
Modèle du noyau composé (4)
• Pour une réaction a+A donnant un état final quelconque 

ayant passé par une résonance dans l’onde ℓ

Γa = largeur partielle de la résonance dans le canal a+A
Γ = largeur totale de la résonance
E0 = énergie centrale de la résonance
E = énergie totale de la collision dans le centre de masse
k = k(E) = nombre d’onde du projectile a par rapport à la cible A
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Diagramme d’Argand (1)
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– Evolution de φℓ en fonction de E 
au voisinage de la résonance: 

 E << E0 −Γ 2   ⇒   φl ≅ π 2
E = E0 ⇒ φl = 0
E >> E0 +Γ 2 ⇒ φl ≅ −π 2
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Diagramme d’Argand (2)
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cas avec peu d’inelasticité cas avec beaucoup d’inelasticité

La pointe du vecteur Tℓ
parcourt un cercle de rayon 

R=Γa/(2Γ) centré en (0,iR)
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Description d’une résonance selon Wigner (1)
• Comportement asymptotique de la fonction d’onde dans le cas 

d’une résonance dans l’onde ℓ=0

• Potentiel à portée finie a:

– la fonction d’onde radiale 
R(r) = u(r)/r doit être 
continue et dérivable en r=a

– dérivée logarithmique en r=a 
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Description d’une résonance selon Wigner (1)
• Comportement asymptotique de la fonction d’onde dans le cas 

d’une résonance dans l’onde ℓ=0

• Potentiel de portée finie a:

– la fonction d’onde radiale 
R(r) = u(r)/r doit être 
continue et dérivable en r=a

– dérivée logarithmique en r=a 
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Description d’une résonance selon Wigner (2)
• Section efficace élastique (ℓ=0)

– cas particulier: 
• diffusion à basse énergie (ka << 1) 

sur une petite sphère « dure » 

(ou « parfaitement réfléchissante »)

• Section efficace inélastique (ℓ=0)
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Réaction quasi-purement inélastique (ℓ=0)
• Pour un neutron incident, 

on peut supposer un puits 
de potentiel rectangulaire 
de profondeur V0

• Si on admet que tout projectile en r=a est absorbé, la fonction d’onde 
radiale dans le noyau est une onde sphérique entrante uniquement

– pour un projectile très lent, 
T << V0 et k << K:
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h2K2

2µ
= T+V0 = énergie cinétique du projectile dans le noyau
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vitesse du projectile
 

R(r)∝ exp −iKr( )
r

 pour r ≤ a ⇒  f = −iKa ⇒   σ inel
(0) = 4πK

k k +K( )2  monotone 
décroissante 
avec T



Réaction purement élastique (ℓ=0)
• Si on admet que tout projectile arrivant en r=a

pénètre dans le noyau puis en ressort sans perdre
d’énergie (diffusion élastique), la fonction d’onde
radiale dans le noyau est

– La dérivée logarithmique f
s’annule pour certaines valeurs de E

– Au voisinage 
de la résonance
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 2ξ = déphasage de l’onde sortante
par rapport à l’onde entrante
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Apot Ares

f =Kacot Ka + ξ( ) réel

car, si f est réel, 
|Ares|

2 est max. 
quand f=0

Section efficace de diffusion élastique de neutrons 
au voisinage d’une résonance dans l’onde ℓ=0 
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Diffusion élastique dans l’onde ℓ=0 (diag. d’Argand)
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E = E0

Cercle de rayon 1 centré 

en (–1, 0) parcouru 

très lentement par Apot, 

car k=k(E)

Cercle de rayon 1 centré en (1, 0) 

parcouru par Ares
= cercle de rayon 1 centré en 

exp(2ika) parcouru par A

 Apot = exp 2ika( )−1 
 ⇒  Apot +1 =1

=Im Ares
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Résonances correspondants aux niveaux excités du 28Si
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p + 27Al → 28Si* → p + 27Al

α + 24Mg → 28Si* → α + 24Mg

α + 24Mg → 28Si* → p + 27Al

p + 27Al → 28Si* → α + 24Mg

Résonances correspondants aux niveaux excités du 28Si
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