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What is a fit?
In physics, very often we want to adjust (or fit) a model to our experimental data

E.g: perform a fit using the linear model

, where 

to a set of N measurements 

f(x; ⃗θ) = mx + h ⃗θ = (m, h)

{yi(xi) ± σi, i = 1,...,N}
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From TP3 lab:

Fitting procedure:

1) Determine the best estimators 
,  for the parameters ,

2) Compute the uncertainties on 
these estimators

3) Provide a measure of how 
good the fit is

m̂ ĥ m h

The fitting function depends on 
 parameters encoded in  Np

⃗θ

We want to find the best fit function 
by adjusting these parameters



 fitχ2

•Widely used statistical method for parameter determination

•We first write the  function, which is the sum of all “normalised distances” squared:

•The best estimators  are obtained by minimising the :

 ,  for all parameters in  ( ,  for the linear model)

χ2

χ2 =
N

∑
i=1

(yi − f(xi; ⃗θ))2

σ2
i

̂θj χ2

∂χ2

∂θj θj= ̂θj

= 0 ⃗θ θ1 = m θ2 = h
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Figure taken from https://www.phys.hawaii.edu/~varner/PHYS305-Spr12/DataFitting.html

https://www.phys.hawaii.edu/~varner/PHYS305-Spr12/DataFitting.html


Maximum likelihood estimation
•The  fit is a special case of the Maximum Likelihood (ML) fit

•The likelihood function is defined as , where 
 is the probability of observation                        

[depends only on the data measured]

• If the  measurements are independent, we can write: 

•The best estimators  are obtained by maximising  
[normally we minimise  because  is 

easier to perform computation wise ]

χ2

ℒ( ⃗θ) = 𝒫( ⃗y; ⃗θ)
𝒫( ⃗y, ⃗θ) ⃗y

yi

ℒ( ⃗θ) =
N

∏
i=1

𝒫(yi(xi), σi; ⃗θ)

̂θj ℒ( ⃗θ)
−2 ln ℒ( ⃗θ) ln(∏

i

xi) = ∑
i

ln xi
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 fit: a particular case of a ML fitχ2

• In the particular case when the  are Gaussian distributed random variables, the 
likelihood function becomes:

•This implies that:

yi

ℒ( ⃗θ) =
N

∏
i=1

1

2πσi

exp( −
(yi − f(xi, ⃗θ))2

2σ2
i )
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Therefore, the  minimisation method is a particular 
case of the more general ML method

χ2

ℒ ∝ e−χ2/2



Uncertainties on the estimators ̂θj

•The uncertainty on  ( ) is given by the interval around  by which the  
increases by 1 (or  decreases by )

1) For measurements w/ Gaussian errors, the likelihood is Gaussian

2) If  is linear on , the  is parabolic on 

̂θj ±1σj
̂θj χ2

ℒ e−1/2

f(x; ⃗θ) ⃗θ χ2 ⃗θ
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θj
θĵθj

̂θj + σj
̂θj − σj

̂θj
̂θj + σj

̂θj − σj

•Under hypotheses 1) and 2), the uncertainties on the estimators are 
related to the second derivative of the  function:χ2

σ2
j = (1

2
∂2χ2

∂θ2
j θj= ̂θj

)−1 = (−
∂2 ln ℒ

∂θ2
j θj= ̂θj

)−1

Figures taken from Mark Thomson’s slides on statistics, 2015

https://indico.cern.ch/category/6015/attachments/192/631/Statistics_Fitting_II.pdf


Extended maximum likelihood fit
•So far we have regarded the number of events, , as being fixed, but in many 

cases we are interested in measuring absolute rates 

•The number of events, , follows a Poisson distribution with mean : 

•This distribution can be incorporated in the likelihood as a multiplicative factor: 

• In this case, minimising the  is no longer equivalent to minimising 

n

n λ 𝒫(n; λ) =
λne−λ

n!

ℒ( ⃗θ, n) =
λne−λ

n!

N

∏
i=1

𝒫(yi(xi); ⃗θ)

χ2 −2 ln ℒ

−2 ln ℒ = − 2[
N

∑
i=1

ln 𝒫(yi(xi), ⃗θ) + n ln λ − λ + const.]
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−
2

ln
ℒ

n

−2 ln ℒ0 + 1

−2 ln ℒ0 + 4

−2 ln ℒ0

Figure taken from Mark Thomson’s slides on statistics, 2015

https://indico.cern.ch/category/6015/attachments/192/631/Statistics_Fitting_II.pdf


 distributionχ2

• If the model  is correct and the measurements  have 
Gaussian uncertainties, then the  is a random variable that 
follows the  p.d.f:

, 

with mean  and 

variance var( )=2   

•  is the number of degrees of freedom

f(x; ⃗θ) yi
χ2

χ2

Pχ2(x; ν) =
x

ν
2 −1e− ν

2

2 ν
2 Γ( ν

2 )
ν > 0

< χ2 > = ν

χ2 ν

ν

ν = N − Np
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ν
ν
ν
ν
ν
ν

Pχ2(x; ν)

Number of measurements yi Number of fitted parameters θj

Figure taken from Wikipedia

https://en.wikipedia.org/wiki/Chi-squared_distribution


Number of degrees of freedom 
•Fitting a line to:
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N = 1, m = 2 N = 2, m = 2 N = 3, m = 2 
ν = − 1 ν = 0 ν = 1

Any line can pass by 
1 point. Every line is 
the “best” line. 
Impossible to solve.

2 points define exactly 
a line. The method has 
no freedom to choose 
different values for 
the parameters.

Method will adjust the 
value of the 
parameters to find 
the best fit. It has 
some freedom.

Figures taken from https://creative-wisdom.com/computer/sas/df.html 

https://creative-wisdom.com/computer/sas/df.html


Goodness-of-fit test
•We want to quantify the level of agreement between the data and the fit model

•This can be determined from the ratio  χ2/ν
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, good fitχ2/ν ≈ 1

, poor fit: the model does not fully 
capture the data

χ2 /ν ≫ 1

, model is over-fitting (improperly fitting noise, following 
a statistical fluctuation or uncertainties were overestimated)

χ2 /ν < 1



Hypothesis testing
•We want to know whether we can accept or reject the hypothesis, , that “the fitted model 

correctly describes the measured data points” (null hypothesis)  against the alternate 
hypothesis, , that “the fitted model does not correctly describe the measured data points”

•We use as “test statistic” the , whose value reflects the level of agreement between the 
data and the hypothesised model

•We define the p-value as the probability of finding a value of  equal or greater than the 
observed one :

H0

H1

χ2

χ2

χ2
obs

p = ∫
∞

χ2
obs

Pχ2(x; ν)dx
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Pχ2(x; ν)

χ2
obs

p = Pχ2(χ2 ≥ χ2
obs)

Figure taken from PDG Ch.40 Statistics

Figure taken from https://www.di-mgt.com.au/chisquare-calculator.html 

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
https://www.di-mgt.com.au/chisquare-calculator.html
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