
Hélicité du neutrino

• Capture électronique de 
l’europium sur la couche K:

!"
#$%&Eu + e– → !%

#$%Sm∗ + ν

• Moment	cinétique	total
J⃗!"!= J⃗#$ + J⃗% + L& = 0 + '⃗

( + 0 = '⃗
(

• Désintégration γ du samarium excité:  !%
#$%Sm∗ → !%

#$%Sm + γ
– On s’intéresse au cas où le photon est émis dans la direction du

samarium excité
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Hélicité du neutrino
• Axe z selon les quantités de mouvement:

 

• Projection des spins sur l’axe z avec somme égale à J)*),, = ± )
*

(pas de moment cinétique orbital selon z)
– cas hélicité +1
– cas hélicité –1

• En mesurant la polarisation circulaire des photons, on détermine 
l’hélicité du neutrino: H = –1 (le neutrino est toujours gauche)
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zEue

p.p/&∗ Sm*

p.p0 Sm

s.,, = + #
%s0,, = −1

s.,, = − #
%s0,, = +1



Modèle du noyau à particules indépendantes

• Hypothèses:
① Chaque nucléon i se meut indépendamment 

des autres sous l’effet d’un potentiel moyen 
reflétant l’action des A–1 autres nucléons

② Ce potentiel moyen ne dépend que de la 
position du nucléon i

③ Ce potentiel a une symétrique sphérique 
(potentiel central)

• Hamiltonien du noyau 
(dans le centre de masse)
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H = Hi
i=1

A

∑        où  Hi =
rpi

2

2m
+V(ri) = – h2

2m
r
∇i

2 +V(ri)

H = Ti
i=1

A

∑ + Vij
i, j=1
i> j

A

∑

= Ti
i=1

A

∑ + Vi
i=1

A

∑

= Ti
i=1

A

∑ + V(rri)
i=1

A

∑

= Ti
i=1

A

∑ + V(ri)
i=1

A

∑

Modèle à particules indépendantes (2)
• Fonction d’onde du noyau:

• Comme H est une somme de termes Hi agissant sur des variables 
différentes (ri), on peut séparer les variables et chercher des solutions 
de la forme

• On est donc ramené à résoudre le problème 
d’un « nucléon indépendant » dans un potentiel central
– détermination des états possibles (et donc du spectre) du nucléon indépendant

• On construit ensuite la fonction d’onde du noyau en respectant 
l’antisymétrie sous l’échange de deux nucléons identiques 
(principe d’exclusion de Pauli)
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ψ(rr1,
rr2, ..., rrA)  telle que Hψ = Eψ

→

ψ(rr1,
rr2, ..., rrA) = ψ1(

rr1)ψ2(
rr2)... ψA(rrA)   avec Hiψi = Eiψi   et Ei = E

i=1

A

∑

ψ(rr1, ...,
rrj, ...,

rrk, ...,
rrA) = −ψ(

rr1, ...,
rrk, ...,

rrj, ...,
rrA) pour toute paire j, k 

de nucléons identiques



Fonction d’onde du noyau

• Fonction d’onde du nucléon j dans l’état k:
– j = 1, 2, ... Z, Z+1, ..., A–1, A  et  k numérote les états occupés par les nucléons

• Fonction d’onde du noyau de Z protons et N = A–Z neutrons

– change de signe sous l’échange de deux nucléons identiques 
(permutation de deux lignes dans un des déterminants)

– nulle si deux nucléons identiques sont dans le même état 
(deux colonnes identiques dans un des déterminants)
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Ψ(rr1,
rr2, ...,

rrA) =
1
Z!

ψ1(
rr1) ψ2(

rr1)L ψZ(
rr1)

ψ1(
rr2) ψ2(

rr2)LψZ(
rr2)

M M O M
ψ1(

rrZ)ψ2(
rrZ)LψZ(

rrZ)

1
N!

ψZ+1(
rrZ+1)LψA(

rrZ+1)
ψZ+1(

rrZ+2)LψA(
rrZ+2)

M O M
ψZ+1(

rrA) L ψA(
rrA)

ψk(
rrj)

protons           neutrons

Particule dans un potentiel central

• On cherche 
les fonctions 
d’ondes 
ψ(r,θ,φ) 
telles que
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H = – h2

2m
r
∇2 +V(r)   ⇒    H,

r
L!

"
#
$= 0 moment cinétique 

conservé

Hψ = Eψ
r
L2ψ = l(l+1)h2ψ
Lzψ =mhψ

 d
dr

r2 d
dr

!
"
#

$
%
&+ 2mr2

h2 E −V(r)( )− l l+1( )
!

"#
$

%&
R(r) = 0 équation 

radiale

r
∇2 = 1

r2
∂
∂r

r2 ∂
∂r
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'
(−

r
L2
h2r2

En coordonnées sphériques:

r
L2 = −h2 1

sinθ
∂
∂θ

sinθ ∂
∂θ

$
%
&

'
(
)+ 1
sin2θ

∂2

∂φ2
+

,-
.

/0

Lz = −ih
∂
∂φ

r
L = −ihrr ∧

r
∇

ψ(r,θ,φ) = R(r)Yl
m(θ,φ)• Solutions:

– les fonctions angulaires Y(θ,φ) sont universelles (harmoniques sphériques)

– les fonctions radiales R(r) dépendent de V(r) et satisfont à



Harmoniques sphériques (1)

• Les harmoniques sphériques
– sont les solutions 

des équations 
différentielles

– forment une base 
orthonormée des 
fonctions définies 
sur la sphère unité
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Pl
m(x) = (−1)

l

2ll!
(1− x2)m/2 d

l+m

dxl+m (1− x
2)l fonctions associées de Legendre, 

définies dans l’intervalle [–1,+1]
Pl

0(x) = polynôme de Legendre
Pl

0(1) =1

harmoniques 
sphériquesYl

m(θ,φ) = (−1)m 2l+1
4π

(l−m)!
(l+m)!

Pl
m(cosθ) eimφ

l et m entiers:   l = 0, 1, 2, K  et − l ≤m ≤ l

Yl
m(θ,φ)Yl '

m '(θ,φ)*sinθ dθ dφ
θ=0

π

∫
φ=0

2π

∫ = δll 'δmm'

r
L2 Yl

m(θ,φ) = l(l+1)h2 Yl
m(θ,φ)

Lz Yl
m(θ,φ) =mhYl

m(θ,φ)
  où   

r
L = −ihrr ∧

r
∇

&
'
(

)(

Harmoniques sphériques (2)
• Propriétés:

– parité P = inversion d’espace

– conjugaison complexe
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(x, y, z)→ (−x,−y,−z)
(r,θ,φ)→ (r,π−θ,φ+π)

P Yl
m(θ,φ) = Yl

m(π−θ,φ+π)
= (−1)l Yl

m(θ,φ)

Yl
m(θ,φ)* = (−1)m Yl

−m(θ,φ)



Particule dans un potentiel central (suite)
• Equations différentielles pour la fonction radiale R(r) 

(une pour chaque valeur de ℓ = 0, 1, 2, ...)

– pour chaque ℓ,  plusieurs solutions 
numérotées n = 1, 2, ... 
par ordre croissant d’énergie

• Un état propre de H, L2 et Lz d’une particule dans un potentiel 
central est défini par
– nombre quantique radial n = 1, 2, ...

– nombre quantique orbital (moment cinétique orbital) ℓ = 0, 1, 2, ...

– nombre quantique magnétique m = –ℓ, –ℓ+1, ..., ℓ–1, ℓ (2ℓ+1 valeurs)
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E→ Enl
R(r)→Rnl(r)

ψ(r,θ,φ)→ψnlm(r,θ,φ) = Rnl(r)Yl
m(θ,φ)

 d
dr

r2 d
dr

!
"
#

$
%
&+ 2mr2

h2 E −V(r)( )− l l+1( )
!

"#
$

%&
R(r) = 0 

Potentiels centraux « simples »

• Puits rectangulaire à paroi infinie

• Puits rectangulaire à paroi finie

• Puits parabolique (oscillateur harmonique)

• Puits coulombien
– inapproprié pour décrire 

les forces nucléaires
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V(r) = −V0   si  r <ρ
∞   si  r ≥ρ

%
&
'

V(r) = −V0   si  r <ρ
0   si  r ≥ρ

$
%
&

V(r) = −V0 1−
r
ρ
#

$
%
&

'
(
2)

*
+
+

,

-
.
.
= −V0 +

1
2
mω2r2

avec  ω2 = 2V0

mρ2

V(r) = −C
r



Puits rectangulaire infini
• Equation radiale 

pour r < ρ, V(r) = –V0
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d
dr

r2 d
dr

!
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#

$
%
&+ r2 2m

h2
E +V0( )− l l+1( )

!
"#

$
%&
R(r) = 0

k2

R(r) = A jl(kr)   si  r <ρ
0   si  r ≥ρ

#
$
%

(A = normalisation)

jl(kρ) = 0 condition de quantification sur k

knl = nième zéro de jl(kρ)     ⇒     Enl =
h2knl

2

2m
−V0

(sans compter le zéro à l’origine)

• La solution physique doit 
être régulière à l’origine ⇒
– continuité en r = ρ

• Solutions:

 d
dx

x2 d
dx

!
"
#

$
%
&+ x2 − l l+1( )

!
"#

$
%&
f(x) = 0 

f(x) = jl(x)
ηl(x)

"
#
$

fonction de Bessel sphérique d’ordre ℓ
fonction de Neumann sphérique d’ordre ℓ

• Avec x = kr
– pour chaque ℓ entier, 

deux solutions 
linéairement indép.

Fonctions de Bessel sphériques
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j0(x) =
sinx
x

j1(x) =
sinx
x2

− cosx
x

j2(x) =
3
x3
− 1
x

"
#
$

%
&
'sinx− 3cosx

x2
K

• Fonctions de Bessel
– régulières (c’est-à-dire finies) à l’origine 

• Fonctions de Neumann
– infinies à l’origine 

η0(x) = −
cosx
x

η1(x) = −
cosx
x2

− sinx
x

η2(x) = −
3
x3
− 1
x

#
$
%

&
'
(cosx− 3sinx

x2
K



Puits rectangulaire fini (1)
• Equation radiale 

pour r ≥ ρ, V(r) = 0

• Avec x = i(r

– pour chaque ℓ, deux solutions linéairement indépendantes:    jℓ(x) et ηℓ(x)

– la solution physique doit s’annuler pour r → ∞, sans oscillations:

• Solution complète:
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d
dr

r2 d
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−κ2

 d
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%&
f(x) = 0 

 R(r) = A jl(kr)   si  r <ρ
C hl(iκr)   si  r ≥ρ

$
%
&

 

car E < 0 (états liés)

fonction de Hankel sphérique d’ordre ℓ
hℓ(x) = jℓ(x) + i ηℓ(x)

h0(iκr) = −
1
κr
e−κr

h1(iκr) = i
1
κ2r2

+ 1
κr

#
$
%

&
'
(e−κr

h2(iκr) =
3
κ3r3

+ 3
κ2r2

+ 1
κr

#
$
%

&
'
(e−κr

K

même équation que précédemment !

A jl(kr)  C hl(iκr) 

Puits rectangulaire fini (2)
• Pour chaque ℓ = 0, 1, 2, ...

– trois constantes à déterminer
• A, C et E (ou k ou !)

– trois conditions:
• normalisation de R(r)
• continuité de R(r) en r = ρ
• continuité de dR/dr en r = ρ

• Plusieurs solutions:
– numérotation n=1, 2, ... par ordre croissant d’énergie

– n = nombre de zéros de R(r)
• sans compter le zéro l’origine, mais y.c. le zéro à l’infini 
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 R(r) = A jl(kr)   si  r <ρ
C hl(iκr)   si  r ≥ρ

$
%
&

 

Enl =
h2knl

2

2m
−V0 < Enl

puits infini

Enℓ < 0 (état lié)



ℓ=0 (s) ℓ=1 (p) ℓ=2 (d)

unl(r) =
r Rnl(r) 

Enl 

Puits rectangulaire fini (3)
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 − h2

2mr2
d
dr

r2 d
dr
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$

%
&
'+V(r)+ h2

2mr2 l l+1( )
!

"#
$

%&
R(r) = E R(r) 

« barrière angulaire »: terme s’additionnant à V(r)

nℓ en notation 
spectroscopique:

ℓ=0  ⟷ s
ℓ=1  ⟷ p
ℓ=2  ⟷ d
ℓ=3  ⟷ f
ℓ=4  ⟷ g
ℓ=5  ⟷ h
ℓ=6  ⟷ i
ℓ=7  ⟷ k

etc ...

1s
1p
1d

2s
2p
2d

3d
3p
3s

spectre 
d’énergie

Dégénérescence des niveaux d’énergie
• Le nucléon est une particule de spin s = ½
• Fonction d’onde d’un état propre de H, L2, Lz et S2 et Sz

• Dégénérescence = nombre d’états distincts par niveau Enℓ
= 2 (2ℓ+1)
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ψnlmlms
(r,θ,φ) = Rnl(r) Yl

ml(θ,φ) χs
ms

H ψnlmlms
(r,θ,φ) = Enl ψnlmlms

(r,θ,φ)
énergie Enℓ
indépendante 
de mℓ et ms !

2 valeurs possibles pour ms: 
ms = ±½

2ℓ+1 valeurs possibles pour mℓ: 
mℓ = –ℓ, –ℓ+1, ..., ℓ–1, ℓ

n = nombre quantique radial
ℓ = nombre quantique orbital (moment cinétique)
mℓ = projection du moment cinétique orbital
ms = projection du spin s = ½

nombres 
quantiques 
magnétiques

état défini par 
4 nombres 
quantiques



Remplissage des niveaux d’énergie
• Principe d’exclusion de Pauli appliqué séparément aux 

neutrons et aux protons
– pour une des deux espèces:
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Niveau
nℓ

n ℓ dégénérescence
du niveau Enℓ

= 2 (2ℓ+1)

dégénérescence
cumulée jusqu’au

niveau Enℓ
2d 2 2 10 68

1g 1 4 18 58

2p 2 1 6 40

1f 1 3 14 34

2s 2 0 2 20

1d 1 2 10 18

1p 1 1 6 8

1s 1 0 2 2

énergie  Enℓ

1s

1p

1d

2s

2p

2d

1f

1g

Comparaison entre différents spectres
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potentiel rectangulaire
(noyau)

potentiel coulombien
(atome H)

Enl = −
EI
n + l( )

2 ≡ −
EI
ʹn 2

dégénérescences 
accidentelles

potentiel harmonique
(noyau)

Enl = hω 2n+ l− 1
2

#
$
%

&
'
(−V0

dégénérescences 
accidentelles

hω ~ 10 MeV

notation 
spectroscopique
différente 
en physique 
atomique

n’ℓ au lieu de nℓ
n’ = n+ℓ

= nombre
principal
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