Dernier chapitre : réactions nucleaires
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Reéactions nucléaires
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 Notations:

p+Cea+R ou bien

C = cible (noyau au repos)
a = particule détecteée
R =noyau de recul

— exemple: 14N(OL p)”O
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C(p.a)R

p = projectile (noyau, pion, €lectron, ...), E > 1 MeV si charge positivement
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Reéactions nucléaires: définitions

* Energie libérée

2
dans une réaction: Q= (mp +Me—m, = mR)C =T+ 1= Tp

* Réaction exoergique & Q>0
* Réaction endoergique & Q <0

— seuil m
d’une réaction: T >T _.=-Q|l+—L
Me

e Diffusion:
— réaction ou on retrouve le projectile dans I’état final par ex. "Li(p,pT)*He
* Diffusion élastique (= Q = 0)

— reaction ou les particules finales sont
les mé€mes que les particules initiales
(et dans le méme état d’énergie interne)

* Diffusion in¢lastique par ex. 2C(n,n)"2C*

« Réaction nucléaire (sans diffusion) par ex. *Be(o,n)"*C

par ex. 2C(n,n)!*C
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Qu’apprend-on en étudiant les réactions nucléaires ?

* Masses, niveaux d’énergie, spins et parites, ... des noyaux
— mesure des valeurs de Q

— spectroscopie nucleaire

Taille et structure des noyaux
— découverte du noyau (Rutherford)

— diffusion de neutrons (ou d’électrons)
— distribution de matiere (ou de charge) dans les noyaux

* Nucleosynthese en astrophysique et cosmologie
— abondance naturelle des isotopes

— « fonctionnement » des étoiles

* Production d’énergie et d’1sotopes artificiels
— centrales nucléaires

— 1sotopes pour applications industrielles ou médicales
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Spectroscopie nucléaire

* Réaction
a+tA—>Db+B(+Q) a T, fixée
* Le noyau B peut aussi étre produit dans un état excité B," ou B™
a+tA—>Db+B(+Q) avec B."—B%)y, i=1, 2, 3, ...
atA—>Db+B"(+Q") avec B¥* se désintégrant en
plusieurs corps (disparition de B)

dN sk * k *
dTb* A , B | B 3 B2 Bl B
HE |
! ) s
(2 un angle donné Vo g S|
d’émission de la R /z NI [ o
particule b, dans le \1 U x A u
centre de masse) LU fL AVIVAY S
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Description quantique de la diffusion (1)

e Diffusion ¢lastiquea+ A —a+ A

* Equation de Schrodinger stationnaire

2 2 L oL o
[_ 2?11 Vi B 2?11 Vi T V(I‘a - rA)]wtot(ra’ 1‘A) - Ttotwtot(ra’ rA)
a A

—

— changement de r=1-7, coordonnées relatives
rdonné = m L +m,T ,
CO0I do ge% R = AA coordonnées du centre de masse
(ra,rA)%(r, ) m, +m,

[——V2 - —V2 (f)]wtot(f’ﬁ) - Ttotwtot(f’ﬁ)

20 2M
m_ m o
u=—=2a-A masse réduite
— avec m,+m,
M=m_+m, masse totale
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Description quantique de la diffusion (2)

* Séparation des variables wtot(f,ﬁ) = lp(f)lpCM(f{)
* L’équation de Schrodinger devient, apres division par v,
1_} [ h2V2+V( )]w( )+ 1_} l h’ Vz]w ( ) T
W(F)| 2u Wey(RJL2M TR

v v
= constante =T = constante =1,

\ J

* On obtient deux équations:

— mouvement de la

- hz — 2 — } — -
particule relative -— V. +V(r)|p(r)=Ty(r
dans un potentiel V{r) | 2u ( ) ( ) ( )

— mouvement du e
centre de masse _ N y2 R)=T R
(« particule » libre) - 2M R] Pow ( ) emWen ( )
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Description quantique de la diffusion (3)

« Etats stationnaires asymptotiques, pour r grand tel que V(r)=0:

* Solutions physiques

— particule incidente

* onde plane se
propageant selon Oz

P, (T) — exp(ikz)

— particule diffusée
» onde sphérique
sortante

l_h_ﬁzjlwhbre( ) TlPhbre( )

WP gif (f) — f(@,cp) explikr)

amplitude
de diffusion
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Description quantique de la diffusion (4)

* Onde totale
T T z - exp(kr
w(r)=winc(r)+wdiff(r) > eXp(lkZ)+f(6,(p) pﬁ )

e C(Calcul section efficace ¢lastique

— flux incident: F_=Cly. [v v = C@

u
2
(6,
— flux diffusé: Fgi=CY ‘v=C nk ‘ ( 2([3)‘

— nombre dn de particules
diffusées €lastiquement
dans dQ par unité de temps: dn=F,,dS=F,_.r’dQ = do_ =

Section efficace

clastique différentielle
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Hypothese pour la suite:
projectile et cible
non polarisés

= f(6,¢)=f(©)
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Decomposition en ondes partielles (1)

* Equation de Schrodinger stationnaire d’une particule libre

2 21,2
=2 = - 2 1.2 = h'k
l_ﬂv :lwlibre(r) = Tlplibre(r) < [V +k ]wlibre(r) =0, T= 2u
— les solutions de moment cinétique orbital £ défini
=\ _ m k = « nombre quantique radial » (continu)
Wim (r) =R, (DY (@ CP) Y ,™ = harmonique sphérique

forment une base des fonctions d’onde stationnaires

* Deécomposition de 1’onde plane incidente sur cette base

exp(ikz) = i E ChopmW (D) = Eckmwkm(r )= Eckzo kz(r)YO(e)

/=0 m=—/

car exp(ikz) est une fonction propre
de L, pour la valeur propre m = 0:

L exp(ikz) = —ihaiexp(ikr cos0) =0
¢
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Decomposition en ondes partielles (2)

* Comportement asymptotique de I’onde incidente:

P;) ——> exp(ikz) = Y ¢, R, (0)Y,(0)
=0 [

® y exp(i(kr—gﬁ)) exp(—i(kr—gé))-
— = Dm(20+1) ilk - Y(0)

r r
\ ' ] |\ ' J
- onde sphérique onde sphérique -
sortante entrante

* Le potentiel ne peut affecter que les ondes sphériques sortantes
— comportement asymptotique de 1’onde totale:

® y exp(i(kr—gﬁ)) exp(—i(kr—gé))
YE) —=— D (20 +1) ilk N - Y(©)

r r

coefficients complexes décrivant 1’action du potentiel,
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Decomposition en ondes partielles (3)

* Comportement asymptotique de 1’onde diffusée:

P ire(F) = Y(T) - “q)mc(r)—éz\/ﬂ: 20 +1) kr(m—l)exp( (kr—gf))Yg’(e)

_m 1_ 0
-2 2\/75 (20+1)(1-7,) Y/0)

J
|
= amplitude de diffusion = (0)

* On définit ’amplitude d’onde partielle: |T, = %(1 -n,)

. e 1 %
 Amplitude de diffusion: | f(0) = o 2\/ 4m(20+1) T, Y, (®)
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Décomposition en ondes partielles (4)

* Section efficace différentielle ¢lastique:

do, _ EE\/25+1\/2£'+1( -n,)(1-m;) Y)Y, ®)
dQ (=0 /=0

e Section efficace ¢lastique:

. -
o.=[ d‘;; dQ—PE(%H 1-m,[ = —TZ“EO (20+1)|T|

ou bien Eo@ o“)_k (2¢+1)1-n,| = (2€+1)|T€|

el

section efficace partielle dans I’onde £
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