
Appariement des nucléons identiques

• Fait d’expérience:

• On améliore donc le modèle:
– addition d’interactions résiduelles entre 

paires de nucléons identiques sur un 
même niveau nℓj

• on abandonne donc la stricte 
indépendance des nucléons

– l’interaction résiduelle Vjk est telle qu’une paire de nucléons 
identiques sur un même niveau nℓj est davantage liée si 

– l’énergie d’appariement croît avec la valeur de ℓ
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Energie d’appariement
• Exemple du 61

28Ni
– configuration de l’état fondamental pour les 33 neutrons
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Prédiction sans appariement 
JP = 5/2–
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Prédiction avec appariement 
JP = 3/2–

Valeur observée
JP = 3/2–

en faveur du modèle avec 
appariement qui croît avec ℓ



Energie d’appariement
• Isotopes du 52Te avec N impair

– prédictions du modèle avec appariement qui croît avec ℓ
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Modèle à nucléon(s) célibataire(s)

• Règles concernant JP de l’état fondamental d’un noyau
① N et Z pairs

⇒ tous les nucléons appariés ⇒ JP = 0+

② A impair 
⇒ un seul nucléon non-apparié sur niveau nℓj ⇒ J = j, P = (–1)ℓ

③ Energie d’appariement augmente avec ℓ
⇒ possible interversion de l’ordre de remplissage des niveaux

④ N et Z impairs
⇒ deux nucléons non-appariés sur les niveaux n1ℓ1j1 et n2ℓ2j2
⇒ |j1–j2| ≤ J ≤ j1+j2, P = (–1)ℓ1+ℓ2

– les propriétés du noyau sont essentiellement déterminées par 
le(s) nucléon(s) non-appariés, appelés nucléons célibataires
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Z
AXN

Modèle à nucléons célibataires
= modèle à nucléons indépendants + appariement



Modèle à nucléon(s) célibataire(s)
• Règle 1: 

– aucune exception !

• Règles 2 et 3:
– quelques rares exceptions 

(noyaux non-sphériques)

• Règle 4:
– très peu de 

noyaux stables 
avec Z et N
impairs
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Noyau J prédit J observé
19

9F 5/2 1/2
2111Na 5/2 3/2
2311Na 5/2 3/2
55

25Mn 7/2 5/2

Noyau npℓpjp nnℓnjn JP prédit JP observé
21H1 1s¹/₂ 1s¹/₂ 0+, 1+ 1+

63Li3 1p ³/₂ 1p ³/₂ 0+, 1+, 2+, 3+ 1+

10
5B5 1p ³/₂ 1p ³/₂ 0+, 1+, 2+, 3+ 3+

147N7 1p¹/₂ 1p¹/₂ 0+, 1+ 1+



Moment magnétique dipolaire d’un nucléon
• Contribution orbitale

– classiquement, pour un proton
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• Contribution intrinsèque (due au spin)

• Moment magnétique dipolaire total

gs = facteurs de Landé



Moment magnétique de l’électron
• Moment magnétique dipolaire intrinsèque de l’électron

– Pour l’électron (particule de spin ½ sans structure interne), 
la théorie de Dirac implique g≅2 et donc μ≅μB

• Prédiction d’électrodynamique quantique (QED)

• Valeur mesurée:

– impressionnant test de la QED !

• Le fait que le proton et le neutron ont gs ≠ 2 prouve qu’ils ont 
une structure interne (les quarks !)
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Moment magnétique d’un nucléon dans un état nℓjm
• Valeurs moyennes:
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– vecteur ℓ ou s, 

ou combinaison linéaire de ℓ ou s (par exemple moment magnétique μ):
• norme constante/fixe et angle constant/fixe avec le vecteur j

– vecteur j:
• norme constante/fixe et 

angle constant/fixe avec l’axe z



Moment magnétique d’un nucléon dans un état nℓjm
• Axe de quantification z choisi dans la 

direction du champ magnétique B 
extérieur

• On s’intéresse à l’énergie d’interaction 

donc à la valeur moyenne de μz
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valeur moyenne de μz = projection sur z de la projection de μ sur j 

théorème de 
la projection



Moment magnétique d’un nucléon dans un état nℓjm

• Moment magnétique total de deux nucléons identiques appariés 
(Jpaire = 0, Mpaire = 0) sur un même niveau nℓj:

• Moment magnétique total
d’un noyau de A nucléons:
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I3 = 3ème composante de l’isospin (+1/2 pour le proton, –1/2 pour le neutron)
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