

Problem set 8

Problem 1

Considering the scale factor $a(t)$ for the expansion of the Universe, and assuming a flat Universe:

- (a) Determine the time dependence for $a(t)$, assumed to be proportional to a power α of time, $a(t) \propto t^\alpha$, in the case of a Universe containing only radiation. Consider the radiation density to vary as a function of a as $\rho_R \propto a^{-4}$.
- (b) Determine the expression of $a(t)$ for a matter-dominated Universe (baryonic and dark matter), knowing that the density of matter varies as $\rho_M \propto a^{-3}$.
- (c) Determine $a(t)$ for the dark energy Λ , for which the density is constant ($\rho_\Lambda = \text{cst}$).
- (d) Use the above results to explain the evolution of the composition of the Universe (see Fig. 1)?

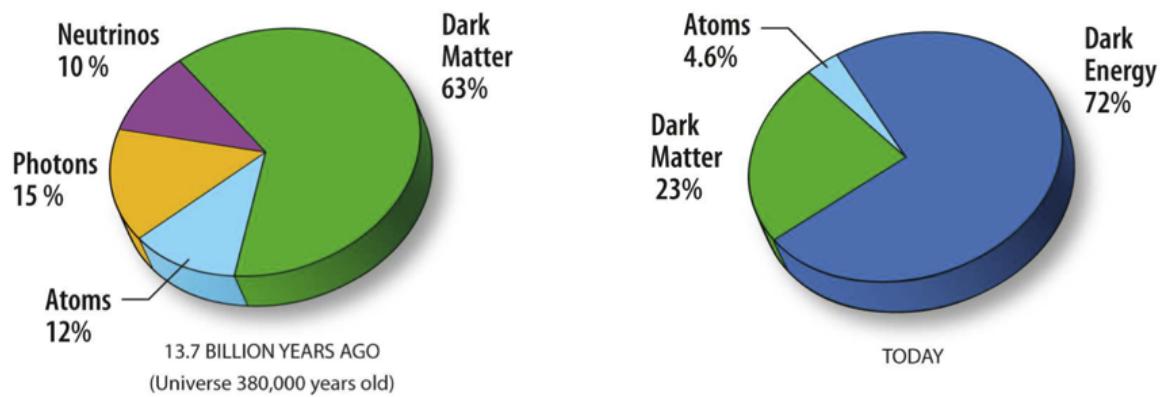


Figure 1: *Composition of the Universe 13.7 billion years ago and today.*