

Problem set 1

Problem 1

We consider the two-body decay $A \rightarrow B + e^-$ of nucleus A , of mass m_A , into nucleus B , of mass m_B , and an electron (m_e). Determine, in the rest frame of nucleus A , the maximum energy of the electron.

Problem 2

Draw the Feynman diagram of the following processes and specify the quantum chromodynamics (QCD) colour currents:

$$n \rightarrow p e^- \bar{\nu}_e \quad (1)$$

$$\pi^- \rightarrow \mu^- \bar{\nu}_\mu \quad (2)$$

$$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau \quad (3)$$

$$\bar{\nu}_e p \rightarrow n e^+ \quad (4)$$

Problem 3

In β decays, show that the fraction of electrons having a kinetic energy T_e in the range ΔT close to the maximum energy Q_β is proportional to $(\Delta T/Q_\beta)^3$. Consider the case $Q_\beta \gg m_e$.