

d€2dz
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Look-back Time

The look-back time to an object:

the difference between the age of the
Universe now (at observation) and the age
of the Universe at the time the photons
were emitted:

e / dz
" H, Jo (I1+z2)E(z)
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Flatness problem

Friedman equation without cosmological constant:

8rGG kc?
H* = p
3 a?
Rearranging the equation, introducing the critical density
3a’ 3kc? 3kc?
H2 — 502 a® — pa? =
seG 7 T 8ag P TP 837G
_ —3kc?
(1 —1)pa® = Constant

8nGG



Flatness problem

® The relative density ) against cosmic time ¢

N

The =1 value is

repulsive.

So this is considered
a good reason to
argue that the universe
must have been always
exactly flat (k=0)


https://en.wikipedia.org/wiki/Cosmic_time

Horizon Problem

When we look at the CMB it comes
qwave backgro, from ~45 billion comoving light years
g away. However, when the light was
%, emitted the universe was much
younger (380,000 years old).
In that time light would have only
00000vears regched as far as the smaller circles.
The two points indicated on the
diagram would not have been able to

contact each other because their
spheres of causality do not overlap.

Universe

Yet, those 2 points looks like identical?


https://en.wikipedia.org/wiki/Cosmic_microwave_background_radiation
https://en.wikipedia.org/wiki/Observable_universe#Size
https://en.wikipedia.org/wiki/Light_year

A solution: Inflation
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This is a concept
that aims to solve
the Horizon
problem by
considering a very
fast expansion in
the early
Universe.



Inflation

This is a concept
that aims to solve
the Horizon
problem by
considering a very

— fast expansion in

’ inflation the early
Universe.

500,000 yr

10—36 g
1038 g

distance
Copynght © Addison Weslay



Classical Cosmological Tests

® | uminosity distance at low redshift
® Apparent size versus redshift (size test)
® surface brightness versus redshift (Tolman test)

® very hard as there is a big fluctuation of SB from
galaxy to galaxy

® Conservation of number of galaxies (Loh and Spillar
test) = subject to galaxy evolution

® Counting galaxies as a function of redshift
(Covolume test) = subject to galaxy evolution
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Luminosity distance at low redshift

At low-z, mainly sensitive at Ho and not cosmology
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Luminosity distance at low redshift

At low-z, mainly sensitive at Ho and not cosmology

42
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ScI GALAXIES
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2.8 " Galaxies are not
standard candle
Large variation of
size and luminosity.
- Cannot even
_ measure Ho.

14

Sandage & Tamman (1975)



Apparent size versus redshift

The angular diameter test (assuming Q, = 0)
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Apparent size versus redshift
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Figure 2, The angular diameter—redshift dizagram as in Fig. 1 but omitting sources below a certain
g « z ' linc for clarity. The cxpected relations for homogeneous world models with @ =0and £ =1 and
the relation 8 « 77" are plotted.



mag)

log(N) (/sq.det./

Galaxy number counts

The solid points are the
faint galaxy number counts

11 from the Hubble Deep

Fields and the star shaped
points are the number
counts from ground based
data.

The curves are the no-
evolution predictions from
>0 25 30 3 flat cosmological models.

magnitude

Galaxy evolution is dominating.



Modern Cosmological Tests

e CMB (flatness)
® Standard candle with SNla (Luminosity test)

® Standard ruler with BAO (Angular diameter
distance test)

® Counting of cluster of galaxies (Volume test+
Growth of structure)

® Cosmic shear signal (Volume test+Growth of
structure)



DETF report (2005)

http://www.nsf.gov/mps/ast/aaac/dark_energy task force/report/
detf final report.pdf

In February 2005 a Dark Energy Task Force
(DETF) was organized as a joint subcommittee to
advise NSF, NASA, and DOE on the future of dark
energy research, to help the agencies to identify
actions that will optimize a near- and
intermediate-term dark energy program and
ensure rapid progress towards understanding the
nature of dark energy.


http://www.nsf.gov/mps/ast/aaac/dark_energy_task_force/report/detf_final_report.pdf
http://www.nsf.gov/mps/ast/aaac/dark_energy_task_force/report/detf_final_report.pdf

DETF report (2005)
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Overview of the CMB spectrum
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(r+1)c, f2m [pK]
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The position of
the first peak
indicates the

universe is flat.
The relative
height of the
second peak

gives the ratio
between DM
and baryons.

(White et al. | 994)
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lType la supernova

If a white dwarf

can accrete mass

from a binary
partner

S,
If a white dwarf’s binary partner
is another white dwarf, then accretion
to one of them could drive it
to supernova conditions.

It may pass 1.4
solar masses and
suddenly explode
into a Type la
supernova

10 billion years
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S 18} Time scale stretch <1 -18
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E Template light curve
& 47} Lower peak for determining o A7
o Intensity, absolute magnitude
§ steeper decline of Type la supernova

16 Observed light curves 116
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Cislance modulus (m - M)

Luminosity distance at high redshift

46

38
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At high-z, for Ho well known,
cosmology can be tested
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Luminosity distance at high redshift

At high-z, for Ho well known, cosmology can be tested
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Luminosity distance at high redshift

At high-z, for Ho well known, cosmology can be tested

L r

Redshift

Freedman et al 2009



BAQO as standard Ruler

First BAO peak measurements in 2005
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BAQO as standard Ruler

SDSS BAO Distance Ladder
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Rubble parameter
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Cluster Counts (X-ray)

°*-Q®- Q °-@0-"

smooth accretion

® 3rdorder
. 2nd order

o 1st order

. Oth order (host)




Cluster Counts (X-ray)
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Cosmic shear signal




Y(1+1)C,/2m

Cosmic shear signal

. 5 redshift bin tomography i
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Cosmic shear may
provide in the near
future precise
cosmological test.

Shown here: the
amplitude of the
shear strength as a
function of size and

redshift.
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The expansion rate of the Universe today

- The Hubble constant Hg

faster

An emerging problem in Physics

“The Tension”
1 in 3.5 million
chance it's
just statistics
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