

Problem set 9

Problem 1

We consider a dark matter detector that measures the recoil energy of a nucleus A of mass M_A , initially at rest, after an elastic collision with a dark matter particle χ , of mass M_χ . The detector has a detection threshold corresponding to a minimal kinetic energy of the nucleus A after the collision.

We make the following assumptions:

- the elastic collisions are central (head-on collision), such that the initial and final momenta are all parallel;
- the typical velocity of the χ particles in our region of the galaxy is approximately similar to the velocity of the sun in the galaxy (≈ 240 km/s);
- the mass per unit volume, $\rho = M_\chi \cdot n$, of the χ particles is a constant, where n is the number of particles per unit of volume.

(a) What is the expression for the initial momentum of the dark matter particle? (hint: $\beta = \frac{v}{c} = \frac{p}{E}$ and $\gamma = (1 - \beta^2)^{-1/2} = \frac{E}{M}$). Show that in the limit $\beta \ll 1$ we have $p_\chi \simeq \beta M_\chi$. Justify the approximation $\beta \ll 1$.

(b) Using energy and momentum conservation, show that the momentum p'_A of the nucleus A after the collision is

$$p'_A \approx 2\beta\gamma \frac{M_A M_\chi}{M_A + M_\chi},$$

where we used the fact that $p_i \ll M_i$, $i = \chi, A$. Infer from this result that the probability for observing a collision decreases for small masses M_χ , and consequently that the sensitivity of the detector is low for $M_\chi \ll M_A$.

(c) Find an expression for the number of collisions $N_{\text{collisions}}$ observed during a time Δt , as a function of the cross section and of the density of dark matter particles. Show that for a constant mass density of dark matter, the number of collisions decreases when M_χ increases.

Problem 2

The superCDMS detector observes 11 candidate collisions for dark matter particles χ , while a background of 6 ± 1 events is expected. The exposure time T is 577 kg-days for germanium detectors with molar mass 72.64 g/mol. The mean density of dark matter in the region of the solar system is measured to be $\rho = (0.39 \pm 0.03) [\text{GeV}/c^2]/\text{cm}^3$, and the velocity of the solar system in the galaxy is 240 km/s.

Determine the cross section of the dark matter particle χ in Germanium, σ_χ , for $M_\chi = 10 \text{ GeV}/c^2$.