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Introduction théorique

Energie potentielle gravitationelle

Lorsqu’un nuage de gaz se contracte pour former une étoile, il tire principalement son
énergie du potentiel gravitationnel.

La force gravitationnelle exercée par une masse sphérique Mr sur un élément extérieur
de masse dm est

dF = G
Mrdm

r2
. (1)

Cette force est dirigée vers le centre de la sphère. Nous pouvons directement calculer
l’énergie potentielle gravitationnelle de l’élément de masse dm en intégrant (1) sur r,
nous obtenons

dU = −G
Mrdm

r
. (2)

L’énergie potentielle de toutes les couches de masse dm d’une étoile, du centre jusqu’à
sa surface de rayon R, est donc

U = −G

∫ R

0

Mrdm

r
. (3)

Théorème du viriel

Si un système est constitué de plus de deux particules, ses équations du mouvement ne
peuvent en général pas être résolues analytiquement. En se donnant les conditions ini-
tiales du système, nous pouvons calculer numériquement les orbites avec une précision
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finie, ce qui nous empêche de connâıtre toutes les propriétés de chaque orbite. Les seuls
paramètres que nous pouvons évaluer sont les quantitées conservées comme le moment
cinétique, l’impulsion et l’énergie du système. Il est toutefois possible d’extraire certains
résultats de nature statistique, comme le théorème du viriel :

Lorsqu’un ensemble de particules liées gravitationnellement est en équilibre statis-
tique stable, alors

2⟨K⟩ = −⟨U⟩ (4)

où ⟨K⟩ est la moyenne temporelle de l’énergie cinétique totale des particules, et ⟨U⟩
est la moyenne temporelle de l’énergie potentielle du système, due à l’attraction mu-
tuelle de ses membres.

Exercice 1 : Contraction d’un nuage de gaz

a) Calculez l’énergie gravitationnelle U d’un nuage sphérique et homogène de masse
M et de rayon R.

b) On considère que le nuage est constitué d’un gaz monoatomique. Par la théorie
cinétique des gaz, nous pouvons donc lier la température à l’énergie cinétique :

K =
3

2
NkT (5)

tel que N = M/µmH où µ est le poids moléculaire moyen.
Le théorème du viriel décrit un état d’équilibre. Comment cet équilibre doit-il

être rompu pour qu’un effondrement se produise (i.e. quelle relation peut-on alors
écrire entre ⟨K⟩ et ⟨U⟩) ?

Déduisez-en la masse limite MJ (Masse de Jeans) au-delà de laquelle un nuage
de température T et de densité ρ constantes et homogènes s’effondre. Exprimez ce
même critère sous la forme d’un rayon limite (RJ , le rayon de Jeans).

Rappel théorique

Si FX est le flux que l’on reçoit d’un astre dans une certaine plage de fréquences X
délimitée par exemple par un filtre, on définit sa magnitude apparente dans la bande X
par :

mX = −2.5 log(FX)− cX (6)

où FX se mesure en erg s−1 cm−2, et où cX est une constante choisie arbitrairement.
La valeur de cette constante (appelée point zéro) donne d’ailleurs lieu à l’existence de
différents systèmes de magnitudes.

Le système de magnitudes Vega

Un système de magnitudes fréquemment utilisé est le système Vega. Dans ce système,
l’étoile Vega est utilisée comme origine du système des magnitudes, i.e. on stipule que
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Vega a la magnitude zéro dans tout filtre X. Pour ce système, les points zéros sont donc
donnés par :

cX = −2.5 log(FX(Vega)) (7)

La forme générale des magnitudes “Vega” pour un objet céleste donné est ainsi :

mX(obj) = −2.5 log

(
FX(obj)
FX(Vega)

)
= −2.5 log(FX(obj))− cX (8)

Magnitude absolue et module de distance

On distingue les magnitudes apparentes mX qui se réfèrent au rayonnement d’un astre
perçu depuis la Terre, et les magnitudes absolues MX , qui se réfèrent au rayonnement
qu’on percevrait de l’objet s’il était situé à une distance de 10 parsecs. La détermination
de la magnitude absolue d’un astre nécessite la connaissance de sa distance d. Si LX est
la luminosité (en erg s−1) d’un astre dans la bande X, on a FX = LX/4πd2 dans le cas
d’un rayonnement isotrope, et donc :

mX −MX = −2.5 log

(
LX

4πd2
4π 102

LX

)
. (9)

Ceci permet de définir le module de distance :

µX = mX −MX = 5 log (d[pc])− 5. (10)

Une galaxie proche, comme Messier 31, dont la distance est de d = 670 kpc et la magni-
tude absolue est MV = −20.7 mag a donc un module de distance µV = 24.1 mag et une
magnitude apparente mV = 3.4 mag. Cette galaxie, la plus proche de la nôtre, a une
magnitude apparente qui la place déjà parmi les objets difficiles à voir à l’oeil nu sous
un ciel urbain.

Résolution angulaire

La résolution angulaire θ définit le pouvoir séparateur d’un télescope ou d’une antenne
radio. Par conséquent, l’instrument sera capable de différencier deux objets séparés
d’une distance angulaire supérieure ou égale à θ. Pour un télescope de diamètre D ob-
servant à la longueur d’onde λ, la résolution angulaire est donnée par l’expression :

θ[radian] = 1.22
λ[m]

D[m]
. (11)

On voit immédiatement que la résolution angulaire d’un télescope peut être améliorée
de deux façons, soit en augmentant le diamètre du miroir, soit en diminuant la longueur
d’onde d’observation. Ainsi, le télescope spatial Hubble, de 2.4 m de diamètre, a une
résolution de 0.15” en infrarouge, et de 0.05” dans le visible.
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Exercice 2 : Magnitude et module de distance

Dans la figure 1, on donne le spectre de l’étoile Vega. On a également representé
schématiquement trois filtres dans les bandes U , B, V . On suppose que la transmission
de ces filtres est de 100% dans les domaines de longueur d’onde indiqués et 0% partout
ailleurs. La largeur de chacune des trois bandes est de 500 Å.

a) Déterminez les points zéros de chacun des trois filtres dans le système de magni-
tudes Vega. Pour y parvenir, estimez grossièrement la valeur moyenne du flux de
Vega dans chacun des trois filtres. Intégrez ensuite sur la longueur d’onde pour
obtenir le flux FX (Vega) avec X = U , B, et V . Prenez garde à l’échelle de l’or-
donnée.

b) Dans la figure 2, on donne les spectres observés des étoiles HD 49798 et LTT 1788.
La première est de type spectral O, c’est-à-dire une étoile chaude de température
T ≃ 40′000 K. La seconde est de type F, i.e. une étoile relativement froide avec T ≃
7′000 K. De manière similaire qu’au point précédent, déterminez les magnitudes
U , B, et V (dans le système de magnitudes Vega) de ces deux étoiles. Donnez
également les indices de couleur B−V et U −B. Laquelle des deux étoiles est-elle
la plus bleue? A nouveau, prenez garde aux échelles des ordonnées.

c) La distance de Vega est de 7.76 pc. Que vaut son module de distance µV ? Quelle
est la magnitude absolue MV de Vega (dans le système de magnitudes Vega).

d) Jusqu’à quelle distance est-on capable de voir une étoile semblable à Vega à l’oeil
nu (i.e. mV < 6 mag dans le système de magnitudes Vega)? Et si vous utilisez
un télescope capable d’observer des objets jusqu’à la magnitude apparente mV =
15 mag, quelle sera cette distance? Même question pour un télescope comme le
Very Large Telescope de 8 m de diamètre, dont la magnitude ”limite” est mV =
28 mag. Comparer ces distances à la taille de la Voie Lactée (son rayon vaut environ
20 kpc) et à la distance aux galaxies les plus proches (∼ 1 Mpc).
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FIGURE 1 – Spectre de l’étoile Vega.
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FIGURE 2 – Haut : Spectre de l’étoile chaude HD 49798 (T ≃ 40′000 K). Bas : Spectre de
l’étoile froide LTT 1788 (T ≃ 7′000 K).
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