
Moment magnétique dipolaire d’un noyau
• <μznoyau> dépend des valeurs de m des nucléons célibataires, 

donc de leur somme M
• On définit « le » moment magnétique μ d’un noyau de spin J:

• Pour un noyau pair-pair (sans nucléon célibataire)

• Pour un noyau à un seul nucléon célibataire sur un niveau nℓj:
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µ = 0 prédiction correcte dans tous les cas

observations expérimentales tombent 
entre les deux lignes de Schmidt
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Lignes de Schmidt
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A et Z impairs
proton célibataire



Lignes de Schmidt
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A et N impairs
neutron célibataire



Modèle en couches 
sans interaction résiduelle

• Hamiltonien du noyau non perturbé:

• Etats stationnaires d’un nucléon i

• Etats stationnaires du noyau de moment cinétique total J et d’isospin 
total I définis

Γ = ensemble des nombres quantiques décrivant l’état du noyau
    = (a, J, M, I, MI, ...) où  a = configuration (nℓj de chaque nucléon)

L’énergie du noyau ne dépend que de la configuration et pas de J
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H* = ∑+(,- H+   où H+ = hamiltonien du nucléon i indépendant

| ψ"!ℓ!/!0! > tel que H+ | ψ"!ℓ!/!0! >= E"!ℓ!/!| ψ"!ℓ!/!0! >

|Ψ1
* > tel que H*|Ψ1

* >= E1
* |Ψ1

* >

E1
* = E%

* = ∑2(,3 E"!ℓ!/!



Modèle en couches 
avec interaction résiduelle

• On ajoute une “petite” interaction résiduelle H1 à l’hamiltonien

• Nouveaux états stationnaires du noyau de nombres quantiques Γ 

• Au premier ordre de perturbation

Les éléments diagonaux de H1 (dans la base des états non perturbés) 
lèvent la dégénescence par rapport à J (mais pas rapport à M)
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H= H* + H,

|Ψ1 > tel que H |Ψ1 >= E1 |Ψ1 >

E! = ∑"#$% E&!ℓ!(! + Ψ!
) H$ Ψ!

)

|Ψ1 >= |Ψ1
* > +|Ψ1

, > où |Ψ1
, > est une petite correction

E1 = E1
* + E1

, où E1
, est une petite correction



Modèle en couches 
avec interaction résiduelle (2)

• En général: 

• On décompose alors le noyau en un coeur formé de niveaux d’énergie 
complets et de nucléons de valence (sur des niveaux incomplets)

• Exemple:
– le noyau !

"!O10 , dans son état fondamental, est formé de deux neutrons de 
valence sur le niveau 1d5/2 et d’un coeur inerte !

"#O8 formé de niveaux complets
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ν+/= interaction résiduelle 
     entre nucléons i et j

H, =;+,/(,
+5/

-
ν+/

H= H* + H, = H6%78"98 + H9#8&: + H9#8&:;6%78"98

H9#8&:;6%78"98 = ∑2(,< ∑=(>3 ν+? 

H6%78"98 = ∑2(,< 𝐻2 + ν,< 

H9#8&: = ∑2(>3 𝐻2 + ∑+,/(>
+5/

- ν+/ 



Modèle en couches 
avec interaction résiduelle (3)

• Le coeur à J=0 (niveaux complets)
→ la fonction d’onde du coeur a une symétrie sphérique
→ le coeur n’a pas de direction privilégiée dans l’espace
→ l’interaction résiduelle entre le coeur et un nucléon de valence
     dans un état nℓjm ne peut pas dépendre de m
→ l’interaction résiduelle entre le coeur et les nucléons de valence
     ne dépend que de la configuration (constante additive)

• Ainsi, pour un noyau avec deux nucléons de valence identiques sur un 
niveau nℓj incomplet:
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𝐸1 =;
+(,

-

E"!ℓ!/! + constante + Ψ1
* (1,2) ν,< Ψ1

* (1,2)

(se généralise à un nombre quelconque de nucléons de valence)



Modèle en couches avec 
interaction résiduelle de contact

• Avec

on peut calculer que, pour deux nucléons identiques sur un même 
niveau nℓj incomplet

• Tableau 
des valeurs
de A(j,J)
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ΔE) = Ψ)'
* (1,2) ν,< Ψ)'

* (1,2) = −V* F n, ℓ, j A(j, J)

ν,< = −V*δ r⃗, − r⃗< c′est-à-dire ν,< = 0 sauf si r⃗, = r⃗<



–

• Pour deux nucléons identiques sur un même niveau nℓj incomplet

• Pour deux nucléons de valence identiques sur des niveaux différents

Modèle en couches avec 
interaction résiduelle de contact (2)
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Premiers niveaux d’énergie de 18O
Configuration [n: (1d5/2)2] → JP = 0+, 2+, 4+
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0+, 2+, 4+

niveau fondamental
non perturbé

(dégénéré 15 fois)

avec interaction 
résiduelle de contact

spectre 
expérimental

MeV     JPMeV     JP



Mélange de configurations (1)
• Les éléments non diagonaux de H1 peuvent coupler des 

états |Ψ1
* > de différentes configurations

– Les états propres de l’hamiltonien total H0+H1 deviennent
des combinaisons linéaires des états non perturbés |Ψ$

% >
et ne correspondent plus nécessairement à des configurations 
définies !

• Ces éléments non diagonaux ne peuvent être non nuls 
qu’entre des états de même nombres quantiques P, J, M, I, 
MI, car H1 doit être un vrai scalaire qui conserve la parité 
P, le moment cinétique total J et l’isospin total I
– Précédemment on a réduit l’espace des états ℰ du noyau à un 

sous-espace ℰa correspondant à une configuration “a” avec deux 
nucléons de valence; dans ce cas H1 n’avait pas d’élément non 
diagonal dans ce sous-espace 
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Mélange de configurations (2)
• X
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H = H0 H = H0+H1
H diagonalisé 

séparément dans 
ℰ(9/2)2 et ℰ(5/2)2 

H = H0+H1
H diagonalisé dans 
l’espace complet 
ℰ = ℰ(9/2)2⊗ℰ(5/2)2 

configuration 
pure (9/2)2

configuration 
mélangée

configuration 
mélangée



Cas simple: mélange de deux états (1)

• Deux états non perturbés |Ψ2
* > (i=1,2):

• Dans la base |Ψ2
* > :

• Diagonalisation de H:
– on cherche les états propres |Ψ′ > et les valeurs propres E′ de H
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H*|Ψ+
* >= E+

* |Ψ+
* >

H = H* + H, =
E,
* 0
0 E<

* +
E,
, A
A∗ E<

, =
E, A
A∗ E<

H,
A = H, HA = H

|Ψ′ > = a |Ψ,
* > + b |Ψ<

* > tel que H |ΨB >= E′ |ΨB >
E1 A
A∗ E2

a
b = E′ ab



Cas simple: mélange de deux états (2)

• X
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Premiers niveaux d’énergie de 18O
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0+, 2+, 4+
niveau 

fondamental
non perturbé

H=H0

configuration 
pure (1d5/2)2

modèles avec interaction 
résiduelle de contact

spectre 
expérimental

sous-espace pour 
la diagonalisation 

de H=H0+H1

MeV     JP



Mélange de N états dégénérés
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• X

|Ψ′ > = "
&
|Ψ"

% > +|Ψ'
% > + … + |Ψ(

% >

état mélangé symétrique (cohérence)
→ phénomène “collectif” 



Moments électriques multipolaires
• Energie d’interaction d’un noyau dans un champ électrique extérieur

• Décomposition sur la base des harmoniques sphériques

• Moments électriques multipolaires
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W = ρ(rr)φ(rr) d3rr∫ ρ(rr) d3rr∫ = Ze
r
E(rr) = −

v
∇φ(rr)v

∇2φ(rr) = 0

ρ(rr) = densité de charge du noyau
φ(rr) = potentiel électrique extérieur

Qlm = ρ(rr)rlYl
m(θ,ϕ)∫ d3rr

W = φlmQlm
m=−l

+l

∑
l=0

∞

∑ Qlm = coefficients caractérisant la distribution de charge
φlm = coefficients caractérisant le potentiel extérieur

φ(rr) = φ(r,θ,ϕ) = flm(r)Yl
m(θ,ϕ)

m=−l

+l

∑
l=0

∞

∑ = φlm r
lYl

m(θ,ϕ)
m=−l

+l

∑
l=0

∞

∑



Moments électriques multipolaires

• Base des états du noyau:

• Propriétés des harmoniques sphériques:

• Donc:

• De plus:
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J, M,K{ }   états propres de H, 
r
J2, Jz,...

 Qlm = e J, M,K ri
lYl

m(θi,ϕi)
i=1

Z

∑ J, M,K  

J, M,K Yl
m(θi,ϕi) J ', M',K = 0  sauf si M =m +M'

et J− J ' ≤ l ≤ J+ J '

 Qlm = 0    si m ≠ 0 ou si l > 2J 

J,M,…  de parité définie
Yl

m de parité (−1)l
"
#
$

 ⇒  Ql0 = 0  si l impair


