La diffraction - Principes géenéraux

Le but est de calculer le champ E en un point P, de I'espace, qui résulte d'une onde (plane ou sphérique) passant
par une ouverture X dans une parois opaque. L'origine de I'onde sphérique est une source ponctuelle P, .

La méthode: pour chaque point P, de I'ouverture illuminé par I'onde venante du point source P,, on calcule la
contribution au champ au point P, (par une méthode qui rappelle les ondelettes de Huygens), puis on integre sur la

surface de l'ouverture.
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La diffraction - Les etapes du calcul aperture®
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1. Le théoreme de Green

Nous écrivons le champ E(r,t) = U(r)e**t , ou U(r) est une solution de I'équation de Helmholtz:

(V2 +k5Ur) =0 . (k=olc).

Pour développer le théoreme de Green, nous prenons la loi de divergence de Gauss: fSA -ds = fV V-AdV , S
étant une surface close entourant un volume V (sous condition de continuité de la fonction A(r) et de sa dérivée).
Prenons une fonction: A = GVU — UVG , quidonne: V- A = GV2U — UV?G . U(r) est notre champ électrique, G(r)
est une fonction "arbitraire", qui est aussi une solution a I'équation de Helmholtz.

En substituant ce A dans la loi de Gauss, nous obtenons le théoreme de Green :

J,(GVU —UVG)-ds = | (GZ—Zén — U%én) +ds = [ (GV*U — UV*G)dV (é, est le vecteur normal a la surface S).
Puisse que U et G sont des solutions a I'équation de Helmholtz, avec le méme Kk, /
n

nous avons: GV2U — UV?G = —Gk?U + Uk?G = 0, ce qui donne:

ou , 0G 4
fS(G%en_Uﬁen)'dS: 0 .

C'est le théoréme de Green pour des solution a I'équation de Helmholtz. v




2. Le théeoreme intégral de Helmholtz-Kirchhoff

Nous utilisons le théoreme de Green, avec le champ U(r) et la fonction: G(ry;) = , qQui sont des solution a

I'équation de Helmholtz. Le point P, se trouve sur une surface arbitraire S entourant le point P, .

Selon le théoréme de Green: fS (GZ—Zén — U% én) -ds=0.

Afin d'éviter la singularité de G (r,,) au point Py, nous divisons S en deux parties: S=S'+S,, S, est une sphére de
rayon ¢ autour de P,. L'intégrale sur la somme de deux surfaces étant nulle, nous avons donc:

ou , 0G L ou , 0G 4
fS,(G%Bn—U%en)'dS: — SE(GEBn—Uaen)'dS.

L'intégrale sur la sphéere donne (le sens de é,, est vers l'intérieur, d'ou une inversion de signe des dérivées):

Ws _py2s _ o [e*eauy Cetke | iketkey L
fSE(G anen Uanen) dS— Sg( . an U(Pg)( 82 + . ))8 d_Q =

ike ike

ike i . . ,
—4me? (QT 0UPe) _ (P, (— egz 4 e )) = —41 (se”"‘E —aU(:g) + U(P,)(ete — eike”‘g)) .

on £ d

En prenant la limite e—>0 , nous trouvons: fs (G Z—Zén — Ug—flén) -ds €—>0 —4nU(P) .
&

0 0 P ikr R 0 ikr .
Cela donne: U(P,) = ﬁfs, (Ga—z - Ua_z) . ds = i . (—Ue e, — U@(e 01) en) . ds .

on  7o1 To1

C'est le théoréeme intégral de Helmholtz-Kirchhoff



3. La formule de Fresnel-Kirchhoff

On utilise le théoréme Helmholtz-Kirchhoff: U(Py) = — [, (65— US-) - ds.
4 7S on on
Nous choisissons une surface S'=S,+S, : S, est une grande sphére de rayon R, en partie coupé par la paroi

ikr
(surface S,). La fonction G (1) est toujours une onde sphérique centré sur Py : G(15,) = er -
01
. elkR aG ikelkR elkR — )
Sur la surface de la sphére (pour R>>1/k et R>>%): G(R) = — et: 6_n(R) =——— =7 R>» ikG(R).

oU _ ;0G\ . _ ou . 2
U ds—fSZG(R)(an ikU) R?dS. .

Nous aimerions que cette intégrale soit zéro pour R — o ; puisse que G(R)=1/R, nous demandons que:

L'intégrale sur S, est donc: sz (G

R (Z—Z — ikU) — 0 pour R —» oo. Cette condition est remplie pour les ondes planes et sphériques.

Pour la paroi S4, nous supposons des conditions de bord de Kirchhoff:

U _, .
U et Pl ont des valeurs non-nulles que dans l'ouverture X .

Le résultat est:

1 ouU aG - .
= — i — . . . >>S . :
U(P,y) py fz (G - Uan) ds ; en utilisant: ry1>>1/k, on obtient: ) ) =
G = , — =cos(n,r (ik——) ~ ik cos(n,r
' an (n,191) ) (n,r91) —

ikr
Donc: U(P,y) = L= (a—U — ik cos(, ry;) U) ds .

41T 2 701 on




3. La formule de Fresnel-Kirchhoff (suite)

ikr
L= (a—U — ik cos(n, ry,) U) ds .

Nous avons obtenu: U(P,) = o

41T 2 701
ou

Si l'ouverture X est illuminé par une onde plane: U = Uye'*? , — = —ikU (la direction de z et de 7 sont opposées),

on
ce qui donne pour l'intégrale:
41T 2 To1

U(Py) = Uge™?(—ik — ik cos(fi,1y,))ds = %erikh fz

Pour une onde sphérique venant d'un point source P, : U(P;) = U,

ou ) eltkrz1

5. = kU cos(n,r,,) ~ et donc:
ik eik(‘l"01+1"21) N ~
U(Py) = -Uo Jy— [cos(fi, 15,) — cos(f, ry,)]ds .
01721

C'est la formule de diffraction de Fresnel-Kirchhoff .
On peut aussi I'écrire d'une maniére succincte:

_Ug elk(ro1+721)
U(Py) = R — K(0)ds ,
avec: K(0) = [cos(R,1,,) — cos(,rg1)]/2 (0 = (I, 7¢,)).

On appelle K(0) le facteur d'obliquité .

elkr
To

Pour l'onde plane: U(P,) = %sz
1

elkr

01

To1

e lkT'21

21

- K(0)ds , avec: K(6) = —(cos(6) + 1) .

(1 + cos(nn, ry,))ds (z=z4=constante sur ).

, avec la méme approximation (r,1>>1/k):




4. La formule de Sommerfeld-Kirchhoff

La formule de Fresnel-Kirchhoff a un probléme: Nous supposons que sur la paroi (hors ouverture), U et Z—Z sont

nulles. Or, une fonction analytique qui remplit ces conditions doit étre nulle dans toute I'espace a droite de la paroi.

L \ " U .
Pour éviter ce probleme, nous devons relaxer cette condition, et demander que seulement U ou ™ soit nulle.

T . aU G : : :
Cela implique une nouvelle fonction G(r), pour assurer que (G P Ua_n) soit toujours nulle sur la paroi.

Nous la construisons en utilisant un point P, , qui est I'i'mage miroir de P, par rapport a la paroi.
Il y a deux possibilités dans le choix de G(r) :

L. lkrOl lk?‘01 . . . - .
* Nous choisissons: G_(1y1) = - . Sur la paroi (y compris l'ouverture), ry; = 7, , C€ qui donne:

To1
G_(P;) = 0. Nous demandons donc que seul U = 0 sur la partie opaque de la paroi.

aG_ ., etkro1 ~ ~ o
» Nous calculons: —= ~ ik=——— [cos(ft, 7o;) — cos(#, Fo1)]
01 mirror
elkro1 R ] R ~ ~ image
= 2ik = cos(n,ry,) , puisse que: cos(N,ry;) = —cos(M, ¥y,) .
To1
, . . oU .
* D'une maniére similaire (avec ™ =0 dans la partie opaque),
. elkr()l elk?’oj_
on peut utiliser: G, (P,) = —+——,ce qui va donner: —(Pl) =0
01 01
lkT'Ol

sur la paroi, et: G, (P;) = 2%

To1



4. La formule de Sommerfeld-Kirchhoff (suite)

ikr ikr
En choisissant: G_(P;) = er . ef 2 (donc G_(P;) = 0 sur la paroi et I'ouverture, U = 0 sur la paroi (sans
01 01

\ . 3G . R e : : ) G
l'ouverture), puis -~ 2ik cos(n, ry,) ), I'intégral de diffraction donne: U(P,) = %fz (G % — U%) - ds =

To1

—2ik [ e'To1 - 1 etfro -
— Js ——U(Py)cos(it,1p,) ds = —Js —— U(Py) cos(@, ) ds.

Pour une onde plane: U = Uye'*? | ce qui donne pour l'intégrale (z=z,=constante sur X):

e ikr01

cos(fi,ry,) ds = Yo pikzy Js K(0)ds.

i1

U ) eikr(,l
U(Po) = ﬁelkzl fz ror

To1

e lerl

Dans le cas d'une source d'onde sphérique: U(P;) = U, , hous obtenons la méme formule qu'avant:

21

ik(rg1+7151) ik(rog1+7r21)
U(PO):U— e = = cos(w’i,rol)dszﬂ e = = K(0)ds .

0
i1 2 01721 il 2 01721

C'est la formule de diffraction de Sommerfeld-Kirchhoff.
Le facteur d'obliquité: K(6) = cos(ii, ry,) est différent de celui de la formule de Fresnel-Kirchhoff, mais ne change

pas entre une source d'onde plane et sphérique.



5. La diffraction de Fresnel et de Fraunhofer
ik(rrh
Nous utilisons ici la formule de diffraction générique: U(r) = 51 . Q(W)
diffraction a un point r en fonction du champ U(r') dans le plan de l'ouverture X .
Nous utilisons l'approximation paraxiale, qui implique:
. KO)=1.
. Dans le dénominateur, on utilise I'expansion a l'ordre zéro: rr’ = z.

U(r")K(0)ds' pour calculer le champ de la

- 2 2 ! ! 2 2
. Dans I'exponentiel, I'expansion en 1¢" ordre donne: 71’ = \/z2 + (x —x)2+ (y —y)2 = z + ad ;Zy - :yy +X ;Zy'
eikz ; x%+y? ik(x’2+3”2_xx’+yy’)
Le résultat final est donc: U(r) = Eel 2z fz U(re 2z z )dx'dy’
) e 2 2 : . 124912
Si on définit: R2 = max(x'* + y'), la contribution du terme ~—=> |
X X
\ , T _ __ kR§ _ mR§ _
dans I'exponentiel serait limitée par: 6,4, = = 1, = N . w
2 (X" 0 ' e
R . - — — — — — — — — — — — V. _ _ _ A
Ngp = i s'appelle le nombre de Fresnel. /
Nous distinguons entre deux cas: = ‘
« Champ proche, ou diffraction de Fresnel : 6@, > T, 0U: Np > 1.
2 2
Le terme 22" doit étre maintenu. Y, y

« Champ lointain, ou diffraction de Fraunhofer : §¢,,,,, <7 ,0u: Np < 1.

2+y,2
2Z

Le terme = peut étre ignoré.



De Fresnel a Fraunhofer: question de distance

Région de l'optique
geomeétrique
(champ trés proche)

Région de Fresnel Région de Fraunhofer



De Fresnel a Fraunhofer: diffraction d’un trou carré

La diffraction change de Fraunhofer a Fresnel quand la taille du trou augmente:

Un trou carrée dans une parois opaque:

Figure de diffraction correspondante:

Taille croissante du trou =
Fraunhofer Fresnel




Calcul détaillé de la diffraction de Fresnel (source = point)

* Pour calculer la diffraction de Fresnel, il faut retenir tous les éléments dans I'approximation paraxiale.

« Pour simplifier le calcul, prenons une ouverture rectangulaire (coordonnées x'4, y'; et x'5,y'>) et calculons la
diffraction entre une source (point S) et un écran (point P) qui sont sur I'axe optique z. Nous allons nommer p la
distance entre la source S et le point (x',y') de l'ouverture (appelé r,1 avant), et pg la distance entre la source S et le
point (0,0) de 'ouverture. La méme chose pour r (appelé ryy avant) et ry par rapport au point P de l'image.

elk(r+

- Ve U
« En utilisant ces termes, la formule de Sommerfeld s'écrit: U(P) = "f K(e)ds
xlz 12 12, y2
« L'approximation paraxiale serait: r = r, + , P = Pyt et K(6) = 1 (dans le dénominateur: rp = 1ryp,).
. , \ \ Uel(O"'pO) x ik20TL0 (52 4,2
« L'intégrale est séparable en x' et y', donnant le champ: U(P) = =2 oo f 2 ;’12 e X 2rope ™ FY") dx'dy' =
ik ; PO rot+Po ik + . .
Ugeik(rotpo) xzelkzropo do’ fyz Zropoy dy' _ er.t (ro+po) fxz emkzx,z/zdx, fy2€lmc2y12/2 dy’
IAT9Po X1 iArgpo X1 V1
X’
avec: kK = (/;‘f—lf") Définissons les variables: u = kx' , v = ky' .
0FO0
pour obtenir des intégrales universelles: ; y,z//Q Yy )
Uge*ro*Po) u, pinu?/2 pimv?/2 / \P
(P) — 21(r0+p0) ful de dv . S Po X Iy
« |l faut toujours calculer deux mtegrales, une pour u et une pour v, A
X
avec les limites correspondantes aux dimensions de l'ouverture. ‘




La diffraction de Fresnel: comment calculer les intégrales

Nous devons calculer des intégrales de type: Int = fu‘:’f e™*/2 qw . Pour le faire, on décompose l'intégrande en
2 2 2
une partie réelle et une partie imaginaire, pour obtenir; Int = fwz [cos(ﬂ) + isin(m)] dw = [ [cos(%) +

isin(20)] du — ;" [eos (2°) + isin (220)] dw = [C(wp) — Cowp)] + ilS(wz) — Swy)]

Twr?

Les deux intégrales a calculer sont les intégrales de Fresnel : C(w) = fo COS(T) dw' et S(w) = fOW sin( » ) dw'
L'intensité diffractée est: I o« |[C(uy) — C(uy)] + i[S(uy) — S(uy)]|? = [C(uy) — C(uy)]? + [S(uy) — S(uy)]?
Ces intégrales peuvent étre calculées numériquement, p. ex. en utilisant une série convergente Ny
Les oscillations des valeurs donnent lieu a des oscillation de l'intensité diffractée. //4) g
Image et profil de I'intensité d'un 10 ' ' ' ' ' ' ' ' ' | ’ //,
lan semi-infini - ) . [
F FEEFTIE - Intégrales de Fresnel . o 4
E < ' ' W
3 0.8 s .
g z 3 [ / \\ ] I
. B / ] I
0.6 £ \ A Profil de l'intensité
/ \ 1
u / \\ d'une fente

Shadow region

0.4 “SAS
/
I/
| 1 ]
i / / S(x) —
0.2 1
// o
— II _
B /
0.0




Bonus: La diffraction de Fresnel: méthode géomeétrique de calcul (1)

Nous avons vu que le calcul de l'intensité
diffractée est: I «< |[C(u,) — C(uy)] +i[S(u,) —
S)I? = [Clup) — Cu)? + [S(uz) =S . 7
Nous pouvons dessiner une courbe, dansleplan = %
[C(w),S(w)], qui relie les points correspondantes +—+—— |
a chaque valeur du paramétre w. |
Les valeurs C(u) et S(u) ont été calculées
numeériquement, et le dessin de tous les points
(C(u),S(u)) s'appelle la spirale de Cornu.
L'intensité corresponde a la longueur d'un
vecteur entre le point (x,y)=[C(u,),S(u,)] et le
point: (x,y)=[C(u¢),S(us)] dans ce plan.

5(W)=J-Sin(7zw'2/2)dw'1+().7] | [T O N B
0 I

0. 41—

& (w)—

++0.3-

+—t e i — I(u1’u2) -0.2

|
-

LI ¥ | |
| +0.1 +0.2 +0.3 +04 +0.5 +0.6 +0.7 +0.8

%3 ( w)——)

- e

L cm=[cos(nw? / 2)dw |
0

—— — + - . — § S




Bonus: La diffraction de Fresnel: méthode géomeétrique de calcul (2)

Ugetk(Mo+pro)
2i(ro+po)
* Nous avons trouvé une maniére de le calculer avec la spirale de Cornu, qu'il faut appliquer deux fois (pour u et v).
« Pour calculer l'intégrale pour un autre point P’, on doit redéfinir I'axe z entre S et P’, ce qui va changer les limites de
I'ouverture et donc les limites des intégrales.
« Exemples:
« La diffraction par un plan semi-infini (un point limite est le point (1) du diagramme, correspondant a w=«).
« D'une maniére similaire, on peut calculer la diffraction d'une fentt

f”z einuz/z du f”z eircvz/z dv
(%1 )

« Rappel: nous voulons calculer l'intensité au point P sur I'axe par: U(P) = »

y
. yo v, . . / //ﬂ/)‘
Image et profil de l'intensité: La spirale de Cornu, avec les points y J
¥ ¥ § ¢ 277 correspondants aux points du profil: ¢ a4 -

% £330 ' il
E o

- ‘) - . 3

2 T ¥

\\
i
O

Shadow region




Les zones de Fresnel

Prenons I'équation de la diffraction de Fresnel avec une source S
et un plan de diffraction X-Y. Le champ au point P est:

ik(ro+po) k(x,2+y,2)
U(P) _ erl)lr — fo f;/lz (7‘0 Po dx’ dy
En définissant: R? = x'? + y'? et: ? = r— + p— , nous obtenons:
0 0

2
U, etko+po) x iR , :
U(P) = Oefoz f;’z e 2fdx’dy’ ou en coordonnées polaires:
1 1

2
U0 eik(ro+po) 21U, ekTo+po) fRz ik2

27'[ i —
= f = f
U(P) = — f Js “FRARAO = Rl RdR.

Nous d|V|sons le plan x'-y' en anneaux, limités par des cercles de diamétres:
Rz = mAf (m=1,2,...). On les appelle les zones de Fresnel.
2

\ : ., : R
La phase de I'exponentielle liée aux points sur ces cercles est: ¢,,, = k-2 = mn

Y l
La différence de phase entre les ondes venants des différents points dans la Xe I, o
méme zone est: Ap < @41 — m = T, donc tous ces champs d'une zone g 7

s'interférent constructivement au point P. ol
La surface de chaque zone est la méme: S = n(R2,,; — R2) = mAf , Pm / m
ce qui donne la méme contribution a l'intensite.

Se Po r

( ) 0 \ P



L es zones et la lentille de Fresnel

* Nous pouvons calculer la contribution d'une zone de Fresnel, entre le cercle m+1 et le cercle m, en utilisant des
coordonnées polaires et la définition R2, = mAf :

R2 Rz Rm+1 .
. (P) = 27U eKT0+P0) Rty o *2F pap = 27l etk(ro+po) [ ik - _ ek(To*Po) [eilm+Dm _ gimn] =
U1 7 ToPo “Rm oA Topo ik Rm 0 ToPo B
lk(r0+ Po) lk(r0+p0)
2U0f—( ™= C-(=1)™, avec: C = 2U,f = o
(0] 4]
« Chaque zone donne la méme contribution au point P, mais le signe s'inversé entre zones voisines
 L'intensité totale set donc: U(P) =¥} _,U,=C—-C+C—C +- = + (— —C+ ) . C'est trés peu!

|| N'

« Sion élimine chaque zone paire (ou chaque zone impaire), on trouve UP) = Ym=13.. Un C (N>>1).

« C(C'estla lentille de Fresnel: la moitié de l'intensité (ce qui correspond a la moitié transparente de la surface) est

concentré au point P, qui remplit la condition de focalisation par une lentille: % = rl+ pi (f = R%,/mA).
0 0

Une lentille de 4. 7
Fresnel utilisant les \Em
zones paires (a D.) :
ou impaires (a G.):

™~



La lentille de Fresnel

Nous avons vu que si nous construisons une plaque avec obturation d'une zone de Fresnel sur deux, nous

focalisons la moitié de la lumiere venant d'un point S vers un point P, qui se trouve a une distance r, donnée par:

1 1 1

—==—+4+—,f=R%/mA.

f 1o Ppo f m/

De la méme maniére, une onde plane qui arrive a cette plaque est focalisée en un point P a la distance T.
, 2

Uo elkro lkR—

ikr
Pour I'onde plane, la formule de Sommerfeld-Kirchhoff est: U(P) = %"fz%ds T J e ?rods .
0

Nous définissons: f = ry , puis divisons de nouveau le plan x'y’'en zones de Fresnel (R,;, = mAf), en éliminant
o ikf

F
Conclusion: La lentille de Fresnel fonctionne comme une lentille en verre, mais avec les avantages d'étre plate.
Les désavantages: on perd la moitié de l'intensité, et il y a une dépendance a la longueur d'onde (RZ, = mAf).

chaque 2éme zone, pour retrouver: U(Py) = Ymi=13,. Un = gC (N>>1), avec: C = Uyf

Rm




Les limites de la Ientllle de Fresnel

21tU ik(r O+p0) R i N ik(r0+p0)
o8 [T2e lZfRdR Ym=13,.Um =5 C , avec: C = 2Upf ———.

iA ToPo R4 ToPo
Mais, si le rayon de la lentille va vers l'infini, l'intégrale va aussi a l'infini > Somme infinie???

En effet, notre calcul dans le cadre de I'approximation paraxiale, suppose que l'intensité est constante: I o< 1/r¢pé .
Le champ réel diminue avec la distance R du centre, car il dépend du pré-facteur I o< 1/72%p?

Nous pouvons calculer la distance R pour laquelle l'intensité diminue de moitié, c.a.d. 1/r2p? = 1/2ry?py? . Les
distances exactes sont: 2 = 1§ + R? et p? = p§ + R? , cela donne: 2r¢pé = r?p? = (r§ + R?*)(pé + R?) . C'est une

Nous avons trouvé le champ total: U(P) =

équation quadratique en R2, sa solution est: R? = 3(\/,)3 + 13t + 617 pé — pé — roz) .

Pour le cas simple ry=p, , nous avons une solution simple: R? = r¢(vV2 — 1).

r(v2-1)
Af
qu'il faut garder dans la somme, ou l'intensité est déja la moitié de celle du centre.

Avec la relation: R, = mAf , cela donne la valeur: Ny, = . C'est une indication pour la valeur maximale N

Pour une valeur typique: ry = 10 cm, A ~ 500 nm , Ny, = 10° I ;
By

y

\ \‘IRM )
/ ’m ‘.‘v‘ !"" rm
K‘P 7‘.
Se Po 0O o e P
[




La diffraction de Fraunhofer

y

Dans le cas de la diffraction de Fraunhofer, ou champ lointain (N = — < 1), on peut négliger la partie = dans

x%2+y%2  xx'+yy'

le calcul de la phase, donc il nous reste: r = z + > .

ikz x2 2 xx! +y
L'intégrale de diffraction est donc: U(r) = ei/lz f U@r'e dx dy' .

L'approximation paraxiale nous permet de définir: 7 ~ ksin6, = k,, 7 ~ ksin6, =k,
ikz ., x%+y?
Lintégrale devient: U(ky, k) = U(6y,6,) = U(x,y) ~ ——e™
C'est exactement la transformée de Fourier de U(x',y') !
Conclusion: La diffraction de Fraunhofer donne une distribution U(k,, k,) = U(6y, 8,) qui est la transformée de
Fourier du champ a l'ouverture U(x',y") .
Avec une lentille, on peut transformer les angles 6,,6, en une
position x,y sur un écran, pour visualiser la diffraction.

fz U(X,, yl)e—i(kxx’+kyy’)dxldyl .

Ay sin 6



La diffraction de Fraunhofer d'une fente

La diffraction de Fraunhofer d'une fente de largeur D en x (et infinie en y), illuminée par une onde plane, est:

D/2 ; / 2Ug . kyD . k,D kD sin 6
Uk, =U(0,) =U, [ 12 gikxx! gyt = 2U0 gy KD U,D sincf , avec: f = == = ~.
—-D/2 Ko 2 2 2
" s , ) . , \ . 21 A
L'intensité est donné par: 1(0,) = I, sinc? B . Le premier zéro se trouve a: f=r, ou: sin 0, = 55"

La largeur du pic est donc 2)/D, inversement proportionnel a celle de la fente (transformée de Fourier!)
Une autre maniere de calculer: traiter la fente comme un réseau de diffraction, composé de N éléments, chacun de

sin(Nkd/2 -sin Qx))z _

taille d=D/N. L'intensité par élément est: Ip/N2. L'intensité diffractée est: 1(0,) = %( Sin(kd/2 5in 61)

irl(Dk sin Hx) 2
Io <S 2

vz \ < /Disin gz > , et dans la limite N - oo, on obtient:
sin(=—5x—)

D/2 X

: 2
. (Dk sin Oy -D/2

I Sin .
I(Gx) ~ N_02< kD sinzex )> = IO SlnCZ :8 . '

2N
D
I
P P
-‘::g:::’_—__ AJT%
a =
Si l =
() _bsing
o Aysin 6 -4 -3 -2 -1 0 1 2 3 4 A
Yiewing screen Viewing




Diffraction de Fraunhofer par un trou rectangulaire

La diffraction de Fraunhofer d'un trou rectangulaire de taille axb le long des axes x-y respectivement, illuminée par
une onde plane, est séparable en deux intégrales:

b/Z Cl/Z _l(kxx’+k y’) / / 2UO . kxa . kyb . .
= = Yy = =
U(ky, ky) = U(By, 0) = Uy f—b/z f_a/ze dx'dy ok, SN =5 sin = Uyab sinc a sinc 8,
k ka sin 6 kyb kb sin 6
avecia=—-=—"F et f==— .

L'intensité est: 1(0,) = I, sinc? a sinc? g .
La largeur du pic central est donc (2A/a) x (2A/b) .
Sib — oo, il n'y a plus de diffraction le long de I'axe y (on revient a I'optique géométrique), et nous revenons a la

diffraction d'une fente en x.
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Interférence + diffraction par deux fentes

L'expérience de Young (interférence entre deux fentes) doit étre corrigée par l'effet de la diffraction. Si les fentes
ont une largeur b et leur distance est a (a>b), le champ sur I'écran est la somme des deux champs, avec leur

déphasage Ag = k,a . Cela donne un facteur cos(k,a/2); le champ total est: U(8,) = Uyb sinc 25 Ox kas;—ng"
L'intensité est: 1(0,) = I, sinc? fcos?a (B = w , Q= kas;—ngx ).

Souvent, a>>b; le pic de diffraction est donc beaucoup plus large que les pics d'interférence: il forme une
enveloppe sur les franges d'interférence.

Dans le cas spécial a=3b, le 1¢" zéro de diffraction annule les 3¢me + 4éme pjcs
d'interférence, le 2¢™e pic annule le 7¢me, etc. .

Interference pattern

.~ Diffraction pattern
a=3b

Diffraction d'une fente:

Diffraction de 2 fentes:
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Interférence + diffraction par un réseau de fentes

« Dans un réseau de diffraction, on a un grand nombre N de fentes, qui générent une figure d'interférence. Elle doit

sin? Na kb sin 6 __kasin®6
B=—",a=—").

étre multiplié par l'effet de la diffraction, ce qui donne: 1(8,.) = I, sinc? 3 - »

sin? a

« De nouveau, Na>>b, donc l'enveloppe de la diffraction est beaucoup plus large que les pics de l'interférence.

Sans diffraction

Fentes Bandes d’interférence N?

sin 0

Avec diffraction

{ 4
. i
:
Hiui
{
| |
|
il
‘
(]
(]
lH 1 1
|
‘
i
R
|
‘

sin 6




Diffraction de Fraunhofer: Effets de la forme des trous
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Le principe de Babinet

Prenons la formule de Sommerfeld-

ik(r01+r2 1)

Kirchhoff: U (Po) = 2 J *———K(8)ds ,

dans le cas d'une ouverture X et de son
complémentaire (une obstruction) %'".

La somme des deux structures donne une
parois entiere, qui ne laisse rien passer,
donc: Us(P,) + Us,(P,) = 0,0u: Us(Py) =
_ UZ/(PO) .

L'intensité est donc: I (Py) = UZ(P,) = Iy, .

C'est le principe de Babinet: la diffraction
d'une forme X est égale a celle de son
complément X',

Réseau
de trous:

Réseau
d’obstacles:
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Diffraction de Fraunhofer d’'un trou circulaire

' . . . . p 2nlUy ra k iler2
Dans le cas d'un trou circulaire, la diffraction de Fresnel est donnée par: Us(P,) = ZZO fo Jo (g) ek /22y

La diffraction de Fraunhofer est |la transformée de Fourier de I'ouverture circulaire, qui est la fonction de Bessel.

. 2 1/1(0)
J1(ka sin 9)) )

ka sin 6

L'intensité de la diffraction d'un trou de rayon a est donc: 1(8) = 41, (

Le premier zéro de cette fonction est a: kasin = 3.83 , ou: sinf = 8 = 1.221/D (D=2a).

Une série de trous de taille croissante:
Passage de la diffraction de Fraunhofer
(haut Gauche) a Fresnel (bas)

0.0175
0.0042




La resolution d’'un microscope optique

* Prenons un objectif de microscope, sans aberrations, avec un diameétre D et de longueur focale f. L'image d'un

point forme un cercle de diffraction, de rayon: R = f0 = L22Af 1224 0614 (NA = sin(a) , #/F =D/f=2tg(a) ).

D #/F

* Pour distinguer dans l'image entre deux points de 'objet, on utilise le crltere de Rayleigh: Le maximum de l'image
d'un point doit coincider avec le premier zéro du point voisin.

« La résolution du microscope est donc e€gale au rayon décrit ci-dessous: R =

12224 0614
#/F NA

. C'est une limite

fondamentale de la résolution d'un microscope, due a la diffraction.

10

-8.42

—-7.02

—-5.14 | |

3.83

1/1(0)
]
1.0

0.0175

0.0042

10

- kasin 0

Deux points
non-résolus

Deux points Seuil de
distincts résolution

Le critére de

Rayleigh:




Bonus: Le point d'Arago (de Poisson)
Selon le principe de Babinet, la diffraction de Fresnel d'un objet circulaire est donnée par:

2nu k 2
Us(Py) = — 220 [ )y (F5) e/ 227y

J1(ka sin 6))2

Le méme principe s'applique a diffraction de Fraunhofer, qui donne: I1(8) = 41, ( P—

Le résultat est qu'au centre de I'ombre d'un cercle / d'une bille il y a un point lumineux, appelé le point d'Arago (ou

de Poisson). Une série de trous de taille croissante:
Passage de la diffraction de Fraunhofer a Fresnel

Cela a été aussi démontré pour des fonctions d'ondes quantiques.

(1 +6/9).(1+y)

point g b
source

‘aueid obew

https://www.researchgate.net/figure/Schematic-diagram-of-the-Poisson-
https://vanderbei.princeton.edu/PoissonSpot/PoissonSpot.html spot-experiment-and-notation-for-the-classical_fig7_231153832




« Selon le princig

2nU
UZ(PO) = —%

* Le méme princi

 Le résultat est «
de Poisson).
« (Cela a été auss

point g
source

https://vanderbei.princeton.edu/Poisson!

Bonus: Le point d'Arago (de Poisson)

oint d'Arago (ou

3 croissante:
le Fraunhofer a Fresnel




La diffraction d'un petit trou d<<i

Imaginons une ouverture = dont le diamétre est d<<i , illuminée par une onde plane; U,e'*? . Le champ qui arrive

ikr
sur un point P, est donné par la formule de Sommerfeld: U(P,) = %"fz er -
0

cos(n,ry,) ds .
1
Puisse que d<<A<<ry , ry1 peut étre considéré comme constant sur la

surface X. L'intégrale est donc triviale, donnant: U(P,) = Scos(n,ry,)

(S=surface de l'ouverture X). C'est une source ponctuelle d'une onde

2
sphérique, modulé par I'angle. L'intensité est: I1(Py) = I, (%) cos?(M,1y,) -
01

L'intensité totale (intégrée sur une demi-sphére) est:

Po
S \? (52 .
Lot = 1 (/17”01) JIZ 0”1”021 cos? 0sin O dodg
0
S \? z . 21 (S R
= I (E) 21y fOZ cos?fsin6do = Io?n(z) : ]

En effet, notre petit trou mesure un échantillon de I'onde plane, donc
I'intensité mesuré est proportionnelle a la surface du trou.




Bonus: Imagerie en champ proche: le SNOM/NSOM

Si nous mettons un échantillon partiellement transparent a proximité immédiate d'un petit trou (d<<l), l'intensité qui
passe est multipliée par la transmission de la (petite) partie de I'échantillon qui se trouve derriére le trou.

Nous mesurons l'intensité totale qui passe, qui représente la transmission de I'échantillon sur une échelle de la taille
du trou, qui est <<i. On n'est plus limité par la diffraction! Mais, c'est une mesure d'un seul point de I'échantillon...
On dit que la mesure est faite en champ proche.

Pour obtenir une image compléte, il faut balayer la position de I'objet semi-transparent (en x-y) par rapport au
systeme optique (trou, lentille de focalisation, détecteur...), tout en restant a proximité de 'ouverture.

C'est le principe du microscope a champ proche, le SNOM/NSOM.

Souvent, on remplace la paroi opaque par une fibre optique couverte de métal, avec un trou au bout.

OSe

serait

Polycrysiathine

vy

0 Z N

O Ob t EE. Fr-ﬁddlem-’-" —,‘J
j©

N2 t 250 nm https://www.slideshare.net/Dhanyarajesh
- 2/near-field-scanning-optical-microscopy




Bonus: Imagerie en champ proche: structure du SNOM/NSOM

* On utilise un systéme de positionnement x-y-z de haute résolution. Un systeme de feedback en z maintient une
distance constante de 1-10 nm entre la fibre et la surface de I'échantillon pendant le balayage de la surface.
« La lumiére transmise est collecté par un objectif de microscope et un détecteur, pour former une image numerisée.
* |l'y a plusieurs méthodes de SNOM:
« Transmission entre fibre et lentille (montré ici)

» Réflexion entre fibre et lentille, ou vers la méme fibre
» Couplage par des ondes évanescentes d'un prisme, détecté par une fibre.

Objective

» Perturbation locale du champ électrique par un point métallique, Optical fiber
créant une onde secondaire

* On peut obtenir une résolution optique de 50-100 nm.
» A cause du balayage, ce microscope est lent: >5min. par image.

|

Distance | [Fgedback
detection

-  Sample
)_y[] @

v
S |
Detector 2

https://www.researchgate.net/profile/Niek_Van_Hulst2/publication/116163
12/figure/fig2/AS:394544186183684@1471078072334/Schematic-lay-out-
of-a-near-field-scanning-optical-microscope-The-NSOM-probe-is-a.png




Bonus: Images des molécules fluorescentes par SNOM

J. Kerimo et al., Inter-Amer. Photochem. Soc. Newslett., 19, (1996)



L'holographie - but
L'holographie a comme but de répliquer a l'identique l'image d'un objet en 3D, c.a.d. reconstruire toutes les ondes
eémises par un objet dans toutes les directions.
Les ondes émises par I'objet peuvent étre décomposées, par la transformée de Fourier, en un ensemble d'ondes
planes partantes dans différentes directions.
Pour reconstruire une onde plane qui se propage dans un angle (6,,6, ), nous pouvons faire passer une onde plane

U = erikz au travers d’'un transparent f(x, y) _ ei(x sin Ox+y sin 6,,) _

Malheureusement, une photographie n'est sensible qu'a l'intensité, donc toute I'information de la phase est
perdue... TERE . a LR B

http://www.swinburne.edu.au/media/swinburneeduau/media-
centre/images/news-articles/republished/star-wars-hologram-Is-00.jpg



L'holographie — comment ca marche

» Pour préserver la phase, il faut la transformer en intensité, en utilisant l'interférence.

» Pour enregistrer un hologramme, on expose un film photographique (ou une couche de substance photosensible) a
l'interférence créée entre la lumiere réfléchie par I'objet U, et un faisceau de référence U,. (il faut une longueur de
cohérence suffisante pour couvrir tout le chemin optique).

« La transmission du film développé est proportionnelle a l'intensité de I'exposition initiale:

T o« I =|U,+ Up|? = |Uy|? + |Up? + UsU, + U3U, = (I, + I,) + UpU, + U3U, = I, + I + 2,/ I cos(p, — ;).

« Pour la reconstruction, on illumine le film par le méme faisceau de référence U,., pour obtenir:
Uu=TU,=(U,+ 1)U, +UUU,+UU.U.= (U, + 1)U, + .U, + U2U}

« Le premier terme est proportionnel a l'illumination, dans la direction du faisceau de référence.

« Le deuxiéme terme est proportionnel a I'onde original venant de I'objet — c'est la reconstitution fidele !

« Le troisieme terme est le conjugué de I'onde de l'objet, qui va dans un sens opposé. On l'appelle "image
conjuguée” ou "image fantdme".
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L'holographie — exemples simples
Pour une onde plane a un angle 0: I'enregistrement donne un réseau

regulier. H“
La reconstruction donne trois ondes, aux angles: 0, 0, -6. \\\

Reference

Reference
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Conjugate

(a) Recording (b) Reconstruction
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Pour une onde sphérique, venant d'un point (0,0,-d): I'enregistrement | | Object

donne une série de cercles concentriques. L R““““ \\}»”m”\\\\ i “”“
La reconstruction donne trois ondes, une qui continue I'expansion de Ob};lt”)))| (\‘i'ﬂ‘iu“ﬁ:(( m‘” ““'“”—*
I'onde sphérique, une onde plane (la référence), et une onde qui se g "”/// /

< d
<
(a) Recording (b) Reconstruction

focalise sur un point (0,0,d).

Pour un objet fortement désaxé par un angle 6 qui est plus grand

que la gamme des angles contenus dans la réflexion de I'objet: il y REecncs
. . : . \ |
aura une nette séparation entre la reconstruction (centrée sur l'angle |
de propagation 0), la référence (onde plane a I'angle 0) et I'onde |

. : oWs
conjuguée, centrée sur l'angle -6. Object

o
— vosin
I

asi

ologram

(a) Recording



Bonus: L'nholographie de Fourier
« En utilisant une lentille de longueur focale f, nous pouvons enregistrer 'hologramme de la transformée de Fourier
- : _r(x Y
d'un transparent f(x,y): U,(x,y) = F (Af,lf) :
« La reconstruction avec une lentille donnera la transformée inverse, revenant a la fonction d'origine f(x,y).

* Nous pouvons aussi enregistrer I'hologramme de la transformée de Fourier H (;—f%) d'un filtre h(x,y), puis l'utiliser

x Y
Af’ Af
donnera l'image g(x,y) ,qui est la convolution du filtre et de 'objet.

entre deux lentilles pour le multiplier par la transformées T( ) d'un objet f(x,y) ; la transformée inverse

g(x,y)
)

Hologram Hologram e

-

A
/ Hologram Hologram
(a) Recording (b) Reconstruction

U, | U,

(a) Recording (b) Reconstruction



L'hologramme produit par ordinateur

* On peut calculer I'nologramme des structures simples par moyens informatique, puis l'imprimer sur un transparent
comme un hologramme classique. On peut ainsi générer un faisceau avec une forme spécifique:
« (Générer une image spéecifique pour les pointeurs laser.
« Générer une ligne pour les "niveau a laser" pour la construction. mmmww
(0]

» (Générer des multiples faisceaux pour les scanneurs des code-barres. ' s

https://www.indiamart.com/proddetail/
barcode-reader-21748345988.html

https://www.amazon.in/Diffrent-Shape-
Professional-Laser-Pointer/dp/B07CTJ627J

https://www.indiamart.com/proddetail/omni-
directional-barcode-scanner-10695419530.html

} BB https://www.bccourier.com/wp-
) content/uploads/2020/02/Laser-Level.jpg

https://www.alibaba.com/product-detail/5-
in-1-Red-Laser-Projector_717360307.html



