Chapitre 4
(Fin de Rayonnement et matiere)

Matiere interstellaire et intergalactique



Quiz

* Energie d'un photon?

* niveau d'énergie de l'atome d'hydrogene?
* raie Lyman-alpha et H-alpha ?

* magnhitude apparent (systeme Vega) ?

* magnitude absolue et module de distance?



Le rayonnement de corps noir



Rayonnement de « corps noir »

Corps qui émet autant de rayonnement qu'il en absorbe (équilibre thermique)




Rayonnement de « corps noir »

Un corps noir n'est pas noir | Son spectre est décrit par la
fonction de Planck
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Ou h est la constante de Planck et ot T est la température du corps noir.

Les corps noirs sont le plus souvent soit des corps chauffés, soit des corps
illuminés a une certaine fréquence et qui ré-emettent a une autre fréquence
(plus petite, car moins énergétique) - [Exemple poussiéres galactiques]
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Le Soleil

Gaz absorbant dans
I'atmosphére solaire







L'un des plus beaux corps noirs:
le rayonnement cosmologique fossile
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Accord parfait entre la théorie et I'expérience | (T=2.735 K)

Rayonnement émis 380’000 ans apres le Big-Bang



Effet Doppler-Fizeau

L'effet Doppler-Fizeau consiste en un changement apparent de la
longueur d'onde d'un signal émis depuis un corps en mouvement.

Il s'agit d'un effet présent partout en astrophysique !

-
Source s'approchant

._ 0 Observateur

B Source s’éloignant

Un astre se dirigeant vers l'observateur bleuit.
Un astre fuyant I'observateur rougit.



Effet Doppler-Fizeau

Observateur
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9 Source s’éloignant

Seule la composante radiale de la vitesse intervient:

Longueur d'onde

observée

Longueur d'onde
« au repos »
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On pose souvent B=V/c




Les planétes extra-solaires ou
« exoplanetes »



Planetes extra-solaires

Découverte de la premiére en 1995 par une équipe Suisse
(Michel Mayor, Didier Queloz) ~4000 exoplanetes a ce jour.

Détection par vitesse radiale
Détection des premiers « transits » en 2003
Suivi spectroscopique -> détection indirecte de |'atmosphére

Détermination des masses (mais dégénérescence avec
I'inclinaison de l'orbite)

Détermination du profil de luminosité de I'étoile mere
Mission spatiale Européenne, COROT (ESA)
Mission spatiale US, KEPLER, TESS (NASA)

Missions CHEOPS et Plato (ESA)



Planetes extra-solaires

Détection par variation de vitesse radiale
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Planetes extra-solaires

Exemple du transit de Vénus devant le Soleil




Swedish 1-m Solar Telescope, Venus transit egress, bright ring 9x enhanced

Transit de Vénus devant le Soleil



Planetes extra-solaires
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Relgtive flux

Planetes extra-solaires
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Atmosphere planétaire vue « en absorption »
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Orbite rétrograde de 6 planetes en « transit »
(Avril 2010)

Combinaison de la méthode des vitesses radiale et de la
méthode des transits planétaires.

Observation de I'effet Rossiter-McLaughlin pendant le
transit de la planéte devant son étoile mere
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Effet Rossiter-McLaughlin pendant un transit
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Orbite de 6 planetes en « transit »
(Avril 2010)
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Focalisation relativiste



Focalisation relativiste

Un rayonnement émis de fagon isotrope dans le référentiel d'une source au
repos ne l'est plus lorsque la source est en mouvement relativiste

A RO,
S S~

Source fixe: Source en mouvement:
rayonnement isotrope rayonnement focalisé 6 < 6’



Focalisation relativiste

Modification de I'angle d'émission apparent avec la vitesse

|
S
. Q- |
80 ?,f' q
/(}.
b
/ﬁrb
£
’%‘ 60 |-
5 o2
¢
7]
e
- 1
p— ﬁ_
40 |- - _
o ¢
7]
By
=
o
20 | .
ﬂ 1 I I L [l 1 I 1 1 L I 1 Il 1 I L
0 20 40 60 80

8" (ref de la source)



Focalisation relativiste

Amplification lumineuse apparente avec la vitesse.
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Effets sur les « jets »




Seul le jet « d'avant-plan » est visible a cause de la
focalisation relativiste



Sursauts gamma lointains et leur contrepartie optique
« amplifiée » par focalisation relativiste

Gamma Ray Burst 080319B HST = WFPC2

NASA, ESA, and A Fruchter (STScl) STScl-PRCO08-17




Effet des mouvements sur |'apparence des astres

Les mouvements des astres par rapport a la Terre peuvent af fecter:

1- leur couleur

2- leur éclat (dans le cas de vitesses relativistes)

Il est donc essentiel d'estimer au moins des ordres de grandeurs des
vitesses mises en jeu.



Matiere interstellaire et intergalactique



Le milieu interstellaire et intergalactique

Gaz et poussieres entre les étoiles a l'intérieur des galaxies

Gaz et poussieres entre les galaxies

Matiére a l'origine de la formation des étoiles

Influence sur le rayonnement d'arriere plan: absorption et diffusion
Influence des sources de chauffage ou d'ionisation

Donne I'état physique du milieu: température, densité



Le milieu interstellaire et intergalactique:
ordres de grandeur

Peu important en masse: 10% de la masse typique d'une galaxie
Tres important du point de vue de la formation stellaire
Milieu intergalactique trés important pour la formation des galaxies

Densité typique d'un gaz atomique: 1 cm-3 ou 10-2! kg.m-3
Densité typique d'un nuage de poussiéres: 10-13 cm-3 ou 10-23 kg.m-3

Températures des gaz: quelques K a 106 K

Température des poussiéres: quelques K a 100-300K



Les différents types de nébuleuses

Nébuleuses diffuses (ionisation/recombinaison)

| Grande nébuleuse d'Orion
" (HST, optique)

Partie centrale et son amas
d'étoiles jeunes
(VLT infrarouge)




Nebuleuses par ré
Le spectre de Ia‘nebuleuse es

xion &V\essuer 78) J

‘similaire a celui de Ie‘roule qui l'illumine

Etoilé « centrale »
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Absorption par la poussiere a I'échelle des galaxies

NGC 4565, galaxie spirale vue par la tranche

Bande de poussiére




Nébuleuses planétaires |

'Nébuleuse « helix »: nébuleuse plane'ratr'e
-> mort d'étoile peu massive.
Emission par fluorescence ou ionisation et recombinaison .
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Emission lumineuse par les nébuleuses



Emission par le gaz ionisé

Processus en jeu: ionisation et recombinaison proton-électron

Les taux d'ionisation et de recombinaison dépendent de la densité et de
la température du milieu.

A I'équilibre ces deux taux sont égaux: Loy = Frocoms

N=£,0R3 an,n,

Photons ionisants (s1) Constante donnée par la Densités d'électrons

mécanique quantique et de protons
(~3x 1013 cm3st)



Emission par le gaz ionisé

N=%,0R3 T an,n,

Pour I'hydrogéne la source ionisante doit avoir une fempérature
suffisante pour que les photons aient une énergie E > 13,6 eV

En supposant également que tout le gaz est ionisé a I'équilibre (n, = ny)

<173
€ 3§ O

rayon de Strémgren |R = i
sdpan, g

Si la source d'ionisation est une étoile chaude (T~45000K), on trouve que
le rayon de Strémgren R ~ 0,3 pc, qui est la taille maximale de la
nébuleuse pour la source d'ionisation considérée



Nébuleuses de gaz ionisé

Zone de formation d'étoiles

- Gaz ionisé

- Recombinaison

- Cascade de dé-excitations
électroniques et formation
de raies d'émission

-> la formation d'étoiles

est souvent associée a
un spectre d'émission

NGC 3603 HST « WFPC2
PRC99-20 » STScl OPO « June 1, 1999

Wolfgang Brandner (JPL/IPAC), Eva K. Grebel (Univ. Washington),
You-Hua Chu (Univ. lllinois, Urbana-Champaign) and NASA




Absorption de la lumiéere



Absorption de la lumiere

Wavelength A [nm]
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Coefficient d'absorption et exces de couleur:

B-V = (Bo+ Ag) - (Vo+ Ay)
B-V = (B-V)o + EB-V *  .
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Couleur observée Couleur réelle



Méthode empirique pour la mesure de |'absorption:
le diagramme de Wolf
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Diagramme de Wolf: comptage des étoiles
par rapport a une région de référence non absorbée



Tllustration de la méthode de Wolf

Seeing Through the Pre-Collapse Black Cloud B683
(VLT ANTU + FORS 1 - NTT + SOFI)
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+

ESO PR Photo 02b/01 (10 January 2001) © European Southern Observatory




Diffusion de la lumiére



Diffusion de la lumiére
Coefficient d'extinction total Q,,:
Qext proportionnel aA-%quand le rayon des particules a << A

-> Diffusion de Rayleigh: Isotrope

Qext proportionnel @ A-1quand le rayon des particules a > A

-> Diffusion de Mie: Directionnelle

Qext proportionnel a At quand Qg ~ Qubs

-> Absorption pure

La lumiere est d'autant plus absorbée (et diffusée) qu'elle est bleue







Diffusion de la lumiéere

6 . ' ! Absorption
Q . - pure
7\’ ext P
(;/;l:) \l’ Qabs >> Qi
2
A>> a — i :
(Rayleigh) ¢—— , .
' X = 2na/\
a = rayon des
particules

Coefficient d'extinction total Q.,; pour un nuage avec un
seul type de particules (en haut) ou un mélange (en bas)

Qext = Qabs + Quiff



Exemple d'absorption et de diffusion de la lumiere

Absorption -
Maximale (UV) R

Absorption
minimale (IR) | ”

The Dark Cloud B68 at Different Wavelengths (NTT + SOFI)

ESO PR Photo 29b/99 ( 2 July 1999 ) © European Southern Observatory

Attention: ne pas confondre avec « I'effet Wolf » I



Seeing Through the Pre-Collapse Black Cloud B683
(VLT ANTU + FORS 1 - NTT + SOFI)
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ESO PR Photo 02b/01 (10 January 2001) © European Southern Observatory




Nuages moléculaires



Nuages moléculaires

- interstellaires (quelques pc)

- circumstellaires (quelques UA)

- intergalactiques (quelques pc - kpc)
» froids ~ 10-20 K

* rotation/vibration des molécules

* raies et continu dans les ondes millimétriques



Nuages moléculaires

Visble . Radio(0.35 mm)

Image optique (a gauche), et image radio (a droite),

d'un nuage moléculaire froid a T = 10 K dans notre Voie Lactée.
Les zones denses en molécules correspondent a des zones de formation d'étoiles




L'hydrogéne neutre



Hydrogéene neutre

F=1

Raie a 21 cm de I'hydrogene atomique neutre: 7 ‘ ) “*$
- Hydrogéne neutre interstellaire 7o oToC o

;= 1420 MHz

. . = 0 Ao =21 em

* niveaux de structure hyperfine F=1 -> F=0 LA RN
» Spins paralleles -> anti-paralléles Rt
» Visible dans la Voie Lactée et les galaxies proches
- Domaine radio lointain (21 cm)
- Echelles spatiales de l'ordre de 10 minutes d'arc

* Projets d'antennes géantes (1 km?) pour augmenter la sensibilité
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Le milieu interstellaire et intergalactique

Filaments d'hydrogéne neutre intergala:
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Hydrogene neutre

Cumulative absorption spectra

Quasar

Tl - e e

s -
btracted by cloud 1

Final absorption %

s;-ectrum

Absorption par des nuages d'’hydrogéne neutre a différents
décalages vers le rouge (c'est-a-dire a différentes distances de nous)
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Particules intergalactiques



Les particules intergalactiques

Gamma- Detection of
i high-energy
gamma rays

Particle
shower ;Y using Cherenkov

telescopes

Particules (protons, électrons) accélérées par les supernovae
et interagissant avec |'hydrogene neutre (HI) interstellaire




Les particules intergalactiques

Détection par effet Cherenkov

L'effet Cherenkov est un phénomeéne similaire a une onde

de choc, produisant un flash de lumiere, et, qui a lieu lorsqu'une
particule chargée se déplace dans un milieu avec une vitesse
supérieure a la vitesse de la lumiere du milieu.




HESS: High Energy Stereoscopic Telescope

4 « télescopes » de 12 m

Chacun posséde 382 (¥ i
miroirs de 60 cm | i:}\g;};;,_;;,f,
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Typique « douche » de particules
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Typique « douche » de particules

—2a0

—200

1230

allongés = particules « focalisées »
anneaux =particules provenant de l'atmosphére



Typique « douche » de particules
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Typique « douche » de particules
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