

# $\chi^2$ and maximum likelihood fits

---

Alexandre Brea, Frédéric Blanc

# What is a fit?

In physics, very often we want to adjust (or fit) a model to our experimental data

E.g: perform a fit using the linear model

$$f(x; \vec{\theta}) = mx + h, \text{ where } \vec{\theta} = (m, h)$$

The fitting function depends on  $N_p$  parameters encoded in  $\vec{\theta}$

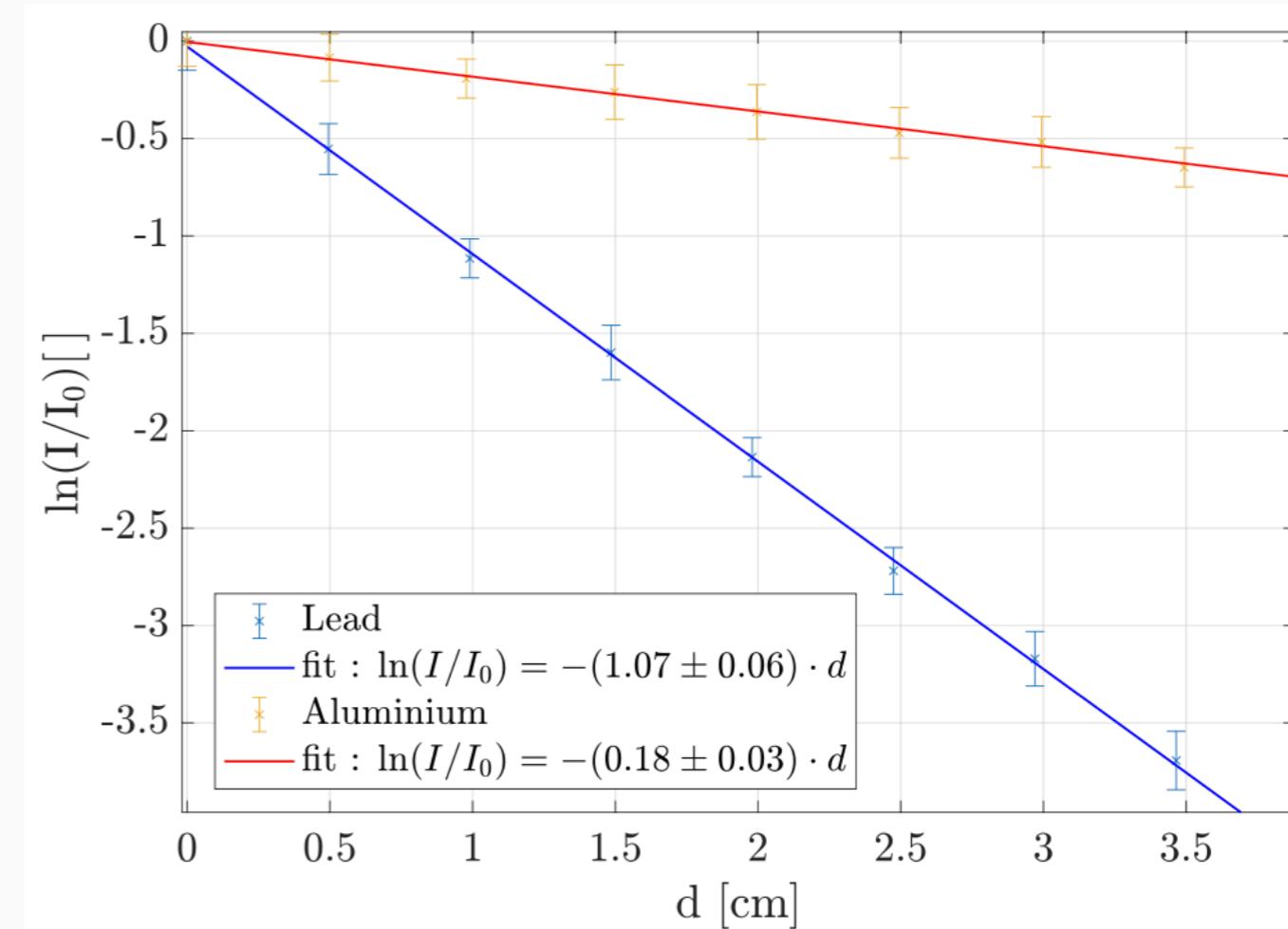
We want to find the best fit function by adjusting these parameters

to a set of  $N$  measurements  $\{y_i(x_i) \pm \sigma_i, i = 1, \dots, N\}$

From TP3 lab:

## Fitting procedure:

- 1) Determine the best estimators  $\hat{m}, \hat{h}$  for the parameters  $m, h$
- 2) Compute the uncertainties on these estimators
- 3) Provide a measure of how good the fit is



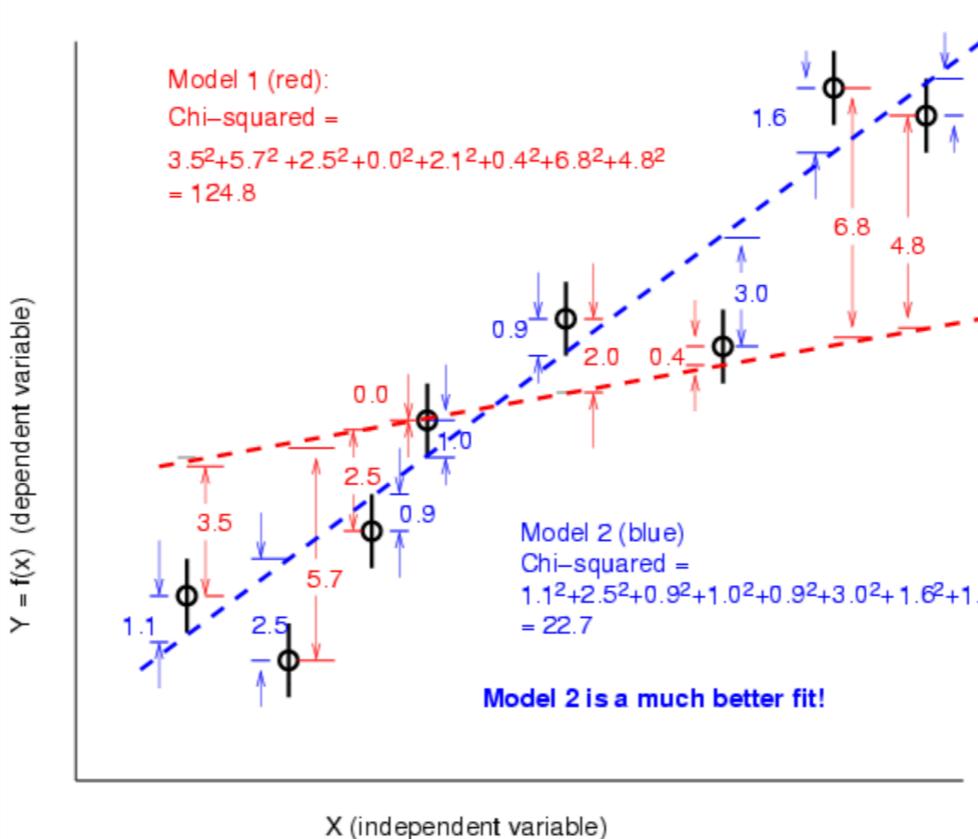
# $\chi^2$ fit

- Widely used statistical method for parameter determination
- We first write the  $\chi^2$  function, which is the sum of all “normalised distances” squared:

$$\chi^2 = \sum_{i=1}^N \frac{(y_i - f(x_i; \vec{\theta}))^2}{\sigma_i^2}$$

- The best estimators  $\hat{\theta}_j$  are obtained by minimising the  $\chi^2$ :

$$\frac{\partial \chi^2}{\partial \theta_j} \bigg|_{\theta_j=\hat{\theta}_j} = 0, \text{ for all parameters in } \vec{\theta} \text{ } (\theta_1 = m, \theta_2 = h \text{ for the linear model})$$



# Maximum likelihood estimation

- The  $\chi^2$  fit is a special case of the Maximum Likelihood (ML) fit
- The likelihood function is defined as  $\mathcal{L}(\vec{\theta}) = \mathcal{P}(\vec{y}; \vec{\theta})$ , where  $\mathcal{P}(\vec{y}, \vec{\theta})$  is the probability of observation  $\vec{y}$   
[depends only on the data measured]
- If the  $y_i$  measurements are **independent**, we can write:

$$\mathcal{L}(\vec{\theta}) = \prod_{i=1}^N \mathcal{P}(y_i(x_i), \sigma_i; \vec{\theta})$$

- The best estimators  $\hat{\theta}_j$  are obtained by maximising  $\mathcal{L}(\vec{\theta})$   
[normally we minimise  $-2 \ln \mathcal{L}(\vec{\theta})$  because  $\ln(\prod_i x_i) = \sum_i \ln x_i$  is easier to perform computation wise ]

# $\chi^2$ fit: a particular case of a ML fit

- In the particular case when the  $y_i$  are Gaussian distributed random variables, the likelihood function becomes:

$$\mathcal{L}(\vec{\theta}) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left(-\frac{(y_i - f(x_i, \vec{\theta}))^2}{2\sigma_i^2}\right)$$

- This implies that:

$$\begin{aligned} -2 \ln \mathcal{L} &= -2 \sum_{i=1}^N \ln \mathcal{P}(y_i(x_i), \sigma_i; \vec{\theta}) = -2 \sum_{i=1}^N \left[ -\frac{(y_i - f(x_i, \vec{\theta}))^2}{2\sigma_i^2} - \underbrace{\ln \sigma_i - \ln \sqrt{2\pi}}_{=\text{constant}} \right] \\ &= \sum_{i=1}^N \frac{(y_i - f(x_i, \vec{\theta}))^2}{\sigma_i^2} + \underbrace{2 \ln \sigma_i + \ln(2\pi)}_{=\text{constant}} = \chi^2 + \text{constant}. \end{aligned}$$

Therefore, the  $\chi^2$  minimisation method is a particular case of the more general ML method

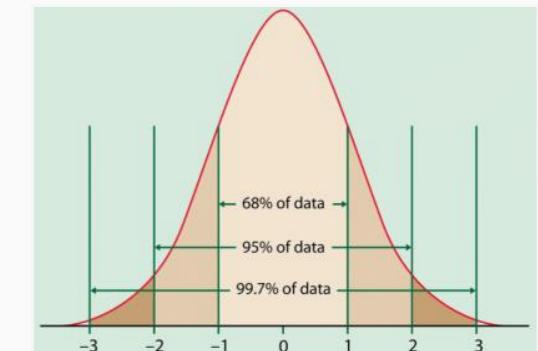
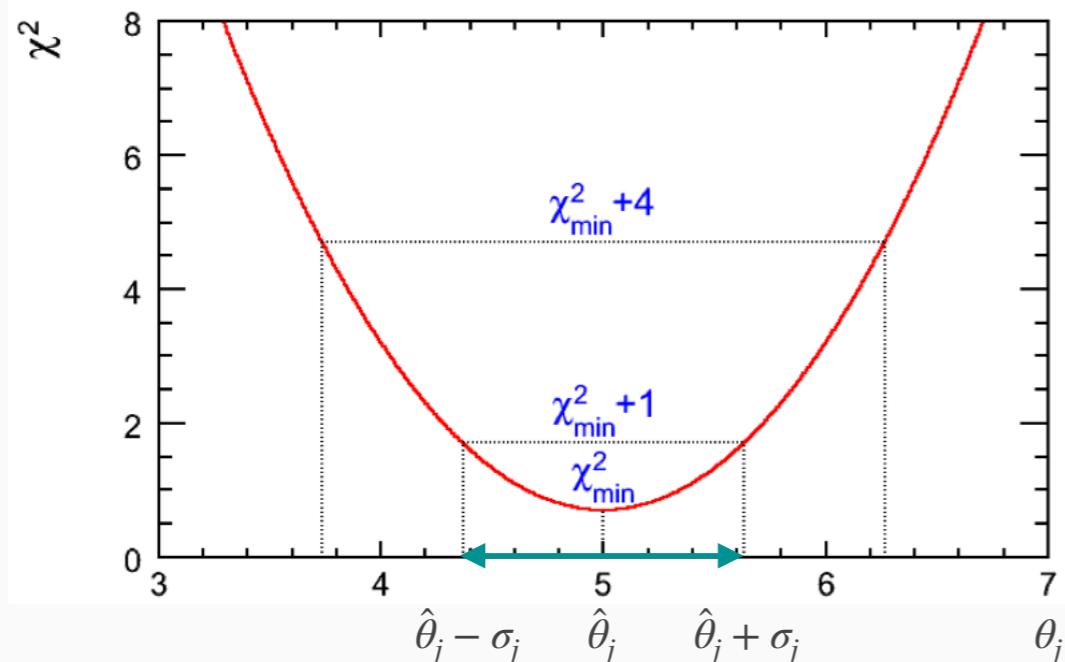
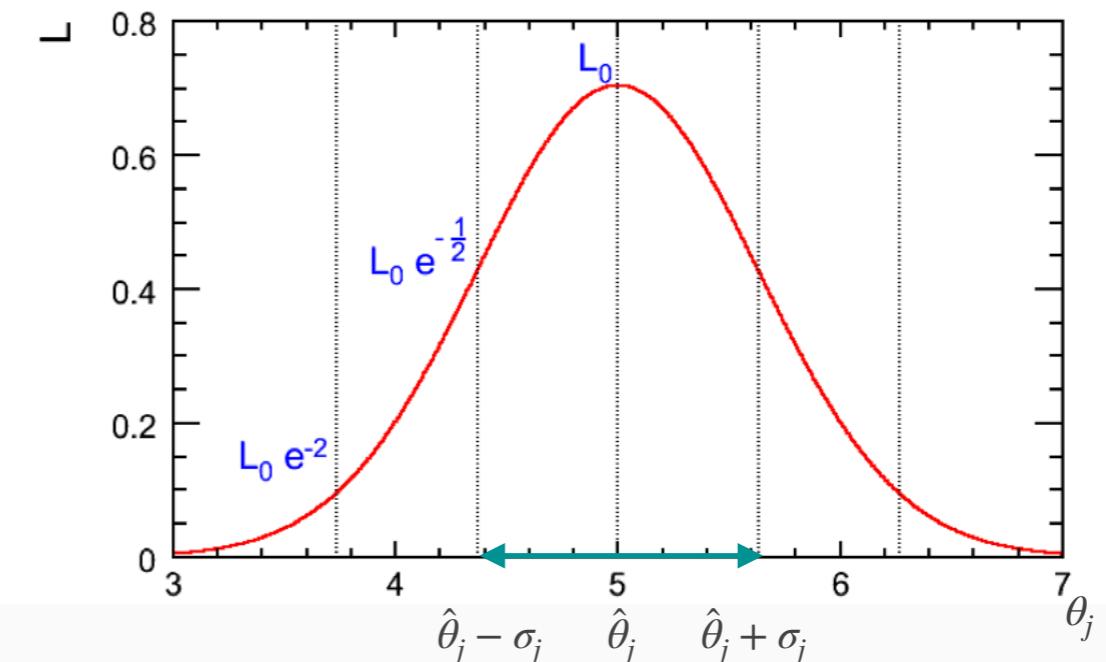
$$\mathcal{L} \propto e^{-\chi^2/2}$$

# Uncertainties on the estimators $\hat{\theta}_j$

- The uncertainty on  $\hat{\theta}_j$  ( $\pm 1\sigma_j$ ) is given by the interval around  $\hat{\theta}_j$  by which the  $\chi^2$  increases by 1 (or  $\mathcal{L}$  decreases by  $e^{-1/2}$ )

1) For measurements w/ Gaussian errors, the likelihood is Gaussian

2) If  $f(x; \vec{\theta})$  is linear on  $\vec{\theta}$ , the  $\chi^2$  is parabolic on  $\vec{\theta}$



Figures taken from [Mark Thomson's slides on statistics, 2015](#)

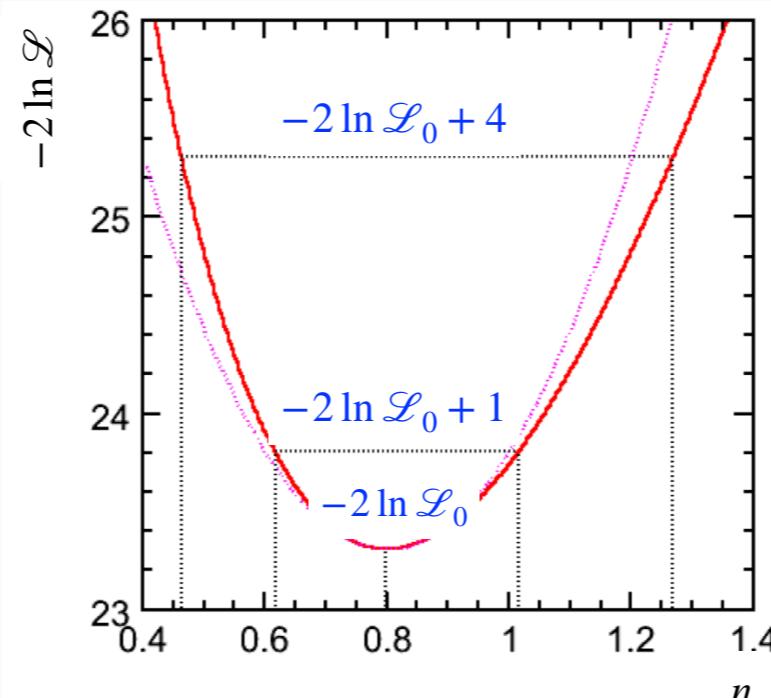
- Under hypotheses 1) and 2), the uncertainties on the estimators are related to the second derivative of the  $\chi^2$  function:

$$\sigma_j^2 = \left( \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \theta_j^2} \bigg|_{\theta_j=\hat{\theta}_j} \right)^{-1} = \left( - \frac{\partial^2 \ln \mathcal{L}}{\partial \theta_j^2} \bigg|_{\theta_j=\hat{\theta}_j} \right)^{-1}$$

# Extended maximum likelihood fit

- So far we have regarded the number of events,  $n$ , as being fixed, but in many cases we are interested in measuring absolute rates
- The number of events,  $n$ , follows a Poisson distribution with mean  $\lambda$ :  $\mathcal{P}(n; \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$
- This distribution can be incorporated in the likelihood as a multiplicative factor:  
$$\mathcal{L}(\vec{\theta}, n) = \frac{\lambda^n e^{-\lambda}}{n!} \prod_{i=1}^N \mathcal{P}(y_i(x_i); \vec{\theta})$$
- In this case, minimising the  $\chi^2$  is **no longer equivalent** to minimising  $-2 \ln \mathcal{L}$

$$-2 \ln \mathcal{L} = -2 \left[ \sum_{i=1}^N \ln \mathcal{P}(y_i(x_i), \vec{\theta}) + n \ln \lambda - \lambda + \text{const.} \right]$$



# $\chi^2$ distribution

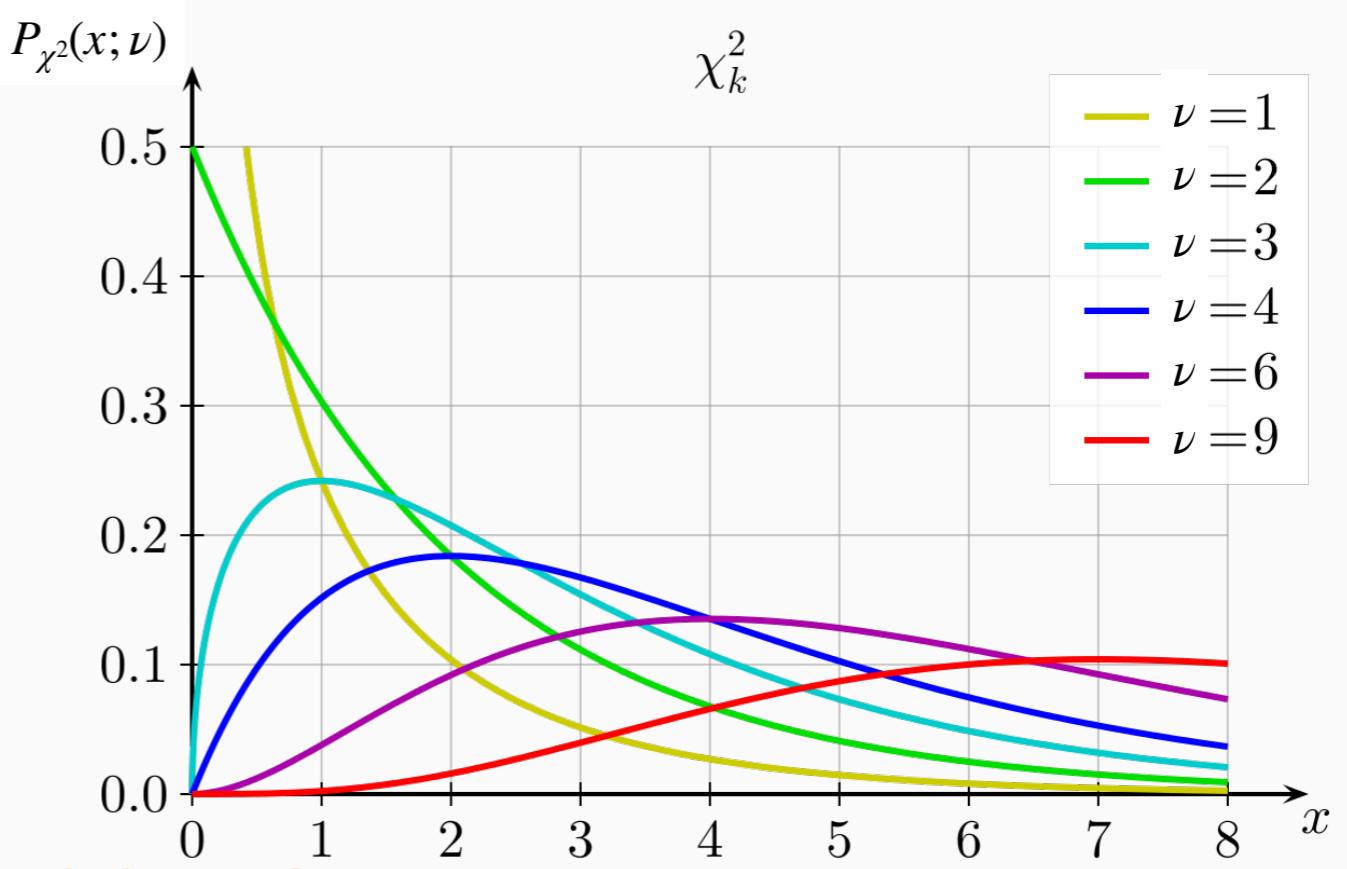
- If the model  $f(x; \vec{\theta})$  is correct and the measurements  $y_i$  have Gaussian uncertainties, then the  $\chi^2$  is a random variable that follows the  $\chi^2$  p.d.f:

$$P_{\chi^2}(x; \nu) = \frac{x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}, \nu > 0$$

with mean  $\langle \chi^2 \rangle = \nu$  and

variance  $\text{var}(\chi^2) = 2\nu$

- $\nu$  is the **number of degrees of freedom**

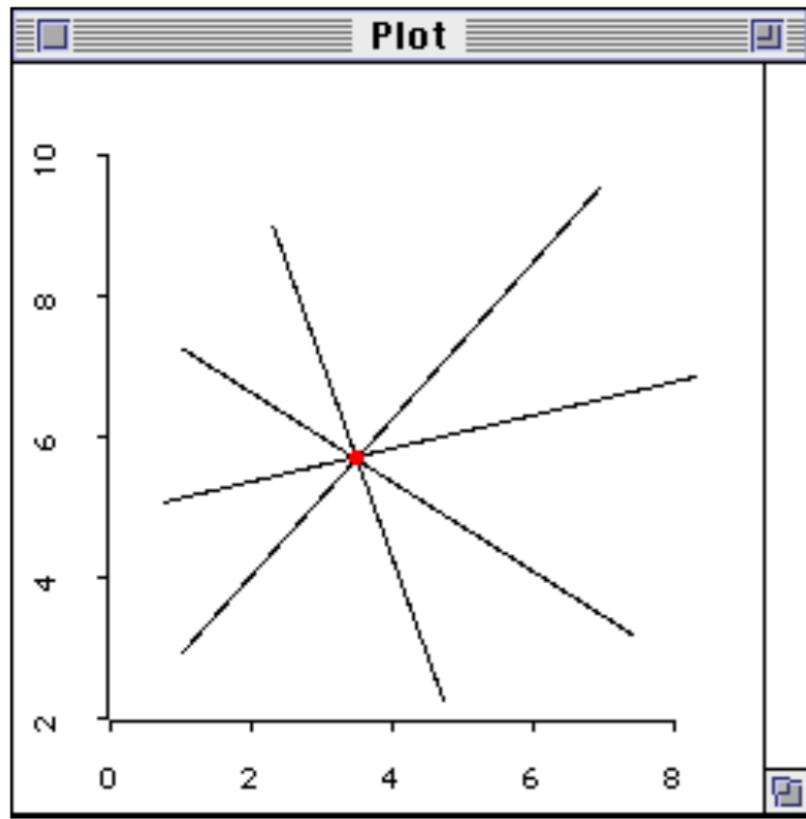


$$\nu = N - N_p$$

Number of measurements  $y_i$       Number of fitted parameters  $\theta_j$

# Number of degrees of freedom

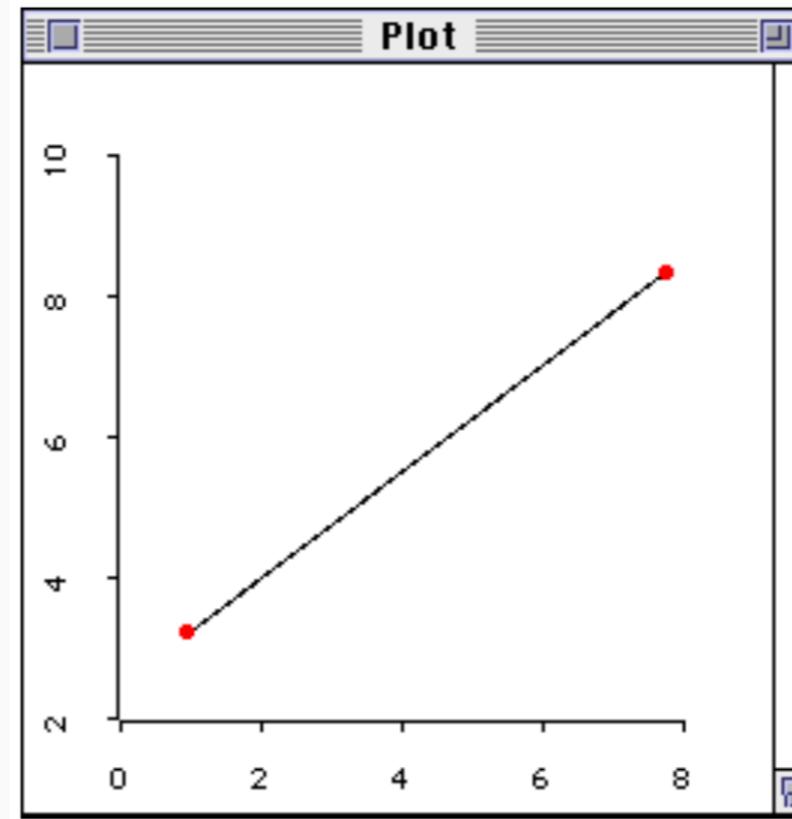
- Fitting a line to:



$$N = 1, m = 2$$

$$\nu = -1$$

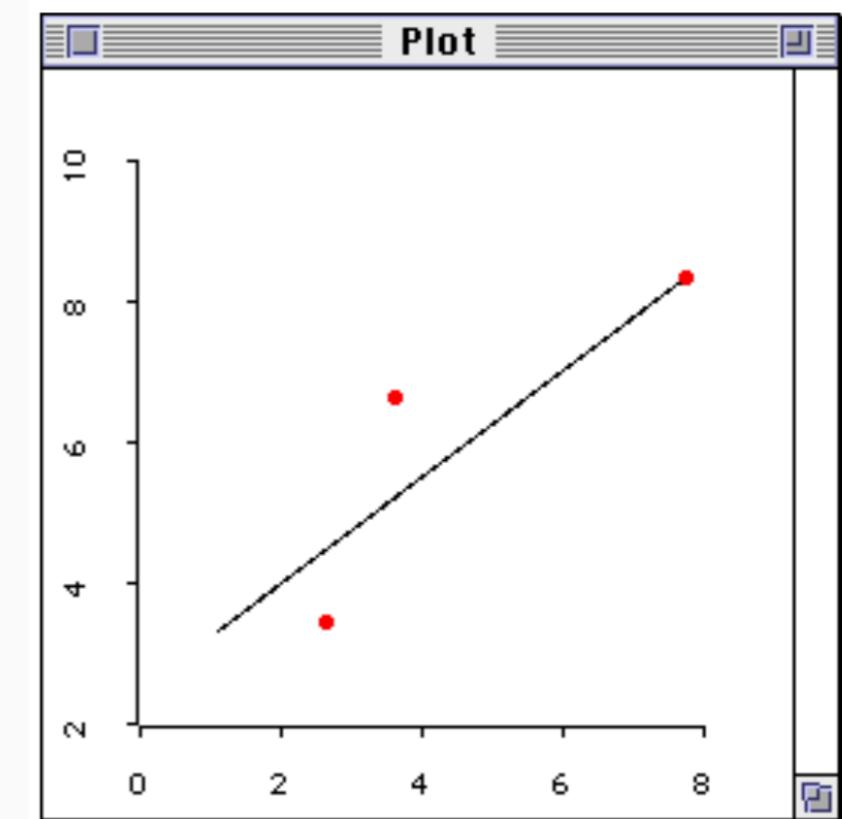
Any line can pass by 1 point. Every line is the “best” line. Impossible to solve.



$$N = 2, m = 2$$

$$\nu = 0$$

2 points define exactly a line. The method has **no freedom** to choose different values for the parameters.



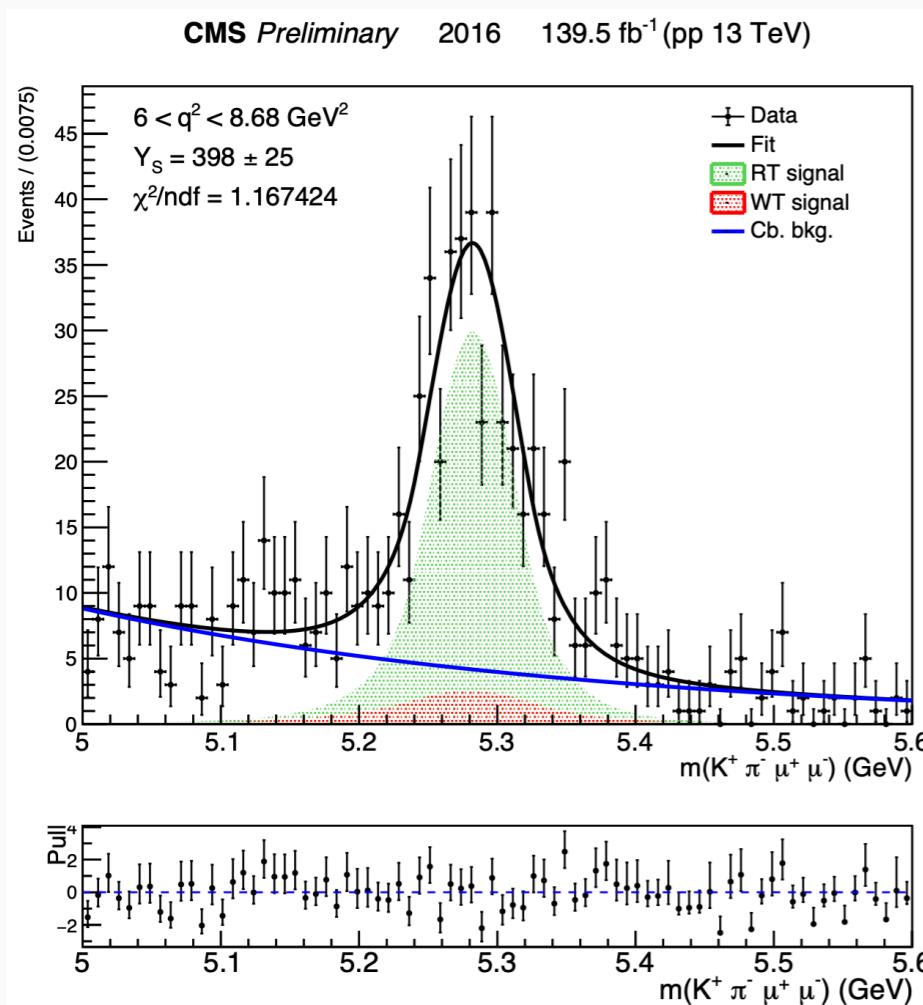
$$N = 3, m = 2$$

$$\nu = 1$$

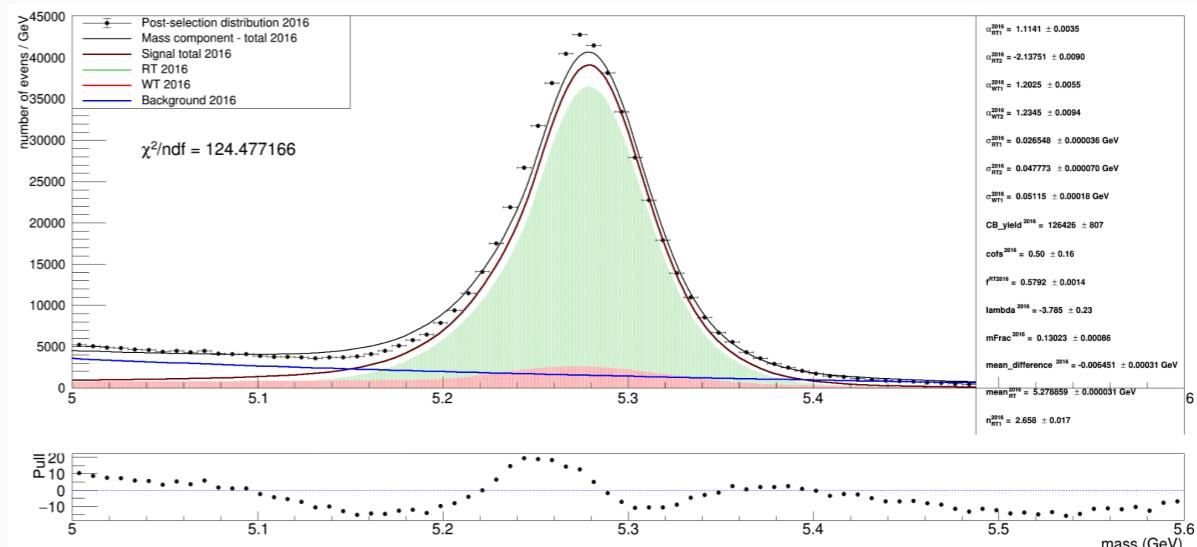
Method will adjust the value of the parameters to find the best fit. It **has some freedom**.

# Goodness-of-fit test

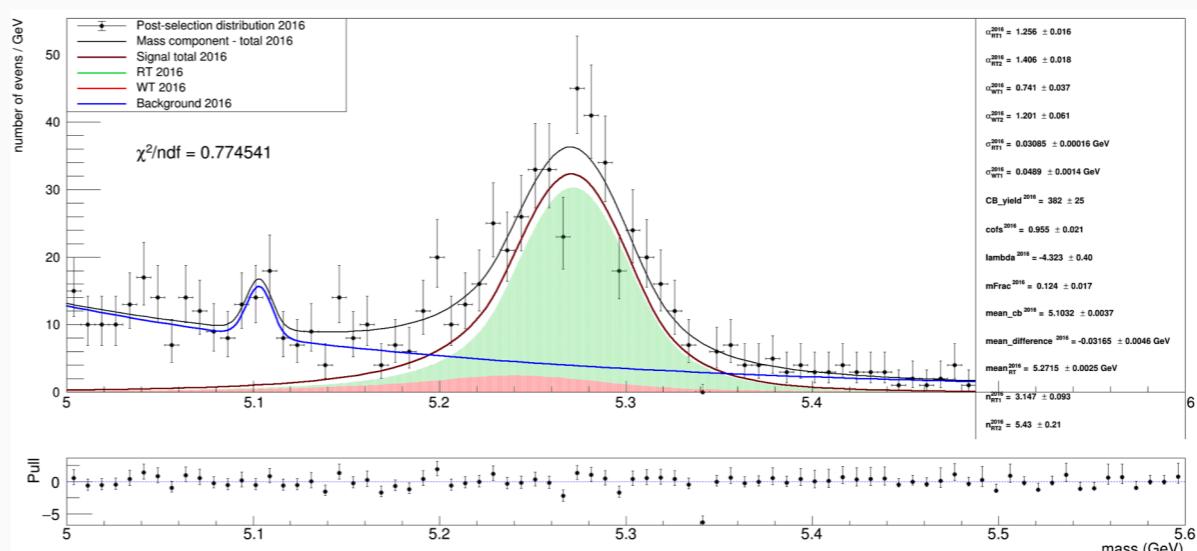
- We want to quantify the level of agreement between the data and the fit model
- This can be determined from the ratio  $\chi^2/\nu$



$\chi^2/\nu \approx 1$ , good fit



$\chi^2/\nu \gg 1$ , poor fit: the model does not fully capture the data

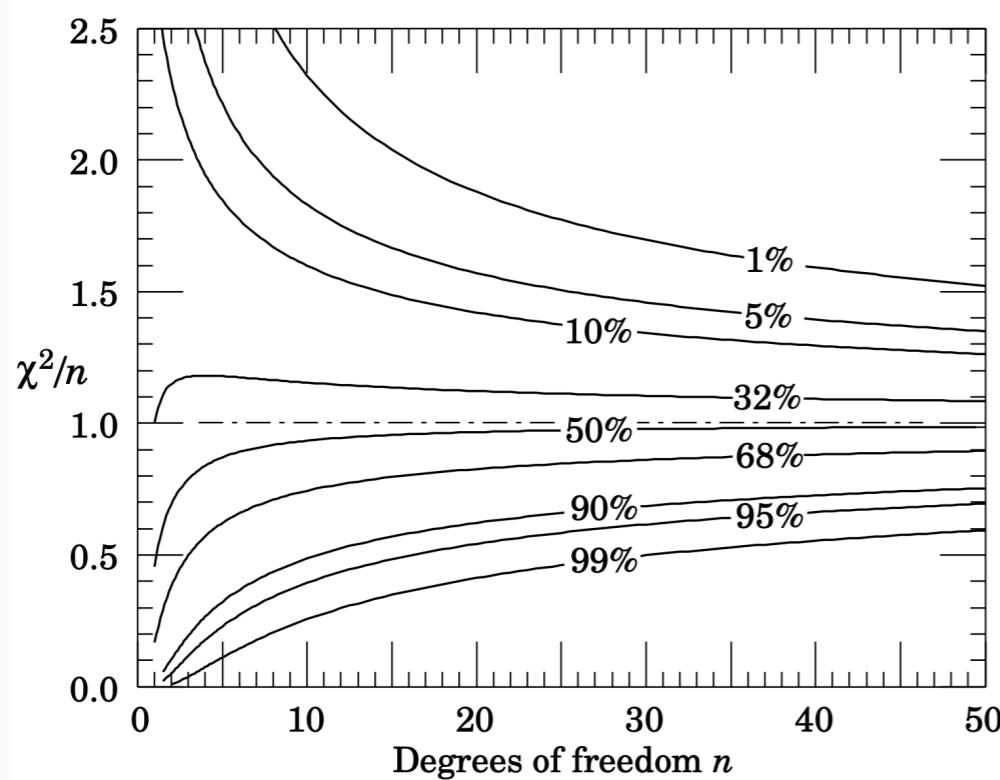
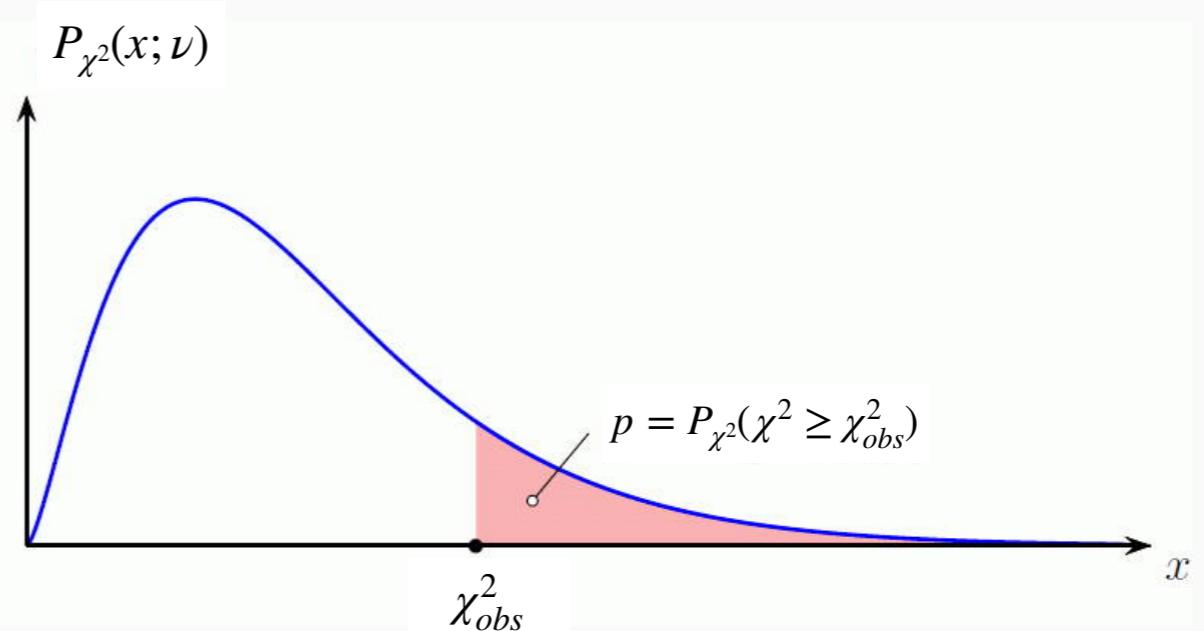


$\chi^2/\nu < 1$ , model is over-fitting (improperly fitting noise, following a statistical fluctuation or uncertainties were overestimated)<sup>10</sup>

# Hypothesis testing

- We want to know whether we can accept or reject the hypothesis,  $H_0$ , that “the fitted model correctly describes the measured data points” (**null hypothesis**) against the **alternate hypothesis**,  $H_1$ , that “the fitted model does not correctly describe the measured data points”
- We use as “test statistic” the  $\chi^2$ , whose value reflects the level of agreement between the data and the hypothesised model
- We define the p-value as the probability of finding a value of  $\chi^2$  equal or greater than the observed one  $\chi^2_{obs}$ :

$$p = \int_{\chi^2_{obs}}^{\infty} P_{\chi^2}(x; \nu) dx$$



Standard guidelines:

- $p > 0.10 \rightarrow$  not significant  $\rightarrow$  do not reject null hypothesis
- $p \leq 0.10 \rightarrow$  marginally significant
- $p \leq 0.05 \rightarrow$  significant
- $p \leq 0.01 \rightarrow$  highly significant  $\rightarrow$  reject null hypothesis

# Backup

---