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What is a fit?

In physics, very often we want to adjust (or fit) a model to our experimental data

E.g: perform a fit using the linear model Ve infdanig) WINEHon SlEEes o
N, parameters encoded in 6

Jf(x;0) = mx + h, where 9 = (m, h) We want to find the best fit function
by adjusting these parameters

to a set of N measurements {y,(x) xo,i=1,...,N}
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¥* fit

® Widely used statistical method for parameter determination

e We first write the »? function, which is the sum of all “normalised distances” squared:

o (i —f (X,, 9))
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e The best estimators éj are obtained by minimising the y*:
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} Model 2 is a much better fit!
X (independent variable) 3

Figure taken from https://www.phys.hawaii.edu/~varner/PHYS305-Spr12/DataFitting.html



https://www.phys.hawaii.edu/~varner/PHYS305-Spr12/DataFitting.html

Maximum likelihood estimation

® The 4° fit is a special case of the Maximum Likelihood (ML) fit

® The likelihood function is defined as Z(9) = 2(3:6), where
P(y,0) is the probability of observation y
[depends only on the data measured]

® |f the y, measurements are , We can write:
- N -
20) = [ [ 201(x). 0:0)
i=1

e The best estimators ¢, are obtiined by maximising Z(0)
[normally we minimise —21n £(0) because ln(Hxl-) = Z In x; iS

easier to perform computation wise |



»* fit: a particular case of a ML fit

® In the particular case when the y, , the
likelihood function becomes:
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® This implies that:
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Therefore, the y> minimisation method is a particular
case of the more general ML method
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Uncertainties on the estimators éj

e The uncertainty on ¢, (15 is given by the interval around 6, by which the 42

increases by 1 (or & decreases by e~'/?) A
1) For measurements w/ Gaussian errors, the likelihood is Gaussian o
2) If f(x;0) is linear on 6, the y? is parabolic on 8 - :

N, 8 _,os.LO..
6 — 06 [~ -
6-0 6 G+q 6 6 G+ K

Figures taken from Mark Thomson’s slides on statistics, 2015

® Under hypotheses 1) and 2), the uncertainties on the estimators are
related to the second derivative of the y? function:
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https://indico.cern.ch/category/6015/attachments/192/631/Statistics_Fitting_II.pdf

Extended maximum likelihood fit

® So far we have regarded the number of events, n, as being fixed, but in many
cases we are interested in measuring absolute rates

e he number of events, n, follows a Poisson distribution with mean i: 2(n; 1) =

® This distribution can be incorporated in the likelihood as a multiplicative factor:
n,—iA N

A S
~ T 20x):6)
i=1

3(5, n) =

n!

® |n this case, minimising the 4 is to minimising —21n &

N
2InS =- 2[2 In P(y(x.), 0) +nln A — A+ const.
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Figure taken from Mark Thomson’s slides on statistics, 2015



https://indico.cern.ch/category/6015/attachments/192/631/Statistics_Fitting_II.pdf

»* distribution

e If the model f(x; ) is correct and the measurements y, have
Gaussian uncertainties, then the y? is a random variable that

follows the y°

pdf P(x;v)

0.5
P (x;v) e 0 0.4
WX V) = — v > AT
' 2 F(%) | 0.3 1
with mean < y*> =v and 021
. ) 0.1
variance var(y-)=2v

® . s the

0.0

Number of measurements y,

2 3 4 5! 6
Figure taken from Wikipedia

Number of fitted parameters 6,

T s


https://en.wikipedia.org/wiki/Chi-squared_distribution

Number of degrees of freedom

® Fitting a line to:
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Any line can pass by 2 points define exactly
1 point. Every lineis  aline. The method has
the “best” line. to choose

Impossible to solve. different values for
the parameters.

Figures taken from https://creative-wisdom.com/computer/sas/df.html

Method will adjust the
value of the
parameters to find
the best fit. It


https://creative-wisdom.com/computer/sas/df.html

Events / (0.0075)

® \We want to quantify the level of agreement between the data and the fit model

Goodness-of-fit test

® This can be determined from the ratio ;(2/1/
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7*Iv < 1, model is over-fitting (improperly fitting noise, following
a statistical fluctuation or uncertainties were overestimated)




Hypothesis testing

e We want to know whether we can accept or reject the hypothesis, H,, that “the fitted model

correctly describes the measured data points” (

) against the

, H,, that “the fitted model does not correctly describe the measured data points”

® We use as “test statistic” the y?, whose value reflects the level of agreement between the

data and the hypothesised model

e We define the p-value as the probability of finding a value of y* equal or greater than the
observed one 2, :
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Figure taken from PDG Ch.40 Statistics
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Figure taken from https://www.di-mgt.com.au/chisquare-calculator.html

Stomdand Quicle€ine :
P> 010 = mol significant ™ do rol agpet mull  hypthesis
psoto > «nana'\ma.uy significant
p €005 >  significant
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https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
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