Goldhaber, Grodzins,

Heélicite du neutrino Fis s &

109, 1015 (1958)

* Capture ¢lectronique de
I’europium sur la couche K:

152m 152
sEu+e” - 255Sm™ + v 91 keV

 Moment cinétique total

ISZSm

NIP—W
N | =Y

Ol
Il

JtotwJgu T Je t Lk =0+

* D¢sintegration y du samarium excite: 1525m - 1525m +v
— On s’intéresse au cas ou le photon est émis dans la direction du

samarium exciteé
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Goldhaber, Grodzins,

Heélicite du neutrino Fis s &

109, 1015 (1958)

* Axe z selon les quantités de mouvement:
Co‘ Eu
D Sm” 3

Psm* ‘ Pv
< (& >

—

< py © ‘Sm ® Pv >

o . . . ) , N _ 1
Projection des spins sur I’axe z avec somme egale a Jiorz = +3
(pas de moment cinetique orbital selon z)

— cas hélicité +1 e Syz = —1 = Syz

_|_
+1 3, = —

N|= N =

— cas hélicite —1 —P Sy

* En mesurant la polarisation circulaire des photons, on détermine
I’hélicité du neutrino: H =—1 (le neutrino est toujours gauche)
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Mode¢le du noyau a particules indépendantes

* Hypotheses: H = ET + E

@ Chaque nucléon i se meut indépendamment i,j=1
>
des autres sous I’effet d’un potentiel moyen J

reflétant I’action des A—1 autres nucléons ———_ _ E T + E V

@ Ce potentiel moyen ne dépend que de la
position du nucléon 1

@ Ce potentiel a une symétrique sphérique E T+ E V()

(potentiel central) \
- E T, + E V()
i=1 i=1

* Hamiltonien du noyau
(dans le centre de masse)

A =2 2
H-YH, o Hi=2p—I;I+V(ri)=—2h—me+V(fi)
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Modele a particules indépendantes (2)

* Fonction d’onde du noyau:
Y(T, L, ..., 1,) telle que Hy = Ey
* Comme H est une somme de termes H; agissant sur des variables

différentes (r;), on peut s€parer les variables et chercher des solutions
de la forme

Y@, By oo ) = Y)Y, E)... W, ) avec Hyp, =Egp, et EE =E
* On est donc ramen¢ a résoudre le probleme
d’un « nucléon indépendant » dans un potentiel central
— determination des états possibles (et donc du spectre) du nucléon indépendant
* On construit ensuite la fonction d’onde du noyau en respectant

I’antisymétrie sous I’¢échange de deux nucléons 1dentiques
(principe d’exclusion de Pauli)

P(T, ... oLy L) ==Y (T, ..., L, ..., i‘}, ..., T,) pour toute paire j, k
N__ de nucléons i1dentiques
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* Fonction d’onde du nucl¢on j dans 1’¢tat k:
~j=1.2,..2,Z+1,.
|

Fonction d’onde du noyau

protons

|

neutrons

P, (1)

* Fonction d’onde du noyau de Z protons et N = A—Z neutrons

W, T, ..

W(E) Wo(E) - ()
Yy (B) W)+ W (E)

1Plifz) wz.(fz) o 1Pz.(fz)

JN!

‘qu(fml) o wA(fzn)
wzu.(fzu) o wA(.fZ+2)

lPZ+.1(i:A) o P A.G:A)

— change de signe sous I’¢échange de deux nucléons identiques
(permutation de deux lignes dans un des déterminants)

— nulle s1 deux nucléons identiques sont dans le méme ¢tat
(deux colonnes identiques dans un des déterminants)
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., A=1, A et k numérote les ¢tats occupes par les nucléons
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Particule dans un potentiel central

2 _ S F o O
Ho_ 2h_ e Vi) = [H,L] _0 22%1;1;1\1}téc1nethue L=—-hAraAV
m
e On cherche En coordonnées sphérigues:
: 2 19(20) L’
r2 2 2
ondes L' y=00+Dh"y 2o el L a(smea)+ 1
y(r,0,0) L ¢ =mhAy sinf 00 00/ sin“0 9o
telles que : [ o_pd
Z aq)

e Solutions:

1P(1’ > ea q)) = R(r)ng(E), (I))

— les fonctions angulaires Y(0,p) sont universelles (harmoniques spheriques)
— les fonctions radiales R(r) dépendent de V(1) et satisfont a

d
dr

G

» d
dr

2mr”
h2

(E-V(@))-

i)

¢quation
radiale

(€+1)]R(r) =0
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Harmoniques spheriques (1)

20+1 (¢ - - harmoniques
Y,"6,¢0)=(-1) \/ i E 7 m;' P/ (cos6) e ? sphériques
fetmentiers: /=0,1 2, ... et =/=<sm=</

m/2 dmm (1- 2) ¢ fonctions associ¢es de Legendre,
dx+m définies dans I’intervalle [-1,+1]

Prx) = S0 -x)

P)(x) = polyndme de Legendre
PY(1) =1

* Les harmoniques sphériques

— sont les solutions [ =7 <,m 5 <rm
des équations LY, 0,¢)= £+ D" Y, (0,¢) o
Lz Yém(ea (I)) = mfi ng(ea (l))

différentielles

0 L=—i#itAV

— forment une base
orthonormée des

2m W
fonctions définies f f Y,"(©,9) Y, (6, (I))* sin© db d¢ = 5" ™"

sur la sphere unit¢ ~ ¢=06=0
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Harmoniques spheriques (2)

* Propriétés:

— parité P = inversion d’espace

X,¥,2) = (=X,~y,~Z)
(1,0,¢) = (r,t—0,¢ + )

PY 0.9)=Y, (n-0,¢+m)
=(=D"Y"®,9)

— conjugaison complexe

YI0,0) = (D)™ Y;"(©,)

OS, 16 octobre 2024

1
Yy (6, 9) = —=

4
O 3
Y7 (0,¢) =4/ = cosb

T
1 1 3 . .
Y1 (0,0) ==Y (0,p) = =4/ == sinfe*

&

)
Y20, p) = 4/ — 20 —
1 -1 15 .
Y5(0,0) ==Y, (0,0) = — —;sm@cos@ew
2 _2- 15 24 2
YZ(0,0) =Y,72(0,0) = 4/ — sin®§e*¥

|
|~
3

. 21
}/31(9,90) ==Y,V (6,9) = —4/ 61 sinf (5cos® 6 — 1) e

. /105
Y3, ©) =Y (0,0) = 3o sin® 6 cos 6§ e**¥

Y38, ) ==Y (0,p) = —y/ — sin®f >
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Particule dans un potentiel central (suite)

* Equations différentielles pour la fonction radiale R(r)
(une pour chaque valeurde £ =0, 1, 2, ...)

ld ( : d)+2mr2(E—V(r))—€(€+1) R()=0

dr\ dr h
— pour chaque ¢, plusieurs solutions E—E,
numerotéesn=1, 2, ... R(r)—R e(r)

par ordre croissant d’énergie

* | Un état propre de H, L? et L, d’une particule dans un potentiel
central est défini par

— nombre quantique radial n=1, 2, ...

— nombre quantique orbital (moment cin€tique orbital) £ =0, 1, 2, ...

— nombre quantique magnétique m = —£, —+1, ..., £-1, € (2€+1 valeurs)

OS, 16 octobre 2024

Y(r,6,0) = ¢,,,.(1,0,0) =R, (0)Y,"©6,0)
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Potentiels centraux « simples »

4
* Puits rectangulaire a paroi infinie '

4

A

V(r)={_V° S1T<p Y
© sirzp
e Puits rectangulaire a paroi finie o)
V(r)={_vo 5L r<p )
0 sir=zp
* Puits parabolique (oscillateur harmonique) ~ =
: -
1 2.2
V() =-V, 1—(1) =-V,+—mw’T N
o\e 2 oy,
avec 0" =—39
mpm \ /.

{ — 1napproprié pour décrire
les forces nucléaires
OS, 16 octobre 2024

Puits coulombien \ g
V()= —g} Y /
r
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Puits rectangulaire infini

k2
* Equation radiale " d d om |
2 2
pour r < p, V(r) = -V, @ (r dr)+r e (E+V,)- €(€+1)}R(r) =0
* Avecx =kr d(x i)+X —L(L+1)|f(x)=0
— pour chaque £ entier, dx\ dx
deux solutions £(x) = j(X) fonction de Bessel sphérique d’ordre £
linéairement indép. » = N,(X) fonction de Neumann sphérique d’ordre ¢

La solution physique doit
étre réguliere a I’origine =

— continuité enr=p

(A = normalisation)

Aj(kr) s1 r<p
0 Sl T=p

R(r) = {

jz(kp) =0

o 1eme

Solutions: k_,

OS, 16 octobre 2024

z€ro de j (kp)

(sans compter le zéro a I’origine)

condition de quantification sur k

_ Ik,

I Enﬁ_ m _Vo
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Fonctions de Bessel sphériques

il(kr)

0.5

-0.5

IIIIIIIIIl\IIIIIIIII

Fonctions de Bessel spheriques

-1

o

— regulieres (c’est-a-dire finies) a 1’origine

Fonctions de Bessel

12 14

) kr
Fonctions de Neumann

— infinies a I’origine

i(X) = sin X 1y(X) = — COSX
i) = sin2x _ COSX 10,00 = - coszx _ sin X
X X X X
| (x)= i_l SinX_3cosx (x) = — i_l COSX_3sinX
L X’ X x* "2 x> X x*

OS, 16 octobre 2024

97



Puits rectangulaire fini (1)

* Equation radiale
pourr>p, V(r)=0

e Avec X =1Kr

:%(rzi)+r22m —€(£+1)
d(..d
_dx( dX)+X —€(€+1)]f(x)=0

—K? car E <0 (états 1iés)

—
R()=0

dr h’

méme €quation que precédemment !

— pour chaque £, deux solutions lin€airement indépendantes:  j,(X) et n,(X)

— la solution physique doit s’annuler pour r — oo, sans oscillations:

* Solution complete:

fonction de Hankel sphérique d’ordre ¢
hp(x) = Jo(X) +11M0(X)

h,(iKr) = - A e e

_J Ajkr)
R(D)= { C h (ikr)

S1 T<p
SI T=p

KT

h,(ikr) = 1( }2+L)e"<r

KT KT

h,(ikr) = ( §3+ :232+ l)e"“

OS, 16 octobre 2024
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Puits rectangulaire fini (2)

e Pourchaque£=0,1,2, ... i '
u qu R(t) = Ajkr) s1r<p

— trois constantes a déterminer
« A,CetE (oukouX)

— trois conditions: R4

Ch,(Gkr) si r=zp

 normalisation de R(r) A jf(kl') . Ch K(i](r)

 continuité de R(r) enr=p \\
e continuité de dR/drenr=p e,

\_/

— numerotation n=1, 2, ... par ordre croissant d’€nergie

* Plusieurs solutions:

— n =nombre de zéros de R(r)

 sans compter le zéro I’origine, mais y.c. le zéro a I’infini

21.2
ke, _
2m
E., <0 (état lig)

E =

puits infini
ne Vo < Ej

OS, 16 octobre 2024
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Puits rectangulaire fini (3)

2mrldr\ dr 2mr”
\ /

« barriere angulaire »: terme s’additionnant a V(r)

[ - d(er)+V(r)+ By (0+1)|R()=ERQ)

Vir) I vin|
W Wrz
nf en notation ° — 0 = O ——
spectroscopique: ‘ ’ | AN 3; Nee3d
\ ; \ 3 \ /’ S \..I! ......................... 3p
\\ ; . ,0‘\ | v 3
=0 < g ER T e B S...
_ LIRS .
t=1 < p ’\\Eg
£:2 PR d - \ n o %d
=3 & 1 o e 0= S e
£:4 — g * \\\ /// arE(r)
=6 — 1 4 NN N ls ———
=7 > k |- | | spectre
’ 3 - d’énergie
etc ... - — —
OS, 16 octobre 2024 £ O (S) { 1 (p) £ 2 (d) 100



Degenerescence des niveaux d’énergie

e Le nucléon est une particule de spin s = 12

* Fonction d’onde d’un état propre de H, L%, L, et S? et S,
Wi m,(1:0:0) = R (1) Y,7(0,9) %"

n = nombre quantique radial

¢tat définipar | £ = nombre quantique orbital (moment cinétique)

4 nombres - . .o, . b
quantiques m, = projection du moment cinetique orbital } nombres

.. . uantiques
. mg = projection du spin s = 7> ?nagné%ques

¢nergie E, ,

H lpnfmgms(r . 6, (I)) =FE y 1]) ngmgms(l', 6, (I)) indépendante

de m, et m, !

* | Dégénerescence = nombre d’¢tats distincts par niveau E, ,
=2 (2¢+1)

2 valeurs possibles pour mg: 2¢+1 valeurs possibles pour my:
m, = =% my,=—,—4+1,..,¢4-1,7¢
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Remplissage des niveaux d’énergie

* Principe d’exclusion de Pauli applique séparément aux
neutrons et aux protons

— pour une des deux especes:

¢nergie E,, € | dégénérescence | dégénérescence
du niveau E,, | cumulée jusqu’au
=2 (2¢+1) niveau E ,

2d —0000000000——— 2d 2 2 10 68
lg 900000000000000000 lg 1 4 18 58
2p 000000 2p 2 1 6 40
If —00000000000000— 1f 1 3 14 34
2s o0 2s 2 0 2 20
1d —oo00000000———— 1d 1 2 10 18
1p OOO00O Ip 11

1s o0 ls 1 0 2 2
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Comparaison entre différents spectres

potentiel rectangulaire
(noyau)

168
=4, 166

3p 1, 138
— {2
—_—— 106

Energy —»

OS, 16 octobre 2024

>

Energy -

potentiel harmonique

(noyau)
4s , 3(’/ ’ 2g 1/ 168
dégénérescences
accidentelles
3p 2f 1h 112
3s 2d 1g 20
20 1f 40
25 1d 20
1p ) 8
fimw ~10 MeV
A 1 2

Energy (eV)

potentiel coulombien
(atome H)

dégénérescences
accidentelles

ds 4p  4d af
3s 3p 3d

60
28

25 2

= AL i E

notation
spectroscopique
différente

gl en physique
atomique

10

10

|

n’£ au lieu de nf

n’ =n+f
= nombre
principal

-12 +

1s




