
Décomposition en ondes partielles (5)
• Section efficace élastique

• Section efficace inélastique

• Section efficace totale
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 σel = σel
(l)

l=0

∞

∑  σel
(l) = π

k2 2l+1( )1−ηl

2
= 4π

k2 2l+1( ) Tl

2

ηl =1+ 2iTl⇔ Tl =
i
2
1−ηl( )

 σ inel = σ inel
(l)

l=0

∞

∑  σ inel
(l) = π

k2 2l+1( ) 1− ηl

2( )  

 σ tot = σ tot
(l)

l=0

∞

∑  σ tot
(l) = 2π

k2 2l+1( ) 1−Re ηl( )( ) = 4π
k2 2l+1( ) Im(Tl)

 σ tot = σel+σ inel  σ tot
(l) = σel

(l)+σ inel
(l)

expressions invariantes sous    ηℓ⟷ ηℓ* et    Tℓ⟷ –Tℓ
*



Théorème optique
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 σ tot =
4π
k

Im f(0)( )  

σ tot = section efficace totale
f(0) = amplitude de diffusion élastique vers l'avant (θ = 0)

k = nombre d'onde du projectile relativement à la cible

• Validité tout à fait générale

• Démonstration (exercice): 
– évaluer f(0) à partir de

puis utiliser  

 f(θ) = 1
k

4π 2l+1( ) Tl

l=0

∞

∑ Yl
0(θ) 

 σ tot =
4π
k2 2l+1( ) Im(Tl)

l=0

∞

∑



Inelasticité et déphasage
• On pose

• Propriétés:
–

–

–

–

–
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 ηl =ρlexp 2iδl( )  ρl = inelasticité dans l'onde l (ρl ≥ 0)
δl = déphasage dans l'onde l (δl ≥ 0)

σ inel
(l) ≥ 0  ⇒   ηl =ρl ≤1

cas purement élastique:  
    σ inel

(l) = 0  ⇔   ρl =1

si  σ inel
(l) > 0  alors  σel

(l) > 0

σel
(l) = σ inel

(l) = 0 pour ηl = +1
σel

(l) maximale pour ηl = −1,   σ inel
(l)  maximale pour ηl = 0

ηl σel
(l) σ inel

(l) σ tot
(l)

+1 0 0 0

−1 4π
k2

2l+1( ) 0 4π
k2

2l+1( )

0 π
k2
2l+1( ) π

k2
2l+1( ) 2π

k2
2l+1( )

Rappel:  σel
(l) = π

k2 2l+1( )1−ηl

2,  σ inel
(l) = π

k2 2l+1( ) 1− ηl

2( ),  σ tot
(l) = 2π

k2 2l+1( ) 1−Re ηl( )( )



Diagrammes d’Argand
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coefficient ηℓ représenté 
dans le plan complexe

amplitude d’onde partielle Tℓ
représentée dans le plan complexe

ηl =1+ 2iTl⇔ Tl =
i
2
1−ηl( )

cercle limite ⟺ collisions purement élastiques

 ηl =ρlexp 2iδl( )  



Intérêt du développement en ondes partielles (1)

• Interaction uniquement si b < R, 
c’est-à-dire si le moment cinétique L = pb est tel que L < pR

• Seules les ondes partielles avec
contribuent à la section efficace: 
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l ≤ lmax =
Lmax
h

= pR
h
= kR

 σ = σ(l)

l=0

lmax=kR

∑

R

b = paramètre
d’impact

rp = h
r
k

projectile

noyau cible V(r) ≠ 0 si r < R
V(r) = 0 si r ≥ R



Intérêt du développement en ondes partielles (2)

• Souvent, un phénomène de résonance est observé (formation d’un 
état métastable composé de la cible et du projectile)

• La résonance a des nombres quantiques (spin J et parité P) définis 
• Les lois de conservation 

restreignent les valeurs des 
ondes partielles ℓ contribuant 
à la formation de la résonance
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R

noyau cible
JC, PC

projectile
Jp, Pp

état initial
résonance 

(état intermédiaire)

noyau 
(excité)

J, P

moment cinétique :    
r
J =

r
Jp +

r
JC +

r
l

parité : P = Pp PC −1( )l



énergie 
d’excitation 
du 12CJP = 2–

Exemple:  p + 11B → 12C*
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• Cas d’une résonance avec JP = 2–

p+ 5
11B→ 6

12C*

JP :                    2–

p+ 5
11B→ 6

12C*

JP :    1
2
+     3

2
–       2–

⟹ ondes partielles ℓ = 0, 2, 4 



Collisions purement élastiques
• Pour tout ℓ tel que |ηℓ|=1:

• Développement limité autour de E=E0, c’est-à-dire cotg δℓ=0:
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Tl =
i
2
1−ηl( ) = i2 1− e

2iδl( ) = eiδl i2 e
−iδl − eiδl( ) = eiδl sinδl

⇒  σel
(l) = 4π

k2 2l+1( )sin2δl

⇒  σel
(l) passe par un maximum pour δl =

π
2

 à une certaine énergie E0

NB: Tℓ (donc δℓ) et k dépendent de 
l’énergie totale E du système 
dans le centre de masse  

Tl =
sinδl

e–iδl
= 1
cotgδl − i

≈ 1
C E −E0( ) – i

où C =
d cotgδl(E)( )

dE
E=E0

Tl
2
≈ 1
C2 E −E0( )2 +1

= 1 C2

E −E0( )2 +1 C2
= Γ2 4
E −E0( )2 +Γ2 4

où Γ = 2
C



Comportement au voisinage d’une résonance
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Résonances observées dans la 
diffusion élastique 32S(n,n)32S

σel
(l) = 4π

k2
2l+1( ) Γ2 4

E −E0( )2 +Γ2 4
courbe de Breit-Wigner

max

max/2

E

E0

σel
(ℓ)

Γ = largeur à
mi-hauteur

σel
(l) = 4π

k2 2l+1( ) T
l

2
  avec  T

l
≈ Γ 2

E−E0( ) – iΓ 2
 ou T

l
≈ −Γ 2

E−E0( )+ iΓ 2

τ = ℏ/Γ = durée de vie moyenne



Description des réactions nucléaires
• Exemple:       d + 39K → p + 40K

– que se passe-t-il au juste au cours de cette réaction ?

• Trois points de vue extrêmes:
① Réaction directe de « knock-out »

② Réaction directe de « stripping »

③ Formation puis désintégration d’un noyau composé
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éjection 
d’un protond 19

39K 19
40K

formation désintégration

d 19
39K 19

40K20
41Ca*

capture du 
neutron

d 19
39K 19

40K



Modes de partition du 41Ca*
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formé par la réaction d + 39K → 41Ca* avec Td=6 MeV

Voies ouvertes
39K (d, d) 39K(*)

39K (d, γ) 41Ca(*)

39K (d, p) 40K(*)

39K (d, n) 40Ca(*)

39K (d, α) 37Ar(*)

39K (d, 3He) 38Ar(*)

39K (d, np) 39K(*)

mais pas
39K (d, 3H) 38K(*)

 TCM = Td
*+T39K

* = 1
2
µvd

2 = µ
md

Td = 5.71 MeV

énergie 
totale dans 
le centre 
de masse 
(ou masse)

Etot
*



Modèle du noyau composé (1)
• Résonance X*

– pouvant se former et se 
désintégrer dans plusieurs canaux

– de largeur à mi-hauteur Γ

• Hypothèse du modèle:

• On définit la largeur partielle Γj dans le canal j
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N. Bohr (1936)

a1 + A1 a1 + A1
a2 + A2 a2 + A2
a3 + A3 a3 + A3
a4 + A4 a4 + A4

...                                ...

X*

σ i→ j = σ ai +Ai → a j+Aj( ) =  section efficace de la réaction ai +Ai → a j+Aj

σ i = σ ai +Ai →X*( ) =  section efficace de formation de X* par le canal i
Fj =  probabilité de désintégration de X* dans le canal j

σ i→ j = σ i Fj

Fj
j
∑ =1

Γ j = FjΓ    avec   Γ j
j
∑ = Γ



Modèle du noyau composé (2)
• Réactions inverses l’une de l’autre

– ai + Ai → aj + Aj , de section efficace σi→j

• ki = nombre d’onde du projectile ai par rapport à la cible Ai

– aj + Aj → ai + Ai , de section efficace σj→i

• kj = nombre d’onde du projectile aj par rapport à la cible Aj

• Théorème (démontrable en mécanique quantique)
– pour une même énergie totale E 

dans le centre de masse:

• On a ainsi

– Cas d’une résonance dans l’onde ℓ avec un seul mode de désintégration 
(donc d’une diffusion élastique avec F1=1, Γ1=Γ, k1=k): 
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 ki
2σ i→ j = k j

2σ j→i 
relation du 
bilan détaillé 

 ki
2σ i Fj = k j

2σ j Fi ⇒  ki
2σ i

Fi
=

k j
2σ j

Fj
=C(E) =  fonction de E indépendante de i ou j

 σ i→ j(E) = σ i(E)Fj =
C(E)Fi

ki
2(E)

Fj =
1

ki
2(E)

Γ iΓ j

Γ2 C(E)

 σ1→1
(l) (E) = σel

(l)(E) = 1
k2 C(E)  ⇒   C(E) = π 2l+1( ) Γ2

E −E0( )2
+Γ2 4



Modèle du noyau composé (3)
• Pour une résonance formée dans l’onde ℓ

– valable dans le cas particulier d’une résonance de spin ℓ formée 
dans le canal i à l’aide d’un projectile de spin 0 sur une cible de 
spin 0 et se désintégrant dans le canal j 

• Cas plus général tenant compte des spins 

où 

– valable dans le cas où les particules de l’état initial ne sont pas 
polarisées et où on ne mesure pas l’état de spin dans l’état final
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ai + Ai → X* → aj + Aj σ i→ j
(l) = π

k2 2l+1( )
Γ i Γ j

E −E0( )2
+Γ2 4

 
i

 
r
J = spin de la résonance X* rsi = spin du projectile air

Si = spin de la cible Ai

 σ i→ j
(l) = π

k2
2J+1( )

2si +1( ) 2Si +1( )
Γ i Γ j

E −E0( )2
+Γ2 4

 

 
r
J = rsi +

r
Si +

r
l 

i


