Dernier chapitre : réactions nucléaires
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Réactions nucléaires
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faisceau de projectiles
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ds
C‘fec fell
It

e Notations:

p+C—a+R | oubien C(p,a)R

p = projectile (noyau, pion, électron, ...), E > 1 MeV si chargé positivement
C = cible (noyau au repos)

a = particule détectée

R = noyau de recul

exemple:

14N(oc,p) 70
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Réactions nucléaires

D >R moniteur
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faisceau de projectiles : \
(d’énergie définie) cible a
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* Notations:

p+C—a+R | oubien C(p,a)R

p = projectile (noyau, pion, €électron, ...), E > 1 MeV si chargé positivement
C = cible (noyau au repos)

a = particule détectée

R = noyau de recul

— exemples: 1‘7LN(O(,p)1E7;O

9B 12
e(a,n)2C
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Réactions nucléaires: définitions

* Energie libérée
dans une réaction:

Q=(m,+m,-m,-my)c’=T,+T,-T,

* Réaction exoergique & Q >0
* Reéaction endoergique & Q <0

— seuil m
d’une réaction: Tp >T . u=—Q|l+—L
me

e Diffusion:

— réaction ou on retrouve le projectile dans 1’état final par ex. "Li(p,pT)*He
* Diffusion ¢€lastique (= Q =0)
— réaction ou les particules finales sont

les mémes que les particules initiales
(et dans le méme état d’énergie interne)

par ex. 12C(n,n)!2C

* Diffusion inélastique par ex. 2C(n,n)!2C*
 Réaction nucléaire (sans diffusion) par ex. “Be(a,n)'*C
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Qu’apprend-on en étudiant les réactions nucléaires ?

Masses, niveaux d’énergie, spins et parités, ... des noyaux
— mesure des valeurs de Q

— spectroscopie nucléaire

Taille et structure des noyaux
— découverte du noyau (Rutherford)

— diffusion de neutrons (ou d’¢électrons)
— distribution de matiére (ou de charge) dans les noyaux

Nucléosynthese en astrophysique et cosmologie
— abondance naturelle des isotopes

— « fonctionnement » des étoiles

Production d’énergie et d’isotopes artificiels
— centrales nucléaires

— 1isotopes pour applications industrielles ou médicales
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Spectroscopie nucléaire

* Réaction
atA—>Db+B(+Q) a T, fixée
« Le noyau B peut aussi étre produit dans un état excité B;" ou B*
atA—b+B' (+Q) avec B"—=BWy, i=1,2, 3, ...
a+A—->Db+B"(+ Q)  avec B** se désintégrant en
plusieurs corps (disparition de B)

dN
dT; 4

(2 un angle donné o
d’émission de la N

particule b, dans le
centre de masse)
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Description quantique de la diffusion (1)

* Diffusion ¢lastiquea+ A — a+ A

* Equation de Schrodinger stationnaire

hz 72 h 2 - = - = - =
_—Va V +V(r rA) 1ptot(ra’rA)=’-[‘totlptot(ra’rA)

2m_ 2m,
— changement de I=1-T1, coordonnées relatives
coordonnées = M. +m,rI .
e T R =—aa aA coordonnées du centre de masse
(£5)—(ER) m, +m,

[ WG 2";\1 %ﬁ+v(f)]xptot(f,ﬁ)=Tt0t1pt0t(f,1i)

m_m {1
u=—=a—-A_ masse réduite
— avece m,+m,
M=m,+m, masse totale
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Description quantique de 1a diffusion (2)

* Séparation des variables lptot(f,f{) = lp(f)lpCM(ﬁ)

* L’équation de Schrodinger devient, apres division par .,

4l_ﬁ62+v(f)}w(f)+ L l_ I %;]%M(ﬁ)q
LOINET Weu(R)L 2M o
= consytante =T = constavnte =Ty

* On obtient deux €quations:

— mouvement de la - 22
particule relative __V2_|_ V( )]w( )= Tlp(f)
dans un potentiel V{7) | 2u

— mouvement du - h2
centre de masse _ @2 (ﬁ) _T (f{)
(« particule » libre) | 2M R] Wew omWem
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Description quantique de la diffusion (3)

« Etats stationnaires asymptotiques, pour r grand tel que V(r)=0:

h2
2u
* Solutions physiques

— particule incidente

* onde plane se
propageant selon Oz

Pine(T) = exp(ikz)

— particule diffusée

» onde sphérique
sortante

1Pdlff( ) — f(@ CP)
e

amplitude
de diffusion
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vk —
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/

onde Aiffuser
e
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Description quantique de la diffusion (4)

* Onde totale

w(f)=1pmc(f)+1pdiff(f) — exp(ikz)+f(6,cp)

* Calcul section efficace élastique

— flux incident: F._ =C

mc

— flux diffusé:

— nombre dn de particules
diffusées €lastiquement
dans dQ par unité de temps: dn = F,,dS = F,.r’dQ = do

* Section efficace
¢lastique différentielle
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wmc

Ej = C|wdiff|2 v=C

exp(ikr)
T
yochk
H 2
nk [f(0.) ds
diff diff = |f(9,Cp)|2 dQ

o -l

inc

Hypothese pour la suite:
projectile et cible
non polarisés

= £(6,0) = f(©)
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Décomposition en ondes partielles (1)

* Equation de Schrodinger stationnaire d’une particule libre

2 |y (F) =T (7) < [k ]y, (F)=0, T="K
_ﬂ wlibre(r) - wlibre(r) had [ + ]wlibre(r) Mo - 2“
— les solutions de moment cinétique orbital £ défini

=\ _ m k = « nombre quantique radial » (continu)
Wism (r) =R, (DY, (B,Cp) Y ,™ = harmonique sphérique

forment une base des fonctions d’onde stationnaires

* Décomposition de I’onde plane incidente sur cette base

exp(ikz) = E E CrmWim(T) = Eckmwkm(r) Eckzo DY,(0)

=0 m=—/

car exp(ikz) est une fonction propre
de L, pour la valeur propre m = 0:

L, exp(ikz) = -ihaiexp(ikr c0s0) =0
¢

OS, 4 décembre 2024 192

Décomposition en ondes partielles (2)

» Comportement asymptotique de I’onde incidente:

P (T) — = exp(ikz) = 2 CrioRy AT )Yz? ©)

oo - 0 exp(i(kr—gﬁ)) exp(—i(kr—gﬁ))
—— > n(20+1) L Y/'(6)

r—00
ik r r
=0 \ )\ J
- onde sphérique onde sphérique
sortante entrante

* Le potentiel ne peut affecter que les ondes sphériques sortantes
— comportement asymptotique de 1’onde totale:

l exp(i(kr—nf)) exp(—i(kr—nﬂ))
woé}j PEE= 2 i 2 i)
ik r r

— 1

coefficients complexes décrivant I’action du potentiel,
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Décomposition en ondes partielles (3)

* Comportement asymptotique de 1’onde diffusée:
wdlff() w(r) lpmc(r) —> E \, 2€ + 1 YIZ - 1 exp( (kr - %g)) Ylf)(e)
exp(lkr) l 0
24 / 20+1) k )Y/ ©)

J
= amplitude de dlfoSlOl’l = 1(0)

* On définit ’amplitude d’onde partielle: | T, = %(1 -n,)

+  Amplitude de diffusion: | f(8) = %E [am (20 +1) T, Y)(0)
=0
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Décomposition en ondes partielles (4)

* Section efficace différentielle €lastique:

&=l - EE\/2£+1\/2€’+1( -n,)(1-m) YO)Y; ©)

(=0 =0

* Section efficace ¢lastique:

o, =[S dsz—izi 20+1)1-n[ = —fi 20+1)|T,f
/=0 (=0
ou bien Eo@ ol = (20 +)i-m [ - (25+1)\Tf\2

section efficace partielle dans I’onde £
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