Chapitre 2

Gravitation et mouvements



Les 3 lois de Kepler



Les lois de Kepler (1571-1630)

1- Les planétes décrivent des orbites elliptiques, planes,
dont le Soleil occupe l'un des foyer. En fait, toutes les coniques
sont possibles (les comeétes ont souvent des orbites tres

elliptiques, voire méme paraboliques ou hyperboliques).

(b)
(c) Hyperbolic path

Parabolic path \

Fig-1: Types of paths



Les lois de Kepler (1571-1630)

Définition de l'ellipse:

r+r =2a

En coordonnées polaires
a(l-e?)
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En coordonnées cartésiennes
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— + 5 = 1

a b

Excentricité de l'ellipse

Surface de l'ellipse
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Les lois de Kepler (1571-1630)

2- Loi des aires: les aires balayées par les rayons vecteurs en
des temps égaux, sont égales.Les planétes ont donc tendance a
ralentir lorsqu'elles s'éloignent du Soleil
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Les lois de Kepler (1571-1630)

3-le carré de la période orbitale, P, est proportionnel au cube
de la distance moyenne au Soleil

P2
?=K

K = 1si on exprime Pen années et a en Unités Astronomiques.

Pour un systéme de deux masses telles que M = m; + m;

P? = 4o’ a’
GM
ou encore, comme ®=2n/P
2 = GM




Les lois de Kepler (1571-1630)

Le carré de la période orbitale, P, est proportionnel au cube
de la distance moyenne au Soleil

2 GM
— 2];4 a’ W = g avec o=2n/P
a

P2

Conséquence directe: les planetes orbitant plus loin de leur
étoile ont une période de révolution plus grande.

Explique les queues de comeéte « courbées »

Attention lors des sorties extra-véhiculaires !
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.. -Queues « opposées » dans les cometes




- Comete « Lulin» en 2015
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Les lois de Kepler (1571-1630)

1965: Gemini 4
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1967-1968: premiéres missions Apollo




Théoréme du Viriel et systémes autogravitants



Théoréeme du Viriel

Les énergies cinétiques E., et potentielles E,.+ d'un systéme
isolé de masses ponctuelles, moyennées dans le temps, suivent
la relation

Fondamental en astrophysique, ot de nombreux systemes
peuvent €tre considérés comme isolés

Les crochets symbolisent la moyenne temporelle
Plusieurs démonstrations possibles. Toutes supposent que les

forces internes sont centrales, c'est-a-dire qu'elles dérivent
d'un potentiel.



1
’ \ o o <Ecm> =_5<Ep0t>
Théoreme du Viriel

Plusieurs démonstrations possibles. L'une d'elles utilise le fait que
la moyenne dans le temps de la quantité suivante est constante:

Moyenne dans le temps

Tllustration « géométrique »



<Ecin> - _%<Ep0t>

Théoréme du Viriel
dS dp DL
T _ZW Tk +ZPL Uk

Clll :__ g FL 7k

On se place dans le cas d'une force qui dérive d'un potentiel,
ce qui revient a dire que

o(r) = armt!

F. = —'I?).k( (')(’L) Tk

dr 7y,



<Ecin> - _%<Ep0t>

Théoréeme du Viriel

<Z EFrii) = —(n + 1)(2 mr@(rr)) = —(n + 1)(Epot)

Dans le cas de la force de gravitation n=-2

<Ecin> - _%<Ep0t>



(Ein)

Théoréeme du Viriel

Dans le « jargon astrophysique » on dit que le systéme est

« Virialisé » ou « relaxé » si I'on a attendu « assez de temps »
pour que le théoreme du Viriel puisse s'appliquer.

C'est le cas, entre autres, des:

- Galaxies

- Amas de galaxies

- Amas d'étoiles

Les interactions gravitationnelles entre les différents objets

ou les chocs rendent parfois inapplicable le théoréme du Viriel.
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Exemple d'amas d'étoiles
Virialisé

Ici I'amas globulaire
47 Tucanae, visible dans
I'hémisphere sud.

D =5,5kpc
Taille apparente ~ 30’

Théoréeme du Viriel




. » .
Galaxy Cluster Abell 2218 HST « WFPC2
NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) * STScl-PRC00-08

Amas de galaxies Abell 2218 situé a z=0.171 (4,1 x 10° pc)




<Ecin> - _%<Ep0t>

Théoréeme du Viriel

Arcs gravitationnels




Choc entre galaxies: systéme non-virialisé car la durée du choc est
tres inférieure au temps nécessaire pour que <dS/dt> ~ 0




Energie potentielle de gravitation



Energie potentielle de gravitation

La fagon la plus efficace de stocker de I'énergie

S ‘ Infini

-

dm

Pour calculer I'énergie potentielle d'une masse M de rayon R,
on calcule le travail de la force de gravité pour amener une
couche de masse « dm » depuis l'infini jusqu'au rayon « r »,
puis on integre sur la sphéere (« s » est une variable muette).



Energie potentielle de gravitation

Variation d'énergie potentielle due au travail de la force de gravitation

dEpot = Wooer

ds

_ ]G m(r) dm
~ G m(r) dm

7

En supposant que la densité de matiére est constante dans la masse M

t G m(r)
Ep0t=depOt=—f " x 47r’ pdr
0 0

3 G M?*
pOt 5 R




Energie cinétique

Calcul en termes de Calcul en termes de
vitesse circulaire thermodynamique
1§ , 1
cin A~ mivi Ecin = _kT
243 2

Energie par degré de liberté

k: constante de Boltzmann



Application du Viriel a une sphére autogravitante

Pour N particules et trois dimensions spatiales

E. —NKT
2

Le théoreme du Viriel s'écrit alors pour un systeme de rayon R

2
SOM 3Nkt

Ou encore, si p est la densité de matiere (constante) du systéme

ISKNT
RJeans =
4 pGM




Application du Viriel a une sphére autogravitante

On définit ainsi le rayon de Jeans d'une masse M

R \/ 15kNT

47 pGM

Rayon que I'on exprime souvent en fonction de la
masse moyenne m = M/N des particules

RJeans = \/ 15 kT
47t pGm

1- Pour une masse M fixe un nuage de particules a son énergie totale
négative si R > Rjeqns et le nuage s'effondre sur lui-méme

2- Pour un rayon R fixe, le nuage s'effondre si sa masse (et donc sa
densité) est M > Meqns ce qui définit la masse de Jeans



Temps caractéristique d'effondrement

Si aucune force ne s'oppose a la force interne de gravitation, le
systéme s'effondre sur lui-méme en un temps caractéristique
appelé le temps de « chute libre » (free-fall).

Pour un systeme de masse volumique constante, p, ce temps s'écrit

. R¥ 1
7N 32pG

Si la dimension caractéristique du systeme (p.ex. le rayon) est
R, alors t¢s est le temps mis par une particule test pour effectuer
un trajet égal a la moitié d'une orbite de demi grand axe R/2.

Le temps de chute libre ne dépend que de la densité du systeme

2
=4J‘L’ 3

Il se calcule facilement en utilisant p?2 a

la 3 ieme loi de Kepler: GM




Temps caractéristique d'effondrement

Attention | Ne pas confondre avec le temps dynamique qui est le
temps nécessaire pour parcourir la moitié du systéme. Les ordres
de grandeurs restent comparables.

[
t=dyn

a2

TAB. 2.1 — Ordres de grandeurs pour le temps de chute libre.

Objet p (kg m™?) te
Univers 1027 10 ans
Galaxie 1021 10% ans
Milieu interstellaire 102! /10~ 10° / 10® ans
Systéme solaire 10-12 10° ans

Soleil 1400 1800 s




Cas extréme des trous noirs



Effet gravitationnel extréme: les trous noirs

Lorsqu'une vitesse suffisante est atteinte, un corps de masse m peut
échapper a l'attraction gravitationnelle d'un autre, de masse M. Cette
vitesse s'appelle la vitesse d'échappement. Quand elle est franchie, le
systéme a une énergie totale positive, c'est-a-dire qu'il n'est plus lié.

1 , GMm
—my° — =

0

r

2GM

r

4 echap =

Si Vechgp = €, ON Obtient un rayon limite en dessous duquel méme les
photons ne peuvent échapper a l'attraction gravitationnelle. Il s'agit
de rayon de Schwarzschild.

2GM
V. =

S 2
C




Effet gravitationnel extréme: les trous noirs

Quand le rayon physique d'un corps de masse M est plus petit que son
rayon de Schwarzschild, la lumiére est retenue dans son champ
gravitationnel

2GM

2
C

r<r,=

Il existe deux grandes classes de trous noirs:

1- les trous noirs stellaires ou étoiles a neutron (quelques masses
solaires)

2- les trous noirs supermassifs au centre des galaxies (quelques
dizaines de millions de masses solaires)



