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PART III

Plasma of quarks and gluons



Content
e Introduction to Quark Gluon Plasma (QGP)

e Creation of QGP, asymptotic freedom, ideal gas of quarks and gluons,

“bag” model
e Phase transition to QGP
e Jon collisions and components of the ion-ion collision
e QGP experimental signatures

e Experimental status
[source: “Advances in Quark Gluon Plasma”, G.M.Garcia, arXiv:1304.1452]

e QGP and cosmology
|source: “Traveling through the Universe: back in time to the quark-gluon
plasma era”, J.Rafelski and J.Birrel, arXiv:1311.0075|
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Introduction to QGP

e “Electromagnetic” plasma (or “chemical” plasma)

- obtained when electrons and ions are free

= appears when the energy given to the electron is larger than its binding

energy
= at the level of a few eV

- Boltzmann constant k=8.617x10% eV/K = (1 eV & 11600K)

e How to ionise a gas to create an “electromagnetic’ plasma?

- apply strong electric field
- increase temperature

- kinetic energy is larger than the binding energy = e are kicked off

- increase pressure
- decrease the distance between atoms = overlap = e not associated with a

specific nucleus

e Extend this concept to the strong interaction = QGP

F. Blanc, Spring 2025 206



Creation of QGP

e Nucleus
- density = 0.13 hadron / fm3

- radius: Ry ~ kA fm (with experimental factor x ~ 1.1 — 1.4)

A A 1
— — 7 ~ 0.13n/fm"
0= Yolume sTRS  STRS /
- energy density: €0 = Po X Mproton ~ 0.13GeV/ fm?
o Initially: 7, ~ 0 MeV —  compression (T = constant)
- nucleon radius =~ 0.8 fm = contact density  p_ .~ " é 7 = 0.5n/fm®
g'ﬂ' .

- increase pressure such that p ~ 1 n/fm’= wave functions overlap

= deconfinement = free partons (quarks and gluons) = QGP!

QGP formation at densities [p > 10/00 > ]_n/fmS]
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Compression @ @ Excitation

e Temperature increase ./
p=01fm=3  &£=0.1GeVfm3

@0 ~at T~m
pmmact:o,s 3 0 @ = creation of quark pairs is possible

¢ = 0.5 GeV fm=3

g@@ » e | &) @ '

= creation of pions

- at T. ~ 150 MeV
('l‘ransition de phase) . ¢

= pions and nucleons mix

T>200 MeV = “deconfinement”’

= QGP (T. ~ 10'?K)

Te = 150-200 MeV
- T > 10K = black holes?

Les partons sont confinés
dans les hadrons

X

0.1

- T > 10*? K= superstring gas?

noyaux
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(T, p) phase diagram

e Trajectories in the (7T, p) phase diagram for various “objects”

- the Universe
- neutron star

- collisions of ions at accelerators

T ‘ ’ E'arly
Universe (HC

RHIC

Tc = 150-200 MeV

Neutron
star
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Asymptotic freedom

e In QCD, the strong interaction becomes weak at large energies

as () ; () LN = 2
2 s — as
L+ BsIn % 4o 127

- high ¢2 = high F = creation of quark pairs = screening at short distances

g (QQ) ~

= reduced interaction strength

e At the Z° mass, @, = 0.12 = a,(gs = (91.2)*GeV?) = 0.12

e For large g°, use approximation: 0.(q2) = 127 1
’ 33 — 2N} In &L
AQCD
e The number of quark flavours N, depends on frec-quark mass
quark [MeV]
the energy of the system 3107
u . .
e In most QGP we’ll consider ~ 1GeV/fm® = Ny=3 d 48+0.5
) . 4 1 S 95+5
o Effective qq potential V(r) = ——=as— + br - 1575225
3 T b 4500
- with string tension b ~ 1 GeV/fm t ~173000
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Ideal gas of fermions and bosons

e Consider a, < 1 and chemical potential ~ 0

e Quarks are fermions and gluons are bosons

- energy density for bosons €; = g;€

7
- energy density for fermions €; — —(g;¢€

8

- g; is the number of degrees of freedom (degeneracy of species i)

2
- s A
- with € = %T
7 2 4
e Total energy density € = Z gp + g Z gf %T
bosons fermions

1

e Pressure P = —¢
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Ideal gas of quarks and gluons

e photons 2
- 8§, =2 (m,=0 = 2polarisations) = €y = 1—5T4
e gluons 87’(’2
4
- 8¢ = 8gluons X 2polalrisation =16 = € g — 1—5T
e quarks 77_‘_2 .
- gq — 2spins X 3colors X 2antiparticles X ]\/} = 12X ]V} = 6q — 20 T Nf
7
e For quarks and gluons: Jtot = gg + 2 Jq
- at T=1MeV, we have N, =0 = Gt = 16
-at T<mg = Ny =2(u,dquarks) = ot = 37

-at T=1GeV = N, =3(u,d,squarks) = Gt = 47.5
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Plasma properties

e Total plasma energy density and pressure

w2 A2
e:gtot@TuBz?TﬂB
1 w2 1 4
P=-¢gou—T*—B~-e—-B
3Jtot3g 3¢ 3

- B is a phenomenological constant to account for interactions in the system.
It is equal to the difference in energy density for vacuum with free or
confined quarks

(B can be interpreted as a type of latent heat)
- B~ 170MeV/fm’ = B = (170 MeV/fm’(hc)*)"* = 190 MeV

- B reflects the fact that the chemical potential is non-zero

- B can be understood within the “bag model” (developed at MIT)

For conversions, use hc = 197 MeV fm
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The Bag Model

e Hadron mass 4 C
3 E=_-7R°B+ —
- B~ 170 MeV/fm 3 R \
- C~6MeVim Energy to create Kinetic energy of
the bag quarks in the bag

e Confinement is the result of the equilibrium between the bag pressure
B (inwards) and the kinetic pressure C (outwards)

e Inside the radius R, apply the Dirac equation (W“ Py + m)gb =0
em—0 = (Vpu)p=0=pyR =2.04

2.04
e Total kinetic energy for N quarks: Fyi, = IV e
e Equilibrium at minimum energy = dE/dR =0
2.04N 1
B =
At R4

e For baryons: N =3 and R = 0.8 fm= B ~ 234 MeV/fm’
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Hadron gas and QQGP properties

At low temperature, quarks “hadronise” into pions

- 3 pions (isospin 1; spin 0) = g, =3

At high temperature, formation of QGP

- 8qGp = 40
e Energy densities
2 40
EQGP = Jtot %T4 + B = %HT‘* + B
2 2
Cr — wa—T4 — 7T_ 4
30 10

Pressure

(using the equation of state p = €/3, valid in the limit of massless particles)

40
pQGP — %TFZTéL — B
2
T
T — _T4
b= 30
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Phase transition: hadron gas — QGP

e The pressure is always maximised = critical temperature 7. where the

lines cross

PA

piOﬂS

o pT) = pQGP(Tc) 9()

— B
¢ 3T7n?

= T, ~ 134 MeV

For conversions, use hc = 197 MeV fm
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Latent heat of deconfinement

e Plot the energy density as a function of T*

B
A X
e’ \’L(Y
S
latent heat of
deconfinement
TA’
B pions /
T4 TZr

c

e The latent heat of deconfinement is equal to 4B (exercise)

e What is the physical origin of the latent heat?

— the answer will come from considering the entropy of the system
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Entropy density s

e Entropy density (s = dS/dV)
440

23
S:a—P . SQGP—gﬁﬂ'T . AS(TC):§:§
8T 5 — éiﬂ_zjﬁ Tc TC
" 310
A
S
Q?’Q

As
plons /

T %l

e The change in entropy is due to the increase in number of degrees of
freedom (g, =3 — gogp = 40)!
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Deconfinement from Lattice QCD

e Above model valid in perturbative regime (o, < 1)

e a, ~ 1 = non-perturbative = QCD calculations on the lattice

e Model space-time on a 4D grid (e.g. 8 x 16)

= “lattice QCD”

e Calculate hadron masses, form factors

e Lattice QCD was used to simulate deconfinement

Lattice predictions:

> Te = 160-180 MeV

» £=0.5 - 1.0 GeV/fm3
[H. Satz arXiv:1101.3937]
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Questions

How can we create a plasma of quarks and gluons?

How can we demonstrate we have created a QGP?

(what are the experimental signature?)
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Heavy ion collisions

Ton A

Ion mass M, atomic weight A ,
and radius r = 1.2A41/3

At energy F, length contraction
= thickness = r/y (y=FE/M)

‘Lead (Pb, Apy, = 207) collisions at LHC:
# E/M = 2.76TeVx207/207GeV = 2760!

In practice, thickness no smaller than
1fm (because of QCD effects)
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1. before collision

2. collision

http://nuclear.ucdavis.edu/” calderon /Research /physicsResearch.html

3. quarks and gluons

4. plasma created
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Time

F. Blanc, Spring 2025

(}ﬂ 14 fm
Pb '

1.Heavy ion collision

- used to create conditions at high

temperature and high density

2. Formation time

-to=1fm/c = 3.3x102% s

3.Creation of QGP

- is it in equilibrium?

4.Hadronisation

- cool down, freeze-out
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Time evolution of the collision

o
oC o (o]
©,000 5020 0%, Freeze out
000000 o0 o o%a o)
5 %00 0000 % of hadrons
[&] o o O o
o Qo O{;)OOOQO o

::‘(', Dcco";
00 " ngo:
00 4t

c© ' . .
P%7%°! Hadronization

CoAC%S ]
E om @
022 ‘eae s Chemical

“+a equilibrium

,< 1 fm/c

1% 0 o ) . Hadron Gas

Final State

Freeze-Out At

central region

Tfo Tch Tc
K

fa
g % Before collision
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STAR
Au-Au collision at RHIC
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Identification of QGP

e We observe the hadrons created in the freeze out

- the hadrons give information on the intermediate states

e Is the initial state dense enough?
- particle multiplicities

- energy density

[s the initial state in equilibrium (thermalised)?

- hadronic yields

- hydrodynamic collective motion; “elliptic” flow
e Does the initial state behave like a QGP?

- Jet quenching; suppression of dijets

- J/y production; suppression or enhancement,
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Rapidity
e Particle with 4-momentum
(Eaﬁ) — (E7ﬁT7pz)
E? =p: + (pr)° +m® = p + m7
e 'Transverse mass
mi = (pr)* +m° = E* —p? = (E + p.)(
e mr is invariant under boost along z

E'—p, =~v(1+8)(E —p.)
E'+p, =~1—-B)(E+p.)

= mf = (B +p.)(E' —p,) =7°(1+ 8)(1 — B)m3p = m7

1. FE
e Define the rapidity Y as y — _ ln _|_ pz

2 E_pz

e The rapidity is an additive quantity, and depends on the boost yy given
/
by yo=In(y(1-5) = ¥y =y+yo

% = differences of rapidities are invariant under a boost
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Pseudorapidity vs rapidity

e Define the pseudorapidity # as

0

= —Intan —
M ntan o

e f m<« E, theny =y

0.9 (45°)

1.7 (20°)

3.1(5%)

) 4719 > 7

e At 0 =0, =00, and y =tanh™!(p/E) = maximum value of y

Under the assumption of negligible mass, m < E, we can write E? ~ p? + pgr. With the
definition tan = 1;—5, we obtain

1 \/pg+p'21‘+pz 1

2
Vi+tan?0+1 1 (v1+tan29—|—1>
In =

~ ~1In — - - 188
Y [p2 4 p2 — 2 1+tan260—-1 2 tan? 0 (188)
z T pz
1+ 1+ tan20 1 0
A lntans (189)
tan 6 tan§ 2
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Isotropic source

e What is the rapidity distribution for an isotropic source?

AN

T

e With the definition of y and v _ N

dQ:47T ’

one obtains:

NE 1
dN — 5 dy Tlcosh(x)*2
2 p cosh” y

e Maximum rapidity:

lll]lll'lllllllllll'

-1 P
E U_:‘....‘: ot .'2...._.....'1.........x. 4 :....3
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Rapidity distribution for a QCD string
e QCD strings between partons Cd N\ f

= production of quark pairs along the string \vs
R\ —_—

e rapidity distribution for all produced
particles is approximately uniform in y

2 T T T I T T T I T T T I T T T I T T T I T T T I T T T I T —_ 140 _l TrT I TrrrT I TrIrrrT I Trrir I TrrrT I TrIrrrT I Trrir I TrrrT I TrIrrrT I TrT l_

§ 10 pp Vs =7 TeV, inclusive Y(1S), 2.5<y<4 —f E - —e— Y (1S) ALICE, I_int =1.35 p1)b'1 = 5% -m Y(2S) ALICE -

(o) C 7 S T — Y(1S) LHCb, L =25 pb™ + 3.5% —Y(2S) LHCb ]

S : H:Hm@ﬁ . 3 120 -+ Y(1S) CMS, L "=36 pb™' = 4% Y(2S) CMS ]

Pe) | E@m:‘ i S [ . [ . -

= i 100 [J Systematic uncertainty -
N @ E@Eﬂ = ] o0
o - - - - H
o HH 80 1 ©
o L - ™
v 1F @; = r . 3
[N - - 60— —] (o)
S .1 -] : = - 1 S
[ o ALICE, Lint =1.35pb" 5% o ] 40 C F@_:% pp Vs =7 TeV ':E::‘E" 7 —
L —+ LHCb, L =25 pb'+ 3.5% HEH C ] e
. . T | _ o=
L [ Systematic uncertainty m 20 l_a_'t@j t@im — >§(
= —e ] &

[
PN N T N S [T T S S RS S O_l'_l*i-llllllllllllllllllllllllllllllllllllllllrl*l_'l_
0 2 4 6 8 10 12 14 5 -4 3 ) 1 0 1 o 3 4

< o

P, (GeV/c)

Fig. 4: Differential cross section of Y(1S) as a function of pr (left) and differential cross sections of Y(1S) and
Y(2S) as function of rapidity (right), measured by ALICE, LHCb [25] and CMS [42, 43]. The open symbols are
reflected with respect to y = 0.
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Hadrons from ion-ion collisions

e At high energy, nuclei are almost r A
transparent = fraction x interact t<<0 —@:- -t - U -z

e The products of the collision m

t=0

- nucleons that don’t interact strongly

= near maximum Y

- hadrons from spectator quarks at

relatively high rapidit
y g p y t= | fm/c —_—>
- strings between partons ST, S S— WY
. . ] )
= fragmentation = hadrons in the
. . . 1 . corde(s) quarks hadrons
intermediate rapidity region \ spectafours  spectateurs
t>>0 - A \A l
' ] . .
weyte o, N L L R ]
«~ << -—»—> —>» —>F
¥"—’/
p, grand \ P longitudinal//z=F, faible
Pz >>PT Pz®PT
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Rapidity distribution from ion-ion collision

nucleons from the nuclei
that have not interacted

= mostly in the original

beam direction (p; = 0)

diffusion N particules
difractive

spectateurs

[

hadrons formed from

spectator quarks in hadrons formed from
nucleons that interacted string fragmentation
strongly
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Collision geometry and centrality

e the two ions are not perfectly

aligned in the collision

e the distance b in the transverse plane
between the centres of the ions

characterises the centrality

e very central collisions = many NN interactions

= high track multiplicity

e in practice, the centrality is
frequently measured using the

track multiplicity in the event

A X (34

A. Monnai, Relativistic Dissipative Hydrodynamic Description of the Quark-Gluon Plasma
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Energy density in the central region

e Energy in the central region

A dN
~ E
¢ mr? dz

e From experimental data :

spectators o=

- the number of particles (pions) produced per unit rapidity and per

nucleon-nucleon collision at 100 GeV: dN/dy ~ 5

- the typical pion transverse momentum: pr ~ 350 MeV/c

e Assuming v(z) = z/t, we find :

_AY3dANmr 0547 [GeV]

T o dy r t fm?

= The energy density is larger

than 1 GeV/fm’ if t < 3fm
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QGP Signatures

e High temperature

= expect plasma of deconfined coloured quarks and gluons

e The interaction medium can be characterised by several observables
used to identify the QGP:
- hadron production
- photon spectrum
- pressure
- dimensions, anisotropies
- particle correlations
- quarkonium (e.g. ¢, J/y, Y) production
- strangeness production

- jet production and jet quenching
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Photon spectrum

e Three categories of photons :

1.prompt photons (produced in collision)

2.thermal photons

3.secondary photons (from decay of prompt particles, e.g. ¥ — YY)

e Measure photon spectrum = temperature (= pressure) p= % = 0.227*
. dp(E.,, T E?
- Planck : p( 2 ) — 0.034 Y [MGVS]
iE, exp(E., /T) — 1
- valid for thermal photons emitted
at the surface of QGP (r > 0.1A) o r— T /
: T=700 MeV N

- small volumes (few fm3) are

transparent to photon = correction

dNy/dE (y’s/MeV/fm?(fm/c))

T=500 MeV .,

: *. T=200 MeV

but... probes the centre of the QGP! 0k

0500 7000 1300 2000 35003000 3500 4000 45005000
Ey (MeV)
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Pressure

e Can we probe the (P, T% pt

phase space?

e Pressure after collision

= information on the state

of matter plons

T T

e High pressure = higher transverse momentum p-

= measure transverse momentum spectrum versus energy
4
(pTaE) < (Pa T )
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QGP dimensions

e Interferometry can be used to measure the dimensions of the volume

in which the pions are produced

e Eixploit Bose-Einstein correlations between identical bosons emitted

close in phase space: Hanbury Brown-Twiss method

e Measure the 4D separation between pions of same charge
2 2
p1—p2|” =¢

e Compare ¢? distributions for pions in same events with the
distribution for pions in different events (i.e. uncorrelated)

= measure of the interference

e One obtains information on the dimensions and the lifetime of the

source
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Quarkonium production

e Quarkonia of heavy quark-antiquark pairs

- radius much smaller than for light hadrons (r, <7, ~ 1fm)

- more tightly bound (binding energies up to 0.5 — 1GeV)

= can survive in QGP up to temperatures above deconfinement point; but

will melt at temperature above binding energy
= are not produced when the colour screening radius is about the size of

the quarkonium radius

o 1y is different for each quarkonium state = probe temperature from

the quarkonium spectrum

‘ ‘ ‘ T<T, | | ‘ TX<T<Tw
v % I v %X I

‘ ‘ Ty <T<T, | | | T>T,
P’ p I P’ Xe I
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J /Y production at 200GeV / nucleon

CERN NA38 experiment

p-U, O-U, S-U collisions
200GeV /nucleon

J/y production normalised to

utu~ production

Clear deficit in heavier ion

collisions above 1GeV /fm?2

Is this a signature of QGP?

Note: ss production is suppressed because the
screening effect is much larger for the lighter s
quark (~200MeV vs 1840MeV for ¢ quark)
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Jet and lepton production

e Jets are created in nucleon interactions

- in QGP, expect strong interaction of jets with the medium = absorbed

- compare rate of di-jet events in pp and in ion-ion interactions

- suppression of jets in ion-ion collisions may be a sign of QGP

e Other tests have been suggested

- lepton production rate

- photon production rate

...and any observable may have power to discriminate between QGP and
other states of matter (hadron gas)
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Experimental methodology

1.Understand the dynamics of the collision

- systematic study of the colliding system: centre of mass energies and

impact parameter

2.Experimental probes

- detection, identification, kinematic characterisation of the particles

produced in the ion-ion collision

- deduce: particle multiplicities; unflavoured and strange hadron yields; pr
and 7 distributions; asymmetries in the distributions; heavy quarks;

quarkonia (J/y); photons; jets; etc...

3.Global interpretation

- interpretation of all the results into phenomenological models, and identify
the models that give a good description of all the observations
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Heavy ion collisions in laboratories

e Main laboratories involved in high-energy nuclear matter experiments
- CERN, Geneva, Switzerland
- Brookhaven National Laboratory (BNL) , New York, USA
- GSI, Darmstadt, Germany
- GANIL, Caen, France

e First ion beams at ultra-relativistic energies in the 1980’s (used for fixed-target experiments)

- AGS (BNL), 5GeV /nucleon pair,
- SPS (CERN), 18GeV /nucleon pair

e First heavy-ion colliders in 2000’s:

- RHIC (BNL)
- Au-Au collisions at Vsyxy = 130 GeV  (2000)
- Au-Au collisions at Vsyy = 200 GeV  (2001)

- LHC (CERN)
Pb-Pb collisions at ysxy = 2760 GeV  ( )
p-Pb  collisions at ysxy = 5020 GeV  (2013)
(2015)
(2023)

Pb-Pb collisions at ysxy = 5020 GeV
Pb-Pb collisions at Vsxy = 5360 GeV

= Total energy in the collision: 5360 x App(=207) = 1110 TeV
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Alternating Gradlent Svnchrotron (AGS)

e AGS at BNL

- built in 1957
- proton beams at 33GeV

- Nobel prizes for the discovery of

the muon neutrino v, (1962),

of CP violation (1963), of the J/yw meson (1974)!

1986: acceleration of Silicon ions at 14 GeV e AGS to RHIC

[
 line (AR
e 1991: booster ;
,.EBIS Booster ) Experimental
- Si and Au ions with '9""=;‘j_'-?>\ \ l %\ Area
A %, w\; —a *
energies up to ysnny = 11 GeV /\ {e" U
Linac N .Jg\ / ~ ’ \J 5
e Probably never reached the “\NKY _‘-:, AGS & 3
critical density of 1 GeV /fm3 =5 7y

http://www.bnl.gov/rhic/ags.asp
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CERN Super Proton Synchrotron (SPS)

e Proton accelerator, 500GeV (1976); fixed target experiments

e Became a proton-antiproton collider in 1981
- discovery of the W and Z bosons — Nobel prize in 1984

e 1986: inject Pb ions
- Pb ions with charge ()=+27e, and energy 2.5keV

- stripped of the remaining
electrons in thin (~1 wm)

carbon and Aluminium foils

- final energy: ysxn = 158 GeV

e CERN announcement in 2000:

- the results of the experiments
hint at a new state of matter:
Quark Gluon Plasma
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Relativistic Heavy Ion Collider (RHIC)

e RHIC (BNL) L7 TN
- first collisions in 2000 : RICRNE :)
- 3.85km circumference N\ L
- Au-Au collider at ysany = 200 GeV f_..__':,.e

- the AGS is used as injector (9 GeV)
- 60 bunches per beam; luminosities ~1027 cm 2 s1

- 4 collision points (currently only two are used: STAR, PHENIX)
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LHC (CERN), since 2009
Uses the SPS as injector

e 2010:

- first Pb-Pb collisions
at Ysny = 2.76 TeV

e Luminosity ~5x10%26 cm=2 s-!

e /sny = 5.36 TeV since 2023

e Beam lifetime reduced because of two main processes

- electromagnetic production of efe  pairs followed by e capture in Pb ion

- neutron emission resulting from electromagnetic excitation of the Pb ion
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CERN accelerator complex
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Heavy-ion collider experiments

e Main experiments used for the study of ion-ion collisions at high

energies:

- experiments at RHIC
- STAR
- PHENIX

- experiments at LHC
- ALICE
- ATLAS, CMS, LHCb
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The STAR experiment (at RHIC)

e Typical 47 detector geometry

e Tracking with Silicon vertex tracker and a large time-projection
chamber (TPC)

e Particle identification with time-of-flight and calorimeter

Silicon
Vertex

Magnet Tracker

Coils

E-M
Calorimeter

Time
-~ Projection
W Chamber

Trigger
Barrel

< Elactranics
Platforms

Forward Time Projection Chamber
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The STAR detector

Magnet Time
Projection
Coils Chamber
—
Silicon
Trackers
TPC : ‘/_ HFT & SSD
Endcap | 1
& MWPC T — - / 4__, FTPCs
o ML —— TILLLLL |
I LLILLELLEL : : b LLULLL L L Eng
Beam enacap
Beam — Calorimeter
Counters
Central Barrel EM
Trigger Calorimeter
Barrel
& TOF
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Table 2-2 Time Projection Chamber.

The STAR TP

Drift Volume Coaxial Cylinder -
Inner Radius 0.5m
Outer Radius 20m
Length 42m
PID acceptance Inl <1
Tracking acceptance Inl <2
Drift Gas Ar + 10% CH4
Pressure Atmospheric
Sampling Rate 12.3 MHz
Time Samples 512
# of pad rows 50
Pad Sectors Two types
Type, Number of rows Inner, 18
Pad Size 2.85mm x 11.5 mm
Type, Number of rows Outer, 32
Pad Size 6.2 mm x 19.5 mm
Total number of pads 140,000
Total # pixels 77,000,000
Dynamic range for dE/dx 10 bits
Position resolution (p; > 1 GeV/c) 460 umin x,y and 700 um inz
Drift time 40 ps

F. Blanc, Spring 2025




The PHENIX experiment (at RHIC)

e Pioneering High FEnergy Nuclear Interaction eXperiment

e Designed to measure direct probes

of the ion-ion collisions, such as

electrons, muons and photons

e Asymmetric design
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The ALICE experiment (at LHC)

a. ITS SPD Pixel
b. ITS SDD Drift
c. ITS SSD Strip
d. Vo and TO

e. FMD
ATS

. FMD, TO, VO
TPC

. TRD

. TOF

. HMPID

. EMCAL

. PHOS CPV 2,

. MAGNET )
. ACORDE

. ABSORBER

. MUON TRACKING
. MUON WALL

. MUON TRIGGER
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. PMD

. ZDC

LB EESEBoeNana W
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ALICE event at /sxy=5.02 TeV
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Selection of experimental results

e Emnergy densities

e Particle multiplicities

e Measurements of the freeze-out temperature
e Initial temperature

e Correlations (including QGP dimensions)

e Opacity of the hadronic matter

e Jet production asymmetry
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Energy densities

e Charged particle pseudorapidity densities for pp and PbPb collisions

o At RHIC: ~600 charged (~900 total) particles per unit of x
= estimate energy density at the level of 5 — 15 GeV /fm3

e At 2.76 TeV, transverse energy ~ 2 TeV and ~ 1600 charged particles

per unit of # = initial temperature ~ 310 — 370 MeV
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= above the phase transition! ' oD), INEL  AA. central ]
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Multiplicity distributions

e Pseudorapidity density distributions for various centralities
o Measurement by ALICE at 2.76TeV:

arXiv:1511.02151
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® ALICE

dN  /dy

e Total integrated charged multiplicity from integration of these plots:
N, = 17165 =772 for 0 — 5% centrality

e The models don’t describe the data accurately
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Freeze-out temperature

e Measure hadron multiplicities to determine the temperature

- the expanding hot system hadronises statistically at freeze-out.

- if thermal equilibrium, temperature can be determined from particle

multiplicities

e Freeze-out temperature measured at RHIC and LHC:

Multiplicity dN/dy
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Production of matter and antimatter

e ALICE measured the production rates of deuterium, 3He, 3H, and the

corresponding anti-nuclei in p—Pb collisions

- rates for nuclei and anti-nuclei are compatible

= symmetric production

- these results have implications for the predictions of rates of nuclei in

cosmic rays, and the

- T T T T L T T T
search for Dark Matter S | = 53
$ [ = g S
(cf. AMS measurements) £ S 3
'_
S107F $ + { S
> ¥ T oy
<) o T ALICE C‘_D{
S T+ p-Pb\s,=5.02TeV =
o :T: T _1sycm:N<o 4
s o *He T T o °H =
31 o/ oHe FRCTAY ]
(@] L I ]
5 2f +:": 1 ]
o r I ]
1?"'* "" R == [ ;
O3 % 5 2 3 4 5
p. (GeVic) p. (GeVic)

Figure 4: pt spectra of (anti-)3He (left) and (anti-)>H (right) measured in INEL > 0 p—Pb collisions at \/sny =
5.02 TeV. The bottom panels show the corresponding antiparticle-to-particle ratios as a function of pr. Statistical
and systematic uncertainties are indicated by vertical bars and boxes, respectively.
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Initial temperature (I)

e PHENIX measured the photon spectrum in Au—Au collisions

- QGP thermal radiation = expect high energy photons

- results incompatible with perturbative QCD calculations, but can be

described by hydrodynamical models = T = 300-600MeV

e Temperature estimated from quarkonium production rates

- suppression of Y(2S) and Y(3S) resonances in CMS Pb—Pb data
- compatible with formation of QGP with T = 200-400MeV
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Initial temperature (II)

e Temperature estimated from quarkonium production rates

- suppression of J/y production is observed at RHIC and LHC, but less

reduction at higher LHC energy! (= “regeneration” ?)

<14

iy

- but it is not clear whether the suppression is because the J/y melted or if

it is due to the melting of higher resonances from which part of the J/y are
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= not an unambiguous evidence for deconfinement
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Intensity interferometry

e Apply Hanbury Brown-Twiss method using correlated pions

—~ 400
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Fig. 1. Product of the three pion HBT radii at kT = 0.3 GeV/c (left) and decoupling time (right).
The ALICE results (full circles) are compared to those obtained for central Au and Pb collisions
at lower energies.

= uniform volume of 300 fm3 and time of 10 fm/c
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Correlations

e Study (An, A¢g) correlation plots between pairs of particles
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e Particles at A¢p = 0,7 with wide range of Ay = “ridge” effect
o Effect is strong with increasing centrality
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Ridge effect

CMS pPb \/s,, = 5.02 TeV

e Fiffect also seen in 1.<p, <3 Govie

(a) CMS pr \/Swn = 5.02 TeV,
1<p, <3 GeV/c

p-Pb collisions
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arXiv:1511.02151

e Implication:
large correlation between 4

articles at very different rapidities
b Y b (A7, Ag) = (0,0)

e Possible theoretical explanations:

- hydrodynamics: initial long-range # correlation = ¢ correlation through

the dynamical expansion of the medium

- azimuthal asymmetry comes from the wave function of the colliding
hadrons

e These effects were unexpected = active search area
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Raa = ratio of single hadron transverse
momentum spectra in heavy-ion collisions

O D aCitV to the same quantity obtained in proton

proton collisions, normalised to the number

of binary collisions

 Charged pion nuclear & | ALCE PbPbjsy-276Tv
. . h d icles, n| < 0. norm. uncertainty
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- rise above 7GeV/c in good 107
agreement with QGP formation

- strong suppression of one jet in central collisions
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Summary of experimental results

e Search for QGP signatures in high-energy ion-ion collision

- mainly at BNL and CERN

e Many experimental results in agreement with QGP formation, which

can be considered to have been produced as a new state of matter

...but no single observation of a QGP can be claimed, because

alternative explanations are not ruled out

e Future measurements at RHIC and at LHC will help to further
understand QGP
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...a word on QGP and cosmology

e QGP during period ~ 10719 to ~ 107

- from quark formation to dense QGP stage to baryon formation
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Another view of the cosmological evolution

e Evolution of the temperature and the parameter of deceleration g as a
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