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Outlines

Examples of spherical models:

- “Potential based” models
- “Density based” models

Axisymmetric models for disk galaxies

- “Potential based” models

- Potential of flattened systems

- Potential of infinite thin (razor-thin) disks

- “Potential based” razor-thin disks models

- Potential of spheroidal shells (homoeoids)

- Potential of spheroids

- Potential of infinite thin (razor-thin) disks from homoeoids

|dealized but useful models
- the Infinite wire, the infinite slab
- Infinite slab with oscillatory surface density, tightly wound spiral



Spherical systems :
useful relations
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Examples of
Spherical models

“Potential based”
models
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Plummer model

B(r) — GM o -
(r) = _\/’r2 + b2 T £
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* Globular clusters, dwarf spheroidal galaxies



Isochrone potential

O(r) =— GM
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Isochrone potential
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Orbits are analytical !




Examples of
Spherical models

“Density based”
models
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Harmonic oscillator !




Isothermal sphere

2 2
a 10
r) = _ 10!
p(r) =po—3 o
r o
®(r) = 47Gpoa” In (—) 154
a
M (r) = 4mpoa® r o
i
Vi (r) = AnGpoa” "

* often used for gravitational lens models

* But!
 diverge towards the centre !
* infinite mass !




Pseudo-isothermal sphere

CL2

a? + r?

p(r) = po

1
®(r) = 4nGpoa’ (5 In(a”® + r2) + g arctan (2))

a r

M (r) = 47nrpoa’ (1 — —arctan (—))
r a

VZ2(r) = 4G poa® (1 ~ % arctan (f))

¢ r a

* Avoid the central divergence of the isothermal sphere
* However, the mass is still not bounded




Pseudo-isothermal sphere
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* Avoid the central divergence of the isothermal sphere
* However, the mass is still not bounded




Generic two power density

models
Po
p(’l“) — > N * diverges at the center
(r/a)*(1+r/a)P if a0
M A7 0003 R
(T) — FTMPoa /O 8(1 + S)B_O‘

model name inner slope o outer slope 3

Plummer 0 5! * globular clusters
Dehnen any 4

Hernquist 1 4 * bulges, elliptic. gal.
Jafte 2 4 + elliptic. galaxies
NEFW 1 3 « dark haloes




Generic two power density model

( 1:—{”G/Ja, (Jaﬁe)
M(r) = 4mpoa® x { 2(51/7?/)2)2 (Hernquist)
L In(1+r/a) — 1;@@ (NFW) » diverges !!

( In(1+a/r) (Jaffe)

O(r) = —47er0a2 X 4 Q(Tlr/a) (Hernquist)

In(147/a) (NFW)

\ r/a



1
16~ — ——— Hernquist
102 — — Jaffe 0 —
—_— NFW
o 10 — ——— Plummer S—l |
= 1072 — <
_9 —
10—% —
-6
1 | | =3 | |
10—3 10 101 10—3 101 10!
T T
0.8 0.6

0.5 1.0 1.5 2.0



NFW (Navarro, Frenk & White 1995, 1996)

* Density profile that fit dark matter haloes formed in LCDM numerical simulations




NFW (Navarro, Frenk & White 1995, 1996)

Navarro et al. 1995 ]
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Fig. 3.— Density profiles of four halos spanning four
orders of magnitude in mass. The arrows indicate the
gravitational softening, h,,
shown are fits from eq.3. The fits are good over two
decades in radius, approximately from h, out to the

virial radius of each system.

of each stmulation. Also
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Figure 4. Spherically averaged density profile of the Aqg-A halo
at z = 0, at different numerical resolutions. Each of the pro-



Einasto model

p(r) = po exp |—(r/a)/™|  (m = 6)

— NFW
10% — Einasto

10*6 T IIIIIII| T IIIIIII| T T T TTTTT
10-3 102 10—t
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Spherical systems model comparison
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Potential Theory

Axisymmetric models for
disk galaxies

p(Z) = p(R, |2])

R = /22 + 2



Examples of
axisymmetric models

“Potential based”
models



Kuzmin disk

Kuzmin 1956

GM GM

P (R, z) = — ==
K ) \/R2+(a+ |2])? \/R2+22+a2+2alz]

Comparison with Plummer:

B GM
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Kuzmin disk

Kuzmin 1956
o (R ) GM
y <) = —
) VEET (at 2]
alM
YKk(R) =
KUB) = e+ a2
G M R?
‘/CZ,K(R):

(R2 + a2)3/2

Note:  for an axi-symmetric model, the circular velocity

iIs computed in the plane z=0.

d®(R,z = 0)

2 _
V:(R) =R R

C

Plummer based model

' EXERCICE

o —

Infinitely thin disk

Equivalent to the Plummer model

GMr?
(r2 + b2)3/2

V2P (r) =



Kuzmin disk
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Miyamoto-Nagai potential

Miyamoto & Nagai 1975

GM

(I)MN(R, Z) = —
VR + (a+ VET B2

b=0 - Kuzmin

b2M> aR? + (a+ 3v22 + b2)(a + V22 + b?)?

, G M R*

VC MN (R) — Equivalent to the Plummer model
’ (R% + (a + b))/

GMr?
(r2 + b2)3/2

‘/62,P (r) =

“cveompee | Better parametrisation :
..___EXER_(_:_'QE Revaz & Pfenniger 2004



Miyamoto-Nagai potential

a=3.0 b=3.0
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Miyamoto-Nagai potential

a=3.0 b=0.3

—
|

—— Density
—— Potential




Miyamoto-Nagai potential
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Miyamoto-Nagai potential

Miyamoto & Nagai 1975
Circular velocity rotation curve
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Miyamoto-Nagai potential

Miyamoto & Nagai 1975
Circular velocity rotation curve
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Miyamoto-Nagai potential

Miyamoto & Nagai 1975
Circular velocity rotation curve
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Logarithmic potential

1 — -
(I)log(R, z) — 5‘/02 In (R? R2 < > Rc=0 and g=1

- Isothermal sphere

Ve 2¢* +1)R?+ R*+(2—-1/¢%)2?
inGg® (R4 R? + (2/¢%))

Plog (Ra Z) —

I - negative for g < 1,/(2)20.707

2 2
\V4 R =V « does not depends on q
c,log( ) 0 R% -+ R2 * flat rotation curve at large radius
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Logarithmic potential

Vo=1.0 R.=0.1 ¢=0.7




Logarithmic potential

Vo=1.0 R,=0.1 ¢=0.7

density




Logarithmic potential

Vo=1.0 R.=0.1 ¢=0.4
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Logarithmic potential

Vo=1.0 R.,=0.1 ¢=0.4

density




Logarithmic potential

Circular velocity rotation curve
Vo=1.0 R.=0.1 ¢=0.8
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Potential Theory

The potential of flattened
systems
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Potential Theory

Surface density-based
(razor-thin) disks



Kuzmin disk

Kuzmin 1956
o (R ) GM
y <) = —
) VEET (at 2]
alM
YKk(R) =
KUB) = e+ a2
G M R?
‘/CZ,K(R):

(R2 + a2)3/2

Note:  for an axi-symmetric model, the circular velocity

iIs computed in the plane z=0.

1d®([R,z=0)

2( Ry —
V(R)_R dR

Plummer based model

Infinitely thin disk

Equivalent to the Plummer model

GMr?
(r2 + b2)3/2

V2P (r) =



Mestel disk

(R < Rumax) “2D” version of the Isothermal sphere

(R Z Rmax)



Exponential disk

S(R) = B e F/Fa
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Potential Theory

The potential of infinite thin
(razor-thin) disks
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Potewtial / foree of e ring = oo Loss & Blifrer 1382
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Potential Theory

The potential of spheroidal
shells (homoeoids)
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Demonstration
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Newton’s Theorems

Homoeoid theorem:
* The exterior iso-potential surfaces of a thin homoeoid are the

spheroids that are confocal (u=constant) with the shell itself. Inside the
shell, the potential is constant.

Newton’s third theorem:

 Amass that is inside a homoeoid experiences no net gravitational
force from the homoeoid.



potential of homoeoids
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COMPLEMENT

Potential Theory

The potential of spheroids



The potential of spheroids defined by

—m’=R*+

constant

of density P(mQ)

may be obtained by summing homoeoids
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Potential Theory

The potential of infinite thin
(razor-thin) disks from
homoeoids
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Exponential disk

S(R) = Xy e F/Fa
The integral in the razor-thin potential equation is then:

= ZoaKl (G/Rd)

00 - R/zoe—R’/Rd
4 \/R’2 — a2

The potential:

a+R _ a—R
\/,2'2—|—(a—|—]:5)2 \/22+(a—R)2

d(R,z) = —2V2G Ooa
/O \/R2—z2—a2+\/22+(a+R)2\/z2+(a—R)2

X anKl (CL/Rd)

The circular velocity: "
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O
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Exponential disk

Circular velocity rotation curve
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Exponential disk

Potential
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Mestel disk

2

i 73— (R < Rumax) “2D” version of the Isothermal sphere
Y(R) =
\ 0 (R > Rmax)
for Rjjax — 00 o R
v, = = vy = cte
™ Jo VR?-—a?
Computing the cumulative mass:  EXERCICE -
R 2
vE R
M(R) = 27?/ R R Y(R) =%
0 G
we get:
GM(R)
2 _ 2
vy = v, (R) = R ! This is very specific to the Mestel disk...

In general the external mass matter.



Potential Theory

Ildealized but useful models



Potential of an infinite wire of constant linear density

®(R) =2G A\ In(R) + C




Potential of an infinite slab of constant surface density

b(z) =21G Xy |2| + C




Potential of an infinite slab with an oscillatory
surface density

Z

Y(z,y) = X1 Re (ez(’gf))
 will be negative !

2wl X . S
(I)(xayaz) = — ﬂ-“a 1Re (ez(k'm)> eIkl 2




COMPLEMENT

Potewloal of gl txhnde slalk wikh aw G‘IC_-‘“ALar») Suvr Faca J#'—-Q.‘L.)

Feen) = Re(Zoe ) [

Ak rlL 59....-?

WH-L\;,;L IDW :'_‘.i{' %eb—ewlil.:.) w e caw—

peishetel, e s 5 (=) |
> 2
ihoe
2wy = Z. &

PﬂES‘S‘ah Eﬁml:im 62?{’(@;3‘) = unG Z(Q‘:) J(#‘)

ﬂS‘Suwe_ o cawegfm-olu-.(s Pol’th‘—lc\'? o" !"Lq pr‘t

thex — |h?l
e

-
¥
a2
~
"
e

e



COMPLEMENT

H'E»Hnod’s'- I\n l‘eﬁr—mtr_ HMB. Po{Sgc-m eolu—aﬁfou-\ ove\v

2—

Jd
-
1
L
=
Q>
L’D

Sa};¢ ;
1 _

i
e —

Q.

A

£

=]

(&)
0

cwak Pake Fhe liwik g — O

3 3

- far e s m fa o g
! !
® ®



COMPLEMENT

= S 931 32t
(729
3 SEYex /
I 5 A (‘ch "311") = O s
2"“’*; Y §—
3 ;
| ian d % < ( %2, v, ’Q.) _ 1)
%*’"’ﬁg O Yy
3 g
A L"-ﬂ ‘D¢
fion A% 5 ( 2 &, = e —
%*’“’_g ot ) s wE L
ke - |k | §
= |im ?‘.(J Ik | sqn(*) e J =
s 3



COMPLEMENT

@O = S%on i G § =l 5‘36” yr G E.:.E‘

—_—n O et

=3 -3
ik oC
= L”TG Z‘.‘ <
C.cpm!;fhl‘-ﬁf) @ ﬁ-‘-ﬂ&{ @
- th o
—?_lk]géoe.'kx = urG S, e
enG 2
b, = -
| |
enG 2 thx = |k?|
¢(D‘:*‘91 “.‘L) = = €
| ke |

ke ¢

I(*)



COMPLEMENT

TLug [’oy—- Z(Q‘:ro)B - z_ﬁ <
:L:;ﬂ-li-?:ﬂ
¢(**j;q) - _ QTTG.EQ e
K
any-e_ -'.‘- H-.e gur{’mm cjet.-.q,\.b Eu—u\v—e? aS o fi)'ldhq
W —
'-(I:; - L-ub)
Z(I'G)J‘t) — 2_:. <
¢’(w,5nt) _ _ TGZ. Lk_w”ﬁlh%l
||




~ Yo |2

Potential of an Infinite slab
Y(z) = B + X1 Re (e*?)
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Potential of an Infinite slab
S(z) = B + X1 Re (e*)

k=5.0 %0=0.0 X;=1.0
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Potential of an Infinite slab
S(z) = B + X1 Re (e*)
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Potential of an Infinite slab
Y(z) = B + X1 Re (e*?)
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Potential of an infinite slab with a tightly
wound spiral pattern

if |ﬁ -R| <1 WKB approximation

OR (Wentzel,Kramers,Brillouin) " o v 25 o oe ob on o
2wG Y - of
©(R.¢) = =7 H(R)Re (7)) =I5
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The End
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