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Evidence for dark matter (DM)
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Evidence for Dark Matter

(- )
A.From astrophysics

1. Galactic rotation curves

2. Clusters

B.From cosmology

3. Abundance of primordial elements
4.SN type Ia luminosity
5. CMB anisotropies
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e If all matter in the bulb, expect

e But we observe v(r) = constant

A.1 Galactic rotation curves
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e Possible solutions:

- modify gravity (not favoured)

- add halo component of invisible
(dark) matter (DM)

- all our ignorance is transferred
to DM!
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P. van Dokkum et al., Nature 555 (2018) 629

A.1 Observation of a galaxy without DM

e Observation of a galaxy without a Dark Matter component
= inconsistent with “Modified Newtonian Dynamics” (MOND)...

= ...but consistent with the existence of DM !

e NGC1052-DF2 (M, ~2 X 10°M,)

- measure ratio of dynamical

mass Mgy, over visible mass M,,

- My, measured from velocity

dispersion o of 10 globular clusters

- measure dispersion ¢ = 8.4kms~!, and Wacros2
deduce intrinsic dispersion B s osn et il sPproximately 11 degrec, centred on NGC 1052 T
_ b T I T T T T I T T T T I
e = (3273 kms™ < 10.5kms™ (@90%C.L.) b o-g4kms

= My, < 3.4x 10°M,

_ with DM, expect Myy,/My, > 1 (~ 400!)
_ Result for NGC1052-DF2 : My, /My, <2

star —

= this constitutes evidence for a galaxy without DM!
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A.2 Clusters of galaxies (1)

1.Galactic motion within

clusters incompatible
with visible matter

= same conclusion as

for galaxy rotation curves

Virgo cluster

2.X-rays from hot gas in clusters

- the temperature T is related to the density p
- measure T and determine the corresponding density pr

- compare with Pyisible = Result: Pvisible ~ 10 %pT

F. Blanc, Spring 2025 134



Clusters of Galaxies (IT)
3.Weak lensing (since 1990’s)

- measure the mass distribution from average deformation of distant galaxies

through gravitational lensing in closer cluster

* (]
S
< o e
Observer Cluster Distant
galaxies

- Remark: this is a statistical method

- reach same conclusion that the total mass in the cluster is significantly

larger than the visible mass

F. Blanc, Spring 2025 135



Bullet Cluster

e Observe clusters that have collided:

- galaxies in visible spectrum

- hot gas in X-ray (magenta)

- mass distribution from weak lensing (blue)

= blue has only interacted gravitationally
= strongest direct evidence for weakly

interacting Dark Matter!
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Interlude:
(short) introduction to cosmology
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Cosmology

e The Universe is described by the Robertson-Walker metric

dr?
1 — kr?

- 1 = cosmological time measured by free-falling observer (comoving)

ds® = dt* — a(t)? + 1r2(df? + sin® Od¢?)

- k is the curvature:

»k =+ 1 = closed Universe
»k =—1 = open Universe
»k =0 = flat Universe

- a(t) drives the expansion

= What is the form of a(¢)?
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Comoving coordinates

e Free-falling objects are said to be comoving
- they measure the cosmological time
- but their relative distance changes with a()

- a(t) depends on the content of the Universe, and is therefore the parameter

that allows to identify the various components of the Universe
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Cosmology dynamics

e R-W metric + Einstein’s equation (relating curvature and
energy density p) + adiabatic expansion

= Friedmann equation

- G: gravitational constant
- H: the Hubble parameter
- p: energy (mass) density

e Energy conservation equation,

relating density p and pressure p
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Expansion: Hubble parameter

o Current (%) expansion rate Hy

e Hy=100xh |km/s/Mpc|
with h=0.674+0.005

Original Hubble results, up to 2Mpc

e

™ ¥ rersecs

FICURE 1

e Define redshift z:

)\obs

z =
Aemitted
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Critical density

e The curvature of the Universe could be closed, flat, or open
e The present (f,) critical density for having a flat Universe (k = 0):
2
P 3H
© 8@

e Contribution €24 of a species A, expressed as a fraction of the critical

~  p2=10.6keVem ™ x h?

density pg ;

Oy =22 w
A_p(c) Q=1 k=0
o Sum of all contributions: ), = ZQZ Q<le kb=-—1
i Q> 1 kL= +1

e Content of the Universe : radiation (R), matter (M), and possibly
A
vacuum energy (A) Qg = Qp+ Qs + O

- Radiation contains photons and neutrinos (relativistic)

- Matter can contain baryonic and “cold” non-baryonic matter (non-relativistic)

- Dark energy
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Radiation density

9 / l‘.-' ".I A“ ’ S’Il ’\-" |ix‘
H* = | — = > f
ol E) g 3 s

e Radiation (R): photons and neutrinos

- relativistic = not in comoving rest frame f=—3=(p+p)
ot

- pressure is proportional to density:
Pr=pr/3 = prxa™

- Q, calculated from measured CMB temperature (7, = 2.725 K)

2 S
%= (5m) (3)

- neutrino density related to photon density as

7 4\*3
Q, =0, x3x-x[—
v X ><8><<11>

- Total:

Qr=07+Q, ~8x107°
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Cosmological neutrinos

April 2024:
e Cosmological Microwave Background (CMB) New result from DESI (BAO)
:Zmiﬁ 1eV/ 2 D m;<0.113eV@95%C.L.
arXiv:2404.03002\

= one v mass of at least y/Am3; = V2.1 x 1073 ~ 0.05 eV/cz/

= for three neutrinos: 0.05eV/c? < mass of heaviest v; < 0.1eV/c?

e Neutrino contribution to the cosmological evolution
- if neutrinos have very small mass = they are relativistic = they are not
trapped in a gravitational wells = they don’t contribute to the
gravitational potentiel of clusters
- if neutrinos have larger mass = they become non-relativistic = they can

be trapped by structures smaller than the Universe (e.g clusters)

= the larger the v mass, the earlier they become non-relativistic as the

Universe cools down = their effect can be observed on small clusters
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https://arxiv.org/abs/2404.03002

Matter density

e Matter (M): baryonic and non-baryonic H=laa) =3 " @

- cold (= non-relativistic) matter in the comoving frame = p — 0

-pm=0 = pyxa™

- therefore:
- we know how py, varies with time

- but we need to measure the value of Q,; (Q, and Qpy,)
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Vacuum energy

e Cosmological constant A first introduced by Einstein to make the

Universe static

H2:<a(t)>2:87rG EoA

a(t)

3 a2+3

e In modern cosmology, A is interpreted as vacuum energy (Dark

Energy), and contributes to the energy density of the Universe as Q,

e Dark Energy suffers no dilution (000 > e g
Hi=|—2| = ——p—=
\ aiz] / 3 '

= p, = CSt = p) = — p) = negative pressure! |
oy

f=—=3-(p+p
ot

e Like for matter, we a priori don’t know €, but we know its impact on

the evolution of the Universe = Q, can be measured from the

observation of the expansion
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Inflation Sg 7?
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CP violation and cosmology

e When the temperature cools down below 7= 0.5MeV,

yy — ete™ cannot occur, and ete™ pairs annihilate

e Therefore, all matter and anti-matter should have converted into
radiation

¢ Then, why do we observe matter and no anti-matter?

e Three conditions (Sakharov, 1967)

1.Baryon number violation
2.C- and CP- symmetry violation

3.non-thermal equilibrium

e Baryogenesis? Leptogenesis?
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Evidence for Dark Matter

A.From astrophysics

1. Galactic rotation curves

2. Clusters

4 N
B.From cosmology

3. Abundance of primordial elements
4.SN type Ia luminosity

5. CMB anisotropies
. J
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B.1 Abundance of elements

e Baryon nucleosynthesis:

Ve +N<—p+e

Np Mp —Mp
— Xe T my, —my = 1.29 MeV
Np

- when the temperature 7> Am =m, —m, = N, =N,
- when the temperature T~ Am = N, = N, (freeze-out)

- when T < 0.1 MeV, no more photo-dissociation is possible
(D +y < p+n), and the nucleosynthesis can begin
= production of deuterium (D), Helium (He), Lithium (Li), Beryllium (Be)

- abundances can be predicted based on the Cosmological standard model,
and compared to observations
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Fraction of total mass

Predicted abundances

e Observed relative abundances are consistent with predictions!

L d ObSeI'VGd baryonic denSity baryon density parameter Q2gh?
1072
. . 0.27 — — : :
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5 0.26[ \ .
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B.2 SuperNovae type la

e Measure luminosity distance d; versus redshift of SN type Ia

- from known intrinsic luminosity, apparent luminosity, and redshift,

one can write

dr, = a(to)(1 + 2) fx </Oz a(tino Qa1+ 2)° + Q]

N~

)

fi(x) =sinx if k=+1
filx) =x if k=0
fi(x) = sinh x if k=-1

- Results:
Oy — Q4 =—-0.494+0.12

QM -+ QA = +1.11 =0.52

= d; is mostly sensitive to Q, — Qy,
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Supernova Cosmology Project (1998)

e Initial results from 1998 compatible with non-zero cosmological

constant!
Preliminary Analysis | ‘
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effective mpg

Supernova Cosmology Project (2003)

Supernova Cosmology Project

Knop et al. (2003)
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B.3 Cosmic Microwave Background

e Cosmic Microwave Background (CMB)

- decoupling of photons from matter at 7'~ 3000 K
< z=1100 & r = 380000 yr

= picture of the Universe at this time

- thermal equilibrium before decoupling
= black body, now observable at 2.725 K
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CMB anisotropies

e Anisotropies expected at level of 107 to explain large scale structures

- observation by COBE (1994) : AT ~x 1073
T

= consistent with theoretical considerations

e Source and nature of the fluctuations :
- y/nucleon /electron fluid under antagonist forces:

- gravity and quantum pressure = density waves (sound)

- limited velocity = effective horizon = sets the effective size of fluctuations at
the time of decoupling

- the size of the fluctuations depends on velocity, which depends on pressure, and

pressure is different for A and matter

= Q, and €, can be determined from the map of anisotropies!
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CMB anisotropies: Planck (2015)

—300 uk 300
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CMB power spectrum

e Fourier modes of angular CMB fluctuations

- sensitive to several parameters

- Qp+ Q) Qy, Qp, (and many more)

16000 ———— ——————r
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CMB power spectrum: combined results
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Cosmological parameters

Parameter

Value

source

h

0.674+0.005

SN, CMB, Clusters

Age of the Universe

13.797+0.023 Gyr

(31.5+0.7)%

SN, CMB, Clusters

(4.9340.06)%
(26.540.7)%

(68.5£0.7)%
(5.382£0.15)X 105

Baryon nucl., CMB

SN, CMB

CMB temperature

<0.3%

1.011£0.006

source: PDG 2021

Parameters are over-constrained

(SN, CMB)

= allows check of the consistency of the model
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Dark Matter properties (summary)

e Dark Matter “particles” must be:

1.massive and non-relativistic (cold DM)
- constrained by large scale structures
- constrained by CMB power spectrum
2.non-baryonic
- constrained by nucleosynthesis, which fixes the baryonic contribution
- constrained by CMB power spectrum
3.stable on cosmological time scales
- because its effects are observable today through its gravitational effects
4.weakly interacting

- because not visible other than through gravitational effects
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