
Dernier chapitre : réactions nucléaires
• Sommaire

– Introduction

– Cinématique 
non-relativiste

– Description quantique 
de la diffusion

– Résonances
– Modèle du noyau 

composé de Bohr
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2
4He+ 7

14N→ 8
17O+ 1

1H
α+ 14N→ 17O+ p

Première réaction nucléaire
observée en 1919 par Rutherford 
(et photographiée en 1925 par Blackett 
avec une chambre à brouillard)

Réactions nucléaires
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p

C

R

a
faisceau de projectiles 

(d’énergie définie) cible détecteur

moniteur 
de 

faisceau

p = projectile (noyau, pion, électron, ...), E > 1 MeV si chargé positivement
C = cible (noyau au repos)
a = particule détectée
R = noyau de recul

• Notations:

– exemple:

 p+C→ a +R  C p, a( )R ou bien

14N α, p( )17O



Réactions nucléaires
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Réactions nucléaires: définitions
• Energie libérée 

dans une réaction:

• Réaction exoergique ⟺ Q > 0

• Réaction endoergique ⟺ Q < 0

– seuil 
d’une réaction:

• Diffusion:

– réaction où on retrouve le projectile dans l’état final
• Diffusion élastique (⟹ Q = 0)

– réaction où les particules finales sont 
les mêmes que les particules initiales 
(et dans le même état d’énergie interne)

• Diffusion inélastique

• Réaction nucléaire (sans diffusion)
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 Q = mp +mC −ma −mR( )c2 = Ta +TR −Tp

 Tp > Tseuil = −Q 1+ mp

mC

"

#
$

%

&
'

par ex.  7Li(p,pT)4He

par ex. 12C(n,n)12C

par ex. 12C(n,n)12C*

par ex. 9Be(α,n)12C



Qu’apprend-on en étudiant les réactions nucléaires ?

• Masses, niveaux d’énergie, spins et parités, ... des noyaux

– mesure des valeurs de Q
– spectroscopie nucléaire

• Taille et structure des noyaux

– découverte du noyau (Rutherford)
– diffusion de neutrons (ou d’électrons)

→ distribution de matière (ou de charge) dans les noyaux
• Nucléosynthèse en astrophysique et cosmologie

– abondance naturelle des isotopes
– « fonctionnement » des étoiles 

• Production d’énergie et d’isotopes artificiels

– centrales nucléaires
– isotopes pour applications industrielles ou médicales
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Spectroscopie nucléaire

• Réaction

• Le noyau B peut aussi être produit dans un état excité Bi
* ou B**
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a + A → b + Bi
* (+ Qi) avec Bi

*→B(*)γ,  i=1, 2, 3, ...

a + A → b + B** (+ Q**) avec B** se désintégrant en

plusieurs corps (disparition de B)

a + A → b + B (+ Q) à Ta fixée

(à un angle donné 
d’émission de la 

particule b, dans le 
centre de masse)

dN
dTb

Tb

B1
*B2

*B3
*B** B

*

*



Description quantique de la diffusion (1)

• Diffusion élastique a + A → a + A

• Equation de Schrödinger stationnaire

– changement de 
coordonnées

– avec
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Description quantique de la diffusion (2)

• Séparation des variables

• L’équation de Schrödinger devient, après division par ψtot

• On obtient deux équations:

– mouvement de la 
particule relative 
dans un potentiel V(r)

– mouvement du 
centre de masse 
(« particule » libre)
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Description quantique de la diffusion (3)
• Etats stationnaires asymptotiques, pour r grand tel que V(r)=0:

• Solutions physiques

– particule incidente
• onde plane se

propageant selon Oz 

– particule diffusée
• onde sphérique

sortante

OS, 4 décembre 2024 190

 − h2

2µ
r
∇2"

#$
%

&'
ψlibre

rr( ) = Tψlibre
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ψinc
rr( )→ exp(ikz)

ψdiff
rr( )→ f θ,ϕ( ) exp(ikr)r

amplitude 
de diffusion

Description quantique de la diffusion (4)
• Onde totale

• Calcul section efficace élastique

– flux incident:

– flux diffusé:

– nombre dn de particules 
diffusées élastiquement
dans dΩ par unité de temps:

• Section efficace 

élastique différentielle
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ψ
rr( ) = ψinc

rr( )+ψdiff
rr( )   r→∞$ →$$   exp(ikz)+ f θ,ϕ( ) exp(ikr)

r

 dσel

dΩ
= f θ,ϕ( )

2
 

 Finc =C ψinc
2 v =C hk

µ

 Fdiff =C ψdiff
2 v =C hk

µ

f θ,ϕ( )
2

r2

 dn = Fdiff dS= Fdiff r2dΩ ⇒  dσel =
dn
Finc

= f θ,ϕ( )
2
dΩ

dS
r dΩ

⇒  f θ,ϕ( ) = f(θ)

Hypothèse pour la suite:
projectile et cible 
non polarisés



Décomposition en ondes partielles (1)
• Equation de Schrödinger stationnaire d’une particule libre

– les solutions de moment cinétique orbital ℓ défini

forment une base des fonctions d’onde stationnaires

• Décomposition de l’onde plane incidente sur cette base
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ψklm
rr( ) = Rkl(r)Yl

m θ,ϕ( ) k = « nombre quantique radial » (continu)
Yℓm = harmonique sphérique

exp(ikz) = cklmψklm(
rr)
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∞
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car exp(ikz) est une fonction propre 
de Lz pour la valeur propre m = 0:

Lz exp(ikz) = −ih
∂
∂ϕ
exp(ikr cosθ) = 0

Décomposition en ondes partielles (2)
• Comportement asymptotique de l’onde incidente:

• Le potentiel ne peut affecter que les ondes sphériques sortantes

→ comportement asymptotique de l’onde totale:
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coefficients complexes décrivant l’action du potentiel, 
c’est-à-dire l’interaction entre le projectile et la cible

ψ(rr) r→∞$ →$$ π 2l+1( ) i
l

ik
ηl

exp i kr − π
2
l( )(

)
*

+
,
-

r
−
exp –i kr − π

2
l( )(

)
*

+
,
-

r

.

/

0
0
0
0

1

2

3
3
3
3

l=0

∞

∑ Yl
0(θ)



Décomposition en ondes partielles (3)
• Comportement asymptotique de l’onde diffusée:

• On définit l’amplitude d’onde partielle:

• Amplitude de diffusion:
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Décomposition en ondes partielles (4)
• Section efficace différentielle élastique:

• Section efficace élastique:

ou bien
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section efficace partielle dans l’onde ℓ


