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Problem set 5: Solutions

Problem 1

The KamLAND experiment measured the disappearance of ν̄e anti-neutrinos produced in reac-
tors located at ∼ 180 km from the detector. Estimate the parameter ∆m2

12 from the plot of the
survival probability as a function of L/E. Compare your result with the value determined by the
KamLAND experiment: ∆m2

12 = (7.53± 0.18)× 10−5 eV2.

Solution:
The oscillation probability Posc is given by the formula

Posc = sin2 2θ sin2

(
1.27∆m2L

E

)
,

where the oscillation period is π. Then, considering the equality

1.27∆m2L

E
= π,

we obtain
∆m2 =

π

1.27(L/E)period
,

In order to estimate the period, we measure the separation between the first minimum and
the second maximum on the KamLAND plot and multiply it by two. We estimate that the
uncertainty is given by the bin width. This leads to (L/E)period ' (40± 4) kmMeV−1. Then:

∆m2 = (6.2± 0.6)× 10−5eV2.
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This result is almost compatible with the value stated by KamLAND. On the plot from Kam-
LAND, it is clear that the fit function is not a pure sine squared, as it is distorted by the
distribution of distances to reactors and the energy spectrum. The oscillation period can there-
fore be more precisely measured by accounting for these effects.

Problem 2

Show that the mass–squared eigenvalues for the hamiltonian describing neutrino oscillations in
matter, expressed in the (νe, νµ) basis, are

m2 =
1

2
(µ2 +B)± 1

2

√
(∆m2 cos 2θ −B)2 + (∆m2 sin 2θ)2 ,

where ∆m2 = m2
2 −m2

1, and that the corresponding mixing angle is given by

tan 2θmatter =
sin 2θ

cos 2θ − B
∆m2

,

where B = 2EVW accounts for the charged-current interaction potential.

Solution:
In order to find the mass–squared eigenvalues for the hamiltonian describing neutrino os-

cillations in matter, we diagonalise the matrix Hν , containing an additional potential which is
diagonal in the (νe, νµ) basis. Then the matrix becomes

1

2E

(
M2
ee +B M2

µe

M2
µe M2

µµ

)
,

where we use the following expressions for the matrix elements

M2
ee =

1

2
(µ2 −∆m2 cos 2θ),

M2
µµ =

1

2
(µ2 + ∆m2 cos 2θ),

M2
eµ =

1

2
∆m2 sin 2θ.

Solving the eigenvalue problem[
1

2
(µ2 −∆m2 cos 2θ) +B −m2

] [
1

2
(µ2 + ∆m2 cos 2θ)−m2

]
− 1

4
(∆m2 sin 2θ)2 = 0,

we find

m2 =
µ2 +B

2
± ∆m2

2

√(
cos 2θ − B

∆m2

)2
+ sin2 2θ =

1

2
(µ2 +B ±∆m2

matter) . (1)

We see that in the limit B → 0 (vacuum), Eq.1 can be rewritten as

m2
B→0 =

µ2

2
± ∆m2

2

√
cos2 2θ + sin2 2θ =

1

2

(
µ2 ±∆m2

)
. (2)
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By comparing Eqs.1 and 2, we can write:

∆m2
matter = ∆m2

√(
cos 2θ − B

∆m2

)2
+ sin2 2θ.

Replacing this expression in Eq.1, we get:

m2 =
µ2 +B

2
± ∆m2

mater

2

√√√√ (
cos 2θ − B

∆m2

)2(
cos 2θ − B

∆m2

)2
+ sin2 2θ

+
sin2 2θ(

cos 2θ − B
∆m2

)2
+ sin2 2θ

. (3)

Now, if we compare Eq. 3 and the similar expression in vacuum (Eq. 2), we can write:

m2 =
µ2 +B

2
± ∆m2

matter

2

√
sin2 2θm + cos2 2θm, (4)

where θm is the mixing parameter in matter.
Finally, comparing Eqs. 3 and 4, we obtain:

cos 2θm =
cos 2θ − B

∆m2√(
cos 2θ − B

∆m2

)2
+ sin2 2θ

sin 2θm =
sin 2θ√(

cos 2θ − B
∆m2

)2
+ sin2 2θ

.

From which we obtain:
tan 2θm =

sin 2θm
cos 2θm

=
sin 2θ

cos 2θ − B
∆m2

.
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