Decomposition en ondes partielles (5)

. | S142iT, & T, =L (1-
* Section efficace ¢lastique K o 2( ")

20“) oy = (20 +)t-m [ _—(2z+1)|Tg|

* Section efficace in€lastique

}‘,off;zl ol = 22(20+1)(1-In [

e Section efficace totale

) ) )

O O + Olnel O-tot G + 0‘mel
Oy = Eoﬁﬁ{ o =25 (20 +1)(1-Re(n,)) = FF (20 +1)Im(T)
=0

expressions invariantes sous mn, < n,” et T, -T,
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Théoreme optique

O o = X Im (£(0))

tot

o, = section efficace totale
f(0) = amplitude de diffusion élastique vers l'avant (0 = 0)
k =nombre d'onde du projectile relativement a la cible

* Validité tout a fait générale

e Démonstration (exercice):

— évaluer f(0) a partir de f(e) = S‘ J4m(20+1) T, Y;'0)

puis utiliser o = i—n (20+ I)Im(Tf)

=0
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Inelasticité et déphasage

* On pose

- : p, = inelasticité dans 'onde ¢ (p, = 0)
M, =p,exp(2id,) 0, = déphasage dans l'onde 7 (8, = 0)

* Propriétés: . . .
(f) nf 0el 0inel 0tot
1nel_0 = |nf|_pf<1

| +1 0 0 0

— cas purement élastique:

4m 4m
o0 20 < p, =1 -1 3 (20+1) 0 3 (20+1)

T T 27

i O_E?el >0 alors O_(Gg;) >0 0 P(2€+1) P(2€+1) P(2€+1)

B Og) = fﬁ)el 0 pourm, =+1

— o') maximale pour 1, = -1, o\’ maximale pour 1, =0

Rappel: o!) = %(26 +1)[1-n, ?

o= Z20+1)(1-nf). ol =Z2(20+1)(1-Re(n,)
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Diagrammes d’ Argand

cercle limite < collisions purement ¢lastiques

A Im m A Im Tl

;:ercle

imite 1:
de TZ

cercle p

limite 1

de TJ; 29 _ :

> —
Re m Re Tl
coefficient n, représenté amplitude d’onde partielle T,
dans le plan complexe représentée dans le plan complexe

m=pfexp(2i6,z) n€=1+2iT€©Té=%(l—m)
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Intérét du développement en ondes partielles (1)

b = parametre

projectile d’impact

V(r)#0sir<R
V(r)=0sir>R

noyau cible

* Interaction uniquement si b <R,
c’est-a-dire si le moment cinétique L = pb est tel que L <pR

* |Seules les ondes partielles avec =/, = % =5 kR
contribuent a la section efficace: B,
o = c"”
/=0
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Intérét du développement en ondes partielles (2)

(= >

projectile noyau
J_ P (excite)
PP no ibl J.P
yau cible )
Jo, Pc résonance
¢tat initial (€tat intermédiaire)

* Souvent, un phénomene de résonance est observe (formation d’un
¢tat métastable composé de la cible et du projectile)

* Larésonance a des nombres quantiques (spin J et parite P) deéfinis

* Les lois de conservation R
restreignent les valeurs des moment cin€tique : J=J +J.+/
ondes partielles € contribuant parité : P=P PC(—I)Z

p

a la formation de la résonance
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Exemple: p + "B — 2C”

énergie
. d’excitation
J'=2 du 12C
A
: TR .
.j: ~ géiﬁabwmgﬂﬂm@ .8 AN fri\;
Q ¢ el N~ KNI < y
5 B B RPRaRRRFESREENS B o
o == o oGl B {1 !
s L T i 3 ERBIS! I :°° |
F | INSI R T
I 1 Jrofm T ) |
5 R I 5 W R o
Y o o et | K el e 3 l ! :
BT
9 J P U’; i \/\)—/‘/\J
e (as d’une résonance avec J' =2~ +
lel L1 1 1
T DoUw =
11 12 ~* e G >
P+ B> C ) T S
P 1+ 3= _ 8'!’31— Nll 14
I > > 2 Oz 8 ;&‘\/\/J\)E.l
M AU B
1 RIEEESS
des partielles £ = 0, 2, 4 (I s (e
— ondes partielles ¢ = I“—a,
p > ,I/I-/,\/:,un Ll ko
i PP aus ba oo )
Powszg 35 ay
|‘
I
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Collisions purement ¢élastiques

* Pour tout ? tel que n.|=1: .
T, = i(1 -m,)= l(1 - em") = em‘%(e‘@ - eiaf) = e sin,

2 2
NB: T, (donc 9,) et k dépendent de
= g¥ = 4_“(% + 1)sin2 S, I’énergie totale E du systéme
dans le centre de masse

b J-E N . , .
= o' passe par un maximum pour 8, = = a une certaine énergie E
el l 2 0

* Développement limité autour de E=E,, ¢’est-a-dire cotg 6,=0:

sind 1 1 . d(cotgd (E)
L= e"ia"g=cotg6f—izC(E—E0)—i onc- dE )E=E0
[ -~ 1 _ 1/C’ _ /4

" CYE-E,)+1 (E-E,) +1/C* (E-E,) +I%/4
01\11“=£
€|
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Comportement au voisinage d’une résonance

/2 ouT ~ -I/2
(E-E,)-il)2 " (E-E,)+iT)/2

el

o) = in(2€+1)‘T‘ avec T, =~

oA 0, /4
O kz( )(E—E0)2+F2/4

Q/\ courbe de Breit-Wigner
O-tot [mb]
8 -

Gel(f)

maxi.--.------------ o I =largeur a
' mi-hauteur g|

max/2 p-------------
4 L
. E
| 2 |
E
0 Tneutrons [keV]
— AT = duré . 400 500 600
©=A/I" = durée de vie moyenne Résonances observées dans la

diffusion élastique 32S(n,n)32S
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Description des réactions nucléaires

 Exemple: d+3¥K —p+*K

— que se passe-t-il au juste au cours de cette réaction ?
* Trois points de vue extrémes:

@ Réaction directe de « knock-out »

Tg ¢jection
W d’un proton
@ Réaction directe de « stripping »

capture du
neutron

@ Formation puis désintégration d’un noyau composé

%00‘
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Modes de partition du *'Ca’

formé par la réaction d + K — 4!Ca” avec T&=6 MeV

To =T, + T, - %uvj -1, =571 Mev

: i L2129 |
E - . -.2-0.1_8--.h__ --------E&L-l“-.é-- Etot*
1 fﬁfﬂd . o 16.70
& f\\ el 1535 | K3%+n,p
N o N O I N U S r e
el R i
| [~ levels) Voies ouvertes
o L .
Qund, ; B el ! 9K (d, d) K™
E. x
__l_}_ ke o Y P 39K (d, y) 41Ca™
énergie N K+ o ¥K (d, p) KO
totale dans ElB dﬁ;ﬂ; 63';31 3K (d, n) “°Ca™
le centre || of. Arfita ¥K (d, o) 37Ar®)
de masse ) ploes 39 " 31e) 38A L)
(oumasse) | fopo K (d, °He) FAr
; K (d, np) ¥K®
bl mais pas
— 9K (d, 3H) 38K™
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Mod¢le du noyau composé (1)

« Résonance X" a; T A, \ / a+A
ady + A2 « > Ay + A2

— pouvant se former et se B
désintégrer dans plusieurs canaux &3 tA; — — a3t A;
a, + A4 ay + A4

— de largeur a mi-hauteur I

* Hypothése du modéle: |O,_,;=0O iFj

0= O(ai +A;—a;+ Aj) = section efficace de la réaction a;+ A; —a;+ A,
o,= O(ai +A — X*) = section efficace de formation de X' par le canal i
F,= probabilit¢ de désintégration de X" dans le canal j

YF=1
j

* On définit la largeur partielle I'; dans le canal j

[=FT avec YT ;=T
i
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Mod¢le du noyau compose (2)

e Reéactions inverses 1’une de 1’autre

— a;t Aj — a; + A, de section efficace o;_;

* k; =nombre d’onde du projectile a; par rapport a la cible A;
— a;t Aj — a; + A, de section efficace o;_,;

* k; = nombre d’onde du projectile a; par rapport a la cible A;

e Théoreme (démontrable en mécanique quantique)

relation du
bilan détaillé

— pour une méme énergie totale E

2 2
kio_.=kio._.
dans le centre de masse: o J ™

* On a ainsi
2 2 klo. kio, . y . .
kioF,=kijo,F = ?=?=C(E)= fonction de E indépendante de 1 ou j
i j
CE)F 1 I.T,
_(E)=0(E)F.= iF = 1 C
=B =e®h =g b e T Y

— Cas d’une résonance dans I’onde £ avec un seul mode de désintégration
(donc d’une diffusion élastique avec F,=1, I')=I", k;=k):
FZ
0" (B)=0l(E) =L CB) = CE)=n(20+1
1-1 el K> ( )(E—EO)2+F2/4
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Modele du noyau compose (3)

* Pour une résonance formée dans 1’onde £

I,T,
(E-E,) +I2/4

o =2 (20+1)

L= ai+Ai—)X*—>aj+Aj
i—j k2
i

— valable dans le cas particulier d’une résonance de spin £ formée
dans le canal 1 a I’aide d’un projectile de spin 0 sur une cible de
spin 0 et se désintégrant dans le canal |

e (as plus général tenant compte des spins

G0 T (27 +1) I.T
Tk (28,+1)(2S,+1) (E—EO)2+I“2/4
ou [T=3+8+ 7] Jzopindelarsonnee X

S, =spin de la cible A,

— valable dans le cas ou les particules de I’état initial ne sont pas

polarisées et ou on ne mesure pas 1’état de spin dans 1’état final
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