
• Le but est de calculer le champ E en un point P0 de l'espace, qui résulte d'une onde (plane ou sphérique) passant 
par une ouverture S dans une parois opaque. L'origine de l'onde sphérique est une source ponctuelle P2 .

• La méthode: pour chaque point P1 de l'ouverture illuminé par l'onde venante du point source P2, on calcule la 
contribution au champ au point P0 (par une méthode qui rappelle les ondelettes de Huygens), puis on intègre sur la 
surface de l'ouverture.

La diffraction - Principes généraux

Problème général: onde diffracté par une ouverture S
Définitions des points P0, P1, P2

P2

P1 P0



1. Le théorème de Green: Lien entre intégrale de surface 
et de volume, pour des solutions de l'équation d'onde.

2. L'intégrale de Helmholtz-Kirchhoff: Lien entre le champ 
dans un point et sur une surface qui l'entoure.

3. La formule de Fresnel-Kirchhoff: Le champ dans un 
point illuminé par une ouverture

4. La formule de Sommerfeld-Kirchhoff: une correction 
plus physique de Fresnel-Kirchhoff

5. La diffraction de Fresnel et de Fraunhofer: calcul de la 
diffraction (dans l'approximation paraxiale)

La diffraction - Les étapes du calcul

P2

P1 P0



• Nous écrivons le champ 𝐸 𝒓, 𝑡 = 𝑈(𝒓)𝑒!"#$ , où U(r) est une solution de l'équation de Helmholtz:
𝛻% + 𝑘% 𝑈 𝒓 = 0 .  (k=w/c).

• Pour développer le théorème de Green, nous prenons la loi de divergence de Gauss: ∫&𝑨 0 𝑑𝒔 = ∫'𝜵 0 𝑨𝑑𝑉 , S
étant une surface close entourant un volume V (sous condition de continuité de la fonction A(r) et de sa dérivée).

• Prenons une fonction: 𝑨 = 𝐺𝜵𝑈 − 𝑈𝜵𝐺 , qui donne: 𝜵 0 𝑨 = 𝐺𝛻%𝑈 − 𝑈𝛻%𝐺 . U(r) est notre champ électrique, G(r) 
est une fonction "arbitraire", qui est aussi une solution à l'équation de Helmholtz.

• En substituant ce A dans la loi de Gauss, nous obtenons le théorème de Green :

∫& 𝐺𝜵𝑈 − 𝑈𝜵𝐺 0 𝑑𝒔 = ∫& 𝐺 ()
(*
𝑒̂* − 𝑈

(+
(*
𝑒̂* 0 𝑑𝒔 = ∫' 𝐺𝛻

%𝑈 − 𝑈𝛻%𝐺 𝑑𝑉 (𝑒̂* est le vecteur normal à la surface S).
• Puisse que U et G sont des solutions à l'équation de Helmholtz, avec le même k, 

nous avons: 𝐺𝛻%𝑈 − 𝑈𝛻%𝐺 = −𝐺𝑘%𝑈 + 𝑈𝑘%𝐺 = 0 , ce qui donne:

∫& 𝐺 ()
(*
𝑒̂* − 𝑈

(+
(*
𝑒̂* 0 𝑑𝒔 = 0 .

C'est le théorème de Green pour des solution à l'équation de Helmholtz.

1. Le théorème de Green



• Nous utilisons le théorème de Green, avec le champ U(r) et la fonction: 𝐺 𝑟,- = .!"#$%
/$%

, qui sont des solution à 

l'équation de Helmholtz. Le point P1 se trouve sur une surface arbitraire S entourant le point P0 .

• Selon le théorème de Green: ∫& 𝐺 ()
(*
𝑒̂* − 𝑈

(+
(*
𝑒̂* 0 𝑑𝒔 = 0 .

• Afin d'éviter la singularité de 𝐺 𝑟,- au point P0, nous divisons S en deux parties: S=S'+Se, Se est une sphère de 
rayon e autour de P0. L'intégrale sur la somme de deux surfaces étant nulle, nous avons donc:

∫&& 𝐺 ()
(*
𝑒̂* − 𝑈

(+
(*
𝑒̂* 0 𝑑𝒔 = −∫&' 𝐺 ()

(*
𝑒̂* − 𝑈

(+
(*
𝑒̂* 0 𝑑𝒔 . 

• L'intégrale sur la sphère donne (le sens de 𝑒̂* est vers l'intérieur, d'où une inversion de signe des dérivées): 

∫&' 𝐺 ()
(*
𝑒̂* − 𝑈

(+
(*
𝑒̂* 0 𝑑𝒔 = −∫&'

.!"'

0
() 1'
(*

− 𝑈 𝑃0 − .!"'

0(
+ "2.!"'

0
𝜀%𝑑𝛺 =

−4𝜋𝜀% .!"'

0
() 1'
(*

− 𝑈 𝑃0 − .!"'

0(
+ "2.!"'

0
= −4𝜋 𝜀𝑒"20 ()(1')

(*
+ 𝑈(𝑃0) 𝑒"20 − 𝜀𝑖𝑘𝑒"20 .

• En prenant la limite e->0 , nous trouvons: ∫&' 𝐺 ()
(*
𝑒̂* − 𝑈

(+
(*
𝑒̂* 0 𝑑𝒔 𝜀 → 0 − 4𝜋𝑈(𝑃,) .

Cela donne: 𝑈 𝑃, = -
56 ∫&& 𝐺 ()

(*
− 𝑈 (+

(*
0 𝑑𝒔 = -

56 ∫&&
()
(*

.!"#$%
/$%

𝑒̂* − 𝑈
(
(*

.!"#$%
/$%

𝑒̂* 0 𝑑𝒔 .

• C'est le théorème intégral de Helmholtz-Kirchhoff

2. Le théorème intégral de Helmholtz-Kirchhoff

'



• On utilise le théorème Helmholtz-Kirchhoff: 𝑈 𝑃, = -
56 ∫&& 𝐺 ()

(*
− 𝑈 (+

(*
0 𝑑𝒔.

• Nous choisissons une surface S'=S1+S2 : S2 est une grande sphère de rayon R, en partie coupé par la paroi 

(surface S1). La fonction 𝐺 𝑟,- est toujours une onde sphérique centré sur P0 : 𝐺 𝑟,- = .!"#$%
/$%

.

• Sur la surface de la sphère (pour R>>1/k et R>>S): 𝐺 𝑅 = .!")

7
et:  (+

(*
𝑅 = "2.!")

7
− .!")

7(
𝑅 ≫ 𝑖𝑘𝐺 𝑅 .

• L'intégrale sur S2 est donc: ∫&( 𝐺 ()
(*
− 𝑈 (+

(*
0 𝑑𝒔 = ∫&(𝐺(𝑅)

()
(*
− 𝑖𝑘𝑈 𝑅%𝑑Ω .

• Nous aimerions que cette intégrale soit zéro pour 𝑅 → ∞ ; puisse que G(R)≈1/R, nous demandons que:

𝑅 ()
(*
− 𝑖𝑘𝑈 → 0 pour 𝑅 → ∞. Cette condition est remplie pour les ondes planes et sphériques.

• Pour la paroi S1, nous supposons des conditions de bord de Kirchhoff:

U et ()
(*

n'ont des valeurs non-nulles que dans l'ouverture S . 
• Le résultat est: 

𝑈 𝑃, = -
56 ∫8 𝐺 ()

(*
− 𝑈 (+

(*
0 𝑑𝒔 ; en utilisant: r01>>1/k, on obtient:

𝐺 = .!"#$%
/$%

,  (+
(*
= cos G𝒏, 𝒓,- 𝑖𝑘 − -

/$%

.!"𝒓$%
/$%

≈ 𝑖𝑘 cos G𝒏, 𝒓,-
.!"𝒓$%
/$%

• Donc: 𝑈 𝑃, = -
56 ∫8

.!"𝒓$%
/$%

()
(*
− 𝑖𝑘 cos G𝒏, 𝒓,- 𝑈 𝑑𝑠 .

3. La formule de Fresnel-Kirchhoff



• Nous avons obtenu: 𝑈 𝑃, = -
56 ∫8

.!"𝒓$%
/$%

()
(*
− 𝑖𝑘 cos G𝒏, 𝒓,- 𝑈 𝑑𝑠 .

• Si l'ouverture S est illuminé par une onde plane: 𝑈 = 𝑈,𝑒"29 , ()
(*
= −𝑖𝑘𝑈 (la direction de z et de G𝒏 sont opposées), 

ce qui donne pour l'intégrale:

𝑈 𝑃, = -
56 ∫8

.!"𝒓$%
/$%

𝑈,𝑒"29 −𝑖𝑘 − 𝑖𝑘 cos G𝒏, 𝒓,- 𝑑𝑠 = !"2
56
𝑈,𝑒"29% ∫8

.!"𝒓$%
/$%

1 + cos G𝒏, 𝒓,- 𝑑𝑠 (z=z1=constante sur S).

• Pour une onde sphérique venant d'un point source P2 : 𝑈 𝑃- = 𝑈,
.!"#(%
/(%

, avec la même approximation (r21>>1/k): 

()
(*
≈ 𝑖𝑘𝑈, cos G𝒏, 𝒓%-

.!"𝒓(%
/(%

et donc:

𝑈 𝑃, = "2
56
𝑈, ∫8

.!"(𝒓$%,𝒓(%)

/$%/(%
cos G𝒏, 𝒓%- − cos G𝒏, 𝒓,- 𝑑𝑠 .

• C'est la formule de diffraction de Fresnel-Kirchhoff .
• On peut aussi l'écrire d'une manière succincte:

𝑈 𝑃, = )$
": ∫8

.!"(𝒓$%,𝒓(%)

/$%/(%
𝐾 θ 𝑑𝑠 ,

avec: 𝐾 𝜃 = cos G𝒏, 𝒓%- − cos G𝒏, 𝒓,- /2 (𝜃 ≡ G𝒏, 𝒓,- ). 
• On appelle K(q) le facteur d'obliquité . 

• Pour l'onde plane:  𝑈 𝑃, = )$
": ∫8

.!"𝒓$%
/$%

𝐾 θ 𝑑𝑠 , avec: 𝐾 𝜃 = − cos 𝜃 + 1 .

3. La formule de Fresnel-Kirchhoff (suite)



• La formule de Fresnel-Kirchhoff a un problème:  Nous supposons que sur la paroi (hors ouverture), U et ()
(*

sont 

nulles. Or, une fonction analytique qui remplit ces conditions doit être nulle dans toute l'espace à droite de la paroi.

• Pour éviter ce problème, nous devons relaxer cette condition, et demander que seulement U ou ()
(*

soit nulle. 

• Cela implique une nouvelle fonction G(r), pour assurer que 𝐺 ()
(*
− 𝑈 (+

(*
soit toujours nulle sur la paroi. 

• Nous la construisons en utilisant un point R𝑃, , qui est l'image miroir de 𝑃, par rapport à la paroi.
• Il y a deux possibilités dans le choix de G(r) :

• Nous choisissons: 𝐺! 𝑟,- = .!"#$%
/$%

− .!".#$%
;/$%

. Sur la paroi (y compris l'ouverture), 𝑟,- = 𝑟̃,- , ce qui donne: 

𝐺! 𝑃- = 0 . Nous demandons donc que seul U = 0 sur la partie opaque de la paroi. 

• Nous calculons: (+/
(*

≈ 𝑖𝑘 .
!"𝒓$%

/$%
cos G𝒏, 𝒓,- − cos G𝒏, U𝒓,-

= 2𝑖𝑘 .
!"𝒓$%

/$%
cos G𝒏, 𝒓,- , puisse que: cos G𝒏, 𝒓,- = −cos G𝒏, U𝒓,- .

• D'une manière similaire (avec ()
(*

=0 dans la partie opaque), 

on peut utiliser : 𝐺< 𝑃- = .!"#$%
/$%

+ .!".#$%
;/$%

, ce qui va donner: (+,
(*

𝑃- = 0

sur la paroi, et: 𝐺< 𝑃- = 2 .
!"#$%

/$%
.

4. La formule de Sommerfeld-Kirchhoff



• En choisissant: 𝐺! 𝑃- = .!"#$%
/$%

− .!".#$%
;/$%

(donc  𝐺! 𝑃- = 0 sur la paroi et l'ouverture, 𝑈 = 0 sur la paroi (sans 

l'ouverture), puis (+/
(*

≈ 2𝑖𝑘 .
!"𝒓$%

/$%
cos G𝒏, 𝒓,- ), l'intégral de diffraction donne: 𝑈 𝑃, = -

56 ∫8 𝐺 ()
(*
− 𝑈 (+

(*
0 𝑑𝒔 =

!%"2
56 ∫8

.!"𝒓$%
/$%

𝑈(𝑃-) cos G𝒏, 𝒓,- 𝑑𝑠 = -
": ∫8

.!"𝒓$%
/$%

𝑈(𝑃-) cos G𝒏, 𝒓,- 𝑑𝑠.

• Pour une onde plane: 𝑈 = 𝑈,𝑒"29 , ce qui donne pour l'intégrale (z=z1=constante sur S):

𝑈 𝑃, = )$
":
𝑒"29% ∫8

.!"𝒓$%
/$%

cos G𝒏, 𝒓,- 𝑑𝑠 = )$
":
𝑒"29% ∫8

.!"𝒓$%
/$%

𝐾 θ 𝑑𝑠. 

• Dans le cas d'une source d'onde sphérique: 𝑈 𝑃- = 𝑈,
.!"#(%
/(%

, nous obtenons la même formule qu'avant:

𝑈 𝑃, = )$
": ∫8

.!"(𝒓$%,𝒓(%)

/$%/(%
cos G𝒏, 𝒓,- 𝑑𝑠 = )$

": ∫8
.!"(𝒓$%,𝒓(%)

/$%/(%
𝐾 θ 𝑑𝑠 .

• C'est la formule de diffraction de Sommerfeld-Kirchhoff.

• Le facteur d'obliquité: 𝐾 𝜃 = cos G𝒏, 𝒓,- est différent de celui de la formule de Fresnel-Kirchhoff, mais ne change 

pas entre une source d'onde plane et sphérique.  

4. La formule de Sommerfeld-Kirchhoff (suite)



• Nous utilisons ici la formule de diffraction générique: 𝑈 𝒓 = -
": ∫8

.!"(##&)

(//&)
𝑈(𝑟′)𝐾 θ 𝑑𝑠′ pour calculer le champ de la 

diffraction à un point r en fonction du champ U(r') dans le plan de l'ouverture S . 
• Nous utilisons l'approximation paraxiale, qui implique:

• K(q) ≈ 1 .
• Dans le dénominateur, on utilise l'expansion à l'ordre zéro: 𝑟𝑟! ≈ 𝑧 .

• Dans l'exponentiel, l'expansion en 1er ordre donne: 𝑟𝑟! = 𝑧" + 𝑥 − 𝑥′ " + 𝑦 − 𝑦′ " ≈ 𝑧 + #!$%!

"&
− ##"$%%"

&
+ #!!$%!!

"&
.

• Le résultat final est donc: 𝑈 𝒓 = .!"0

":9
𝑒"2

1(,2(
(0 ∫8𝑈(𝑟′)𝑒

"2 1&(,2&(
(0 !11

&,22&
0 𝑑𝑥′𝑑𝑦′

• Si on définit: 𝑅,% = max(𝑥=% + 𝑦=%), la contribution du terme >=
(<?=(

%9

dans l'exponentiel serait limitée par: 𝛿𝜑@A> =
27$(

%9
= 67$(

:9
≡ 𝜋𝑁B .

• 𝑁B ≡
7$(

:9
s'appelle le nombre de Fresnel.

• Nous distinguons entre deux cas:
• Champ proche, ou diffraction de Fresnel : 𝛿𝜑'(# > 𝜋 , ou: 𝑁) > 1 .

Le terme  #!
!$%!!

"&
doit être maintenu.

• Champ lointain, ou diffraction de Fraunhofer : 𝛿𝜑'(# < 𝜋 , ou: 𝑁) < 1 .

Le terme  #!
!$%!!

"& peut être ignoré.

5. La diffraction de Fresnel et de Fraunhofer



De Fresnel à Fraunhofer: question de distance

z
aNF l

2

=

Région de Fresnel Région de Fraunhofer

Région de l'optique 
géométrique 
(champ très proche)



De Fresnel à Fraunhofer: diffraction d’un trou carré

Taille croissante du trou à

La diffraction change de Fraunhofer à Fresnel quand la taille du trou augmente:

FresnelFraunhofer

Un trou carrée dans une parois opaque:

Figure de diffraction correspondante:



(x',y')

• Pour calculer la diffraction de Fresnel, il faut retenir tous les éléments dans l'approximation paraxiale.
• Pour simplifier le calcul, prenons une ouverture rectangulaire (coordonnées x'1, y'1 et x'2,y'2) et calculons la 

diffraction entre une source (point S) et un écran (point P) qui sont sur l'axe optique z. Nous allons nommer r la 
distance entre la source S et le point (x',y') de l'ouverture (appelé r21 avant), et r0 la distance entre la source S et le 
point (0,0) de l'ouverture. La même chose pour r (appelé r01 avant) et r0 par rapport au point P de l'image.

• En utilisant ces termes, la formule de Sommerfeld s'écrit: 𝑈 𝑃 = )$
": ∫8

.!"(#,3)

/C
𝐾 θ 𝑑𝑠 . 

• L'approximation paraxiale serait: 𝑟 ≈ 𝑟, +
>&(<?&(

%/$
, 𝜌 ≈ 𝜌, +

>&(<?&(

%C$
et 𝐾 θ ≈ 1 (dans le dénominateur: 𝑟𝜌 ≈ 𝑟,𝜌,). 

• L'intégrale est séparable en x' et y', donnant le champ: 𝑈 𝑃 = )$.!"(#$,3$)

":/$C$
∫>%
>( ∫?%

?( 𝑒"2
#$,3$
(#$3$

(>=(<?=() 𝑑𝑥′𝑑𝑦′ =

)$.!"(#$,3$)

":/$C$
∫>%
>( 𝑒"2

#$,3$
(#$3$

>=(𝑑𝑥′ ∫?%
?( 𝑒"2

#$,3$
(#$3$

?=( 𝑑𝑦′ = )$.!"(#$,3$)

":/$C$
∫>%
>( 𝑒"6D(>=(/%𝑑𝑥′ ∫?%

?( 𝑒"6D(?=(/% 𝑑𝑦′

avec: 𝜅 ≡ %(/$<C$)
:/$C$

. Définissons les variables: 𝑢 ≡ 𝜅𝑥′ , 𝑣 ≡ 𝜅𝑦′

pour obtenir des intégrales universelles:

𝑈 𝑃 = )$.!"(#$,3$)

%"(/$<C$)
∫F%
F( 𝑒"6F(/% 𝑑𝑢 ∫G%

G( 𝑒"6G(/% 𝑑𝑣 .

• Il faut toujours calculer deux intégrales, une pour u et une pour v, 
avec les limites correspondantes aux dimensions de l'ouverture.

Calcul détaillé de la diffraction de Fresnel (source = point)



• Nous devons calculer des intégrales de type: 𝐼𝑛𝑡 = ∫H%
H( 𝑒"6H(/% 𝑑𝑤. Pour le faire, on décompose l'intégrande en 

une partie réelle et une partie imaginaire, pour obtenir: 𝐼𝑛𝑡 = ∫H%
H( cos(6H

(

%
) + 𝑖 sin(6H

(

%
) 𝑑𝑤 = ∫,

H( h

i

cos(6H
(

%
) +

𝑖 sin(6H
(

%
) 𝑑𝑢 − ∫,

H% cos 6H(

%
+ 𝑖 sin 6H(

%
𝑑𝑤 ≡ 𝐶(𝑤%) − 𝐶(𝑤-) + 𝑖 𝑆(𝑤%) − 𝑆(𝑤-) . 

• Les deux intégrales à calculer sont les intégrales de Fresnel : 𝐶(𝑤) = ∫,
H cos(6H=

(

%
) 𝑑𝑤′ et S(𝑤) = ∫,

H sin(6H=
(

%
) 𝑑𝑤′

• L'intensité diffractée est: 𝐼 ∝ 𝐶(𝑢%) − 𝐶(𝑢-) + 𝑖 𝑆(𝑢%) − 𝑆(𝑢-) % = 𝐶(𝑢%) − 𝐶(𝑢-) % + 𝑆(𝑢%) − 𝑆(𝑢-) % . 
• Ces intégrales peuvent être calculées numériquement, p. ex. en utilisant une série convergente.
• Les oscillations des valeurs donnent lieu à des oscillation de l'intensité diffractée.

La diffraction de Fresnel: comment calculer les intégrales

Profil de l’intensité 
d'une fente

Intégrales de Fresnel

Image et profil de l’intensité d'un 
plan semi-infini



I(u1,u2)

u1

u2

ò ¢¢=
w

wdww
0

2 )2/sin()( pS

Bonus: La diffraction de Fresnel: méthode géométrique de calcul (1)

ò ¢¢=
w

wdww
0

2 )2/cos()( pC

• Nous avons vu que le calcul de l'intensité 
diffractée est: 𝐼 ∝ |

|
𝐶(𝑢%) − 𝐶(𝑢-) + 𝑖[

]
𝑆(𝑢%) −

𝑆(𝑢-) % = 𝐶(𝑢%) − 𝐶(𝑢-) % + 𝑆(𝑢%) − 𝑆(𝑢-) % . 
• Nous pouvons dessiner une courbe, dans le plan 

[C(w),S(w)], qui relie les points correspondantes 
à chaque valeur du paramètre w. 

• Les valeurs C(u) et S(u) ont été calculées 
numériquement, et le dessin de tous les points 
(C(u),S(u)) s'appelle la spirale de Cornu.

• L'intensité corresponde à la longueur d'un 
vecteur entre le point (x,y)=[C(u2),S(u2)] et le 
point: (x,y)=[C(u1),S(u1)] dans ce plan.



• Rappel: nous voulons calculer l'intensité au point P sur l'axe par: 𝑈 𝑃 = )$.!"(#$,3$)

%"(/$<C$)
∫F%
F( 𝑒"6F(/% 𝑑𝑢 ∫G%

G( 𝑒"6G(/% 𝑑𝑣 .

• Nous avons trouvé une manière de le calculer avec la spirale de Cornu, qu'il faut appliquer deux fois (pour u et v).
• Pour calculer l'intégrale pour un autre point P', on doit redéfinir l'axe z entre S et P', ce qui va changer les limites de 

l'ouverture et donc les limites des intégrales.
• Exemples: 

• La diffraction par un plan semi-infini (un point limite est le point (1) du diagramme, correspondant à w=∞).
• D'une manière similaire, on peut calculer la diffraction d'une fente

Bonus: La diffraction de Fresnel: méthode géométrique de calcul (2)

(x',y')

Image et profil de l’intensité: La spirale de Cornu, avec les points 
correspondants aux points du profil:



Les zones de Fresnel
• Prenons l'équation de la diffraction de Fresnel avec une source S

et un plan de diffraction X-Y. Le champ au point P est:

𝑈 𝑃 = )$.!"(#$,3$)

":/$C$
∫>%
>( ∫?%

?( 𝑒"2
(1&(,2&()

( ( %#$
< %
3$
) 𝑑𝑥′𝑑𝑦′ .

• En définissant: 𝑅% = 𝑥′% + 𝑦′% et: -
I
= -

/$
+ -

C$
, nous obtenons:

𝑈 𝑃 = )$
":

.!"(𝒓$,𝝆$)

/$C$
∫>%
>( ∫?%

?( 𝑒"2
)(
(5𝑑𝑥′𝑑𝑦′ , ou en coordonnées polaires:

𝑈 𝑃 = )$
":

.!"(𝒓$,𝝆$)

/$C$
∫7%
7( ∫,

%6 𝑒"2
)(
(5𝑅𝑑𝑅𝑑𝜃 = %6)$

":
.!"(𝒓$,𝝆$)

/$C$
∫7%
7( 𝑒"2

)(
(5𝑅𝑑𝑅.

• Nous divisons le plan x'-y' en anneaux, limités par des cercles de diamètres: 
𝑅@% = 𝑚𝜆𝑓 (m = 1,2,…). On les appelle les zones de Fresnel.

• La phase de l'exponentielle liée aux points sur ces cercles est: 𝜑@ = 𝑘 76
(

%I
= 𝑚𝜋

• La différence de phase entre les ondes venants des différents points dans la 
même zone est: ∆𝜑 ≤ 𝜑@<- − 𝜑@ = 𝜋 , donc tous ces champs d'une zone
s'interférent constructivement au point P.

• La surface de chaque zone est la même: S = π 𝑅@<-% − 𝑅@% = 𝜋𝜆𝑓 ,
ce qui donne la même contribution à l'intensité.

R4
R3
R2
R1



Les zones et la lentille de Fresnel
• Nous pouvons calculer la contribution d'une zone de Fresnel, entre le cercle m+1 et le cercle m, en utilisant des 

coordonnées polaires et la définition 𝑅@% = 𝑚𝜆𝑓 : 

• 𝑈@<- 𝑃 = %6)$
":

.!"(𝒓$,𝝆$)

/$C$
∫76
76,% 𝑒"2

)(
(5𝑅𝑑𝑅 = %6)$

":
.!"(𝒓$,𝝆$)

/$C$

I
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= −𝑈,𝑓
.!"(𝒓$,𝝆$)

/$C$
𝑒"(@<-)6 − 𝑒"@6 =

2𝑈,𝑓
.!"(𝒓$,𝝆$)

/$C$
(−1)@= 𝐶 0 (−1)@ , avec: C ≡ 2𝑈,𝑓

.!"(𝒓$,𝝆$)

/$C$
• Chaque zone donne la même contribution au point P, mais le signe s'inversé entre zones voisines.
• L'intensité totale set donc: 𝑈 𝑃 = ∑@J-K 𝑈@ = 𝐶 − 𝐶 + 𝐶 − 𝐶 +⋯ = L

%
+ L

%
− 𝐶 + L

%
+⋯ = L

%
. C'est très peu!

• Si on élimine chaque zone paire (ou chaque zone impaire), on trouve: 𝑈 𝑃 = ∑@J-,N,…K 𝑈@ = K
%
𝐶 (N>>1).

• C'est la lentille de Fresnel: la moitié de l'intensité (ce qui correspond à la moitié transparente de la surface) est 
concentré au point P, qui remplit la condition de focalisation par une lentille:  -

I
= -

/$
+ -

C$
(𝑓 = 𝑅@% /𝑚𝜆).

Une lentille de 
Fresnel utilisant les 
zones paires (à D.) 
ou impaires (à G.):



La lentille de Fresnel
• Nous avons vu que si nous construisons une plaque avec obturation d'une zone de Fresnel sur deux, nous 

focalisons la moitié de la lumière venant d'un point S vers un point P, qui se trouve à une distance r0 donnée par:
-
I
= -

/$
+ -

C$
, 𝑓 = 𝑅@% /𝑚𝜆 .

• De la même manière, une onde plane qui arrive à cette plaque est focalisée en un point P à la distance f. 

• Pour l'onde plane, la formule de Sommerfeld-Kirchhoff est:  𝑈 𝑃 = )$
": ∫8

.!"#

/
𝑑𝑠 ≈ )$

":
.!"𝒓$
/$

∫8 𝑒
"2 )

(
(#$𝑑𝑠 .

• Nous définissons: 𝑓 = 𝑟0 , puis divisons de nouveau le plan x',y' en zones de Fresnel (𝑅@ = 𝑚𝜆𝑓), en éliminant 

chaque 2ème zone, pour retrouver: 𝑈 𝑃, = ∑@J-,N,…K 𝑈@ = K
%
𝐶 (N>>1), avec: 𝐶 ≡ 𝑈,𝑓

.!"5

I
.

• Conclusion: La lentille de Fresnel fonctionne comme une lentille en verre, mais avec les avantages d'être plate.
• Les désavantages: on perd la moitié de l'intensité, et il y a une dépendance à la longueur d'onde (𝑅@% = 𝑚𝜆𝑓).



Les limites de la lentille de Fresnel
• Nous avons trouvé le champ total: 𝑈 𝑃 = %6)$

":
.!"(𝒓$,𝝆$)

/$C$
∫7%
7( 𝑒"2

)(
(5𝑅𝑑𝑅 = ∑@J-,N,…K 𝑈@ = K

%
𝐶 , avec: C ≡ 2𝑈,𝑓

.!"(𝒓$,𝝆$)

/$C$
. 

Mais, si le rayon de la lentille va vers l'infini, l'intégrale va aussi à l'infini à Somme infinie???
• En effet, notre calcul dans le cadre de l'approximation paraxiale, suppose que l'intensité est constante: I ∝ 1/𝑟,%𝜌,% . 

Le champ réel diminue avec la distance R du centre, car il dépend du pré-facteur I ∝ 1/𝑟%𝜌% .
• Nous pouvons calculer la distance R pour laquelle l'intensité diminue de moitié, c.à.d. 1/r2r2 = 1/2r02r02 . Les 

distances exactes sont: 𝑟% = 𝑟,% + 𝑅% et 𝜌% = 𝜌,% + 𝑅% , cela donne: 2𝑟,%𝜌,% = 𝑟%𝜌% = 𝑟,% + 𝑅% 𝜌,% + 𝑅% . C'est une 

équation quadratique en R2, sa solution est: 𝑅% = -
%

𝜌,5 + 𝑟,5 + 6𝑟,%𝜌,% − 𝜌,% − 𝑟,% .

• Pour le cas simple r0=r0 , nous avons une solution simple: 𝑅% = 𝑟,% 2 − 1 .

• Avec la relation: 𝑅@% = 𝑚𝜆𝑓 , cela donne la valeur: N-/% =
/$( %!-

:I
. C'est une indication pour la valeur maximale N 

qu'il faut garder dans la somme, où l'intensité est déjà la moitié de celle du centre.
• Pour une valeur typique: 𝑟, ≈ 10 𝑐𝑚, 𝜆 ≈ 500 𝑛𝑚 , N-/% ≈ 10P .



• Dans le cas de la diffraction de Fraunhofer, ou champ lointain (𝑁B ≡
7$(

:9
< 1), on peut négliger la partie >=

(<?=(

%9
dans 

le calcul de la phase, donc il nous reste: 𝑟 ≈ 𝑧 + >(<?(

%9
− >>&<??&

9
.

• L'intégrale de diffraction est donc: 𝑈 𝒓 = .!"0

":9
𝑒"2

1(,2(
(0 ∫8𝑈(𝑟′)𝑒

!"211
&,22&
0 𝑑𝑥′𝑑𝑦′ .

• L'approximation paraxiale nous permet de définir: 2>
9
≈ 𝑘 sin 𝜃> ≡ 𝑘>, 2?

9
≈ 𝑘 sin 𝜃? ≡ 𝑘? . 

L'intégrale devient: 𝑈 𝑘> , 𝑘? = 𝑈 𝜃> , 𝜃? = 𝑈 𝑥, 𝑦 ≈ .!"0

":9
𝑒"2

1(,2(
(0 ∫8𝑈(𝑥

=, 𝑦′)𝑒!" 21>&<22?& 𝑑𝑥′𝑑𝑦′ . 
• C'est exactement la transformée de Fourier de U(x',y') !
• Conclusion: La diffraction de Fraunhofer donne une distribution 𝑈 𝑘> , 𝑘? = 𝑈 𝜃> , 𝜃? qui est la transformée de 

Fourier du champ à l'ouverture 𝑈(𝑥=, 𝑦′) .
• Avec une lentille, on peut transformer les angles qx,qy en une

position x,y sur un écran, pour visualiser la diffraction.

La diffraction de Fraunhofer

f



La diffraction de Fraunhofer d'une fente
• La diffraction de Fraunhofer d'une fente de largeur D en x (et infinie en y), illuminée par une onde plane, est: 

𝑈 𝑘> = 𝑈 𝜃> = 𝑈, ∫!Q/%
Q/% 𝑒"21>&𝑑𝑥′ = %)$

21
sin 21Q

%
= 𝑈,𝐷 sinc 𝛽 , avec: 𝛽 ≡ 21Q

%
= 2Q RST U1

%
. 

• L'intensité est donné par: 𝐼 𝜃> = 𝐼, sinc% 𝛽 . Le premier zéro se trouve à: b=p, ou: sin 𝜃> =
%6
2Q
= :

Q
. 

• La largeur du pic est donc 2l/D, inversement proportionnel à celle de la fente (transformée de Fourier!)
• Une autre manière de calculer: traiter la fente comme un réseau de diffraction, composé de N éléments, chacun de 

taille d=D/N. L'intensité par élément est: I0/N2. L'intensité diffractée est: 𝐼 𝜃> = V$
K(

RST K2W/% XRST U1
RST 2W/% XRST U1

%
=

V$
K(

RST 7" 89: ;1
(

RST 7" 89: ;1
(<

%

, et dans la limite 𝑁 → ∞, on obtient:

𝐼 𝜃> ≈ V$
K(

RST 7" 89: ;1
(

"7 89: ;1
(<

%

= 𝐼, sinc% 𝛽 .     



Diffraction de Fraunhofer par un trou rectangulaire
• La diffraction de Fraunhofer d'un trou rectangulaire de taille axb le long des axes x-y respectivement, illuminée par 

une onde plane, est séparable en deux intégrales:

𝑈 𝑘> , 𝑘? = 𝑈 𝜃> , 𝜃> = 𝑈, ∫!Y/%
Y/% ∫!A/%

A/% 𝑒!" 21>&<22?& 𝑑𝑥′𝑑𝑦′ = %)$
2122

sin 21A
%
sin 22Y

%
= 𝑈,𝑎𝑏 sinc 𝛼 sinc 𝛽 ,

avec: 𝛼 ≡ 21A
%
= 2A RST U1

%
et  𝛽 ≡ 22Y

%
= 2Y RST U2

%
. 

• L'intensité est: 𝐼 𝜃> = 𝐼, sinc% 𝛼 sinc% 𝛽 .
• La largeur du pic central est donc (2l/a) x (2l/b) .
• Si 𝑏 → ∞ , il n'y a plus de diffraction le long de l'axe y (on revient à l'optique géométrique), et nous revenons à la 

diffraction d'une fente en x.



Interférence + diffraction par deux fentes

Interférence

Diffraction

• L'expérience de Young (interférence entre deux fentes) doit être corrigée par l'effet de la diffraction. Si les fentes 
ont une largeur b et leur distance est a (a>b), le champ sur l'écran est la somme des deux champs, avec leur 

déphasage ∆𝜑 = 𝑘>𝑎 . Cela donne un facteur cos(𝑘>𝑎/2); le champ total est: 𝑈 𝜃> = 𝑈,𝑏 sinc
2Y RST U1

%
cos 2A RST U1

%
.

• L'intensité est: 𝐼 𝜃> = 𝐼, sinc% 𝛽 cos% 𝛼 (𝛽 ≡ 2Y RST U1
%

, 𝛼 ≡ 2A RST U1
%

).
• Souvent, a>>b; le pic de diffraction est donc beaucoup plus large que les pics d'interférence: il forme une 

enveloppe sur les franges d'interférence.
• Dans le cas spécial a=3b, le 1er zéro de diffraction annule les 3ème + 4ème pics

d'interférence, le 2ème pic annule le 7ème, etc. . a = 3.b

Diffraction d'une fente:

Diffraction de 2 fentes:



Interférence + diffraction par un réseau de fentes

Fentes Bandes d’interférence Sans diffraction

• Dans un réseau de diffraction, on a un grand nombre N de fentes, qui génèrent une figure d'interférence. Elle doit 

être multiplié par l'effet de la diffraction, ce qui donne: 𝐼 𝜃> = 𝐼, sinc% 𝛽 0
RST( KZ
RST( Z

(𝛽 ≡ 2Y RST U1
%

, 𝛼 ≡ 2A RST U1
%

). 

• De nouveau, Na>>b, donc l'enveloppe de la diffraction est beaucoup plus large que les pics de l'interférence.

Avec diffraction



Diffraction de Fraunhofer: Effets de la forme des trous
Ensemble aléatoire de trous rectangulaires:

Ensemble aléatoire de trous circulaires:

Réseau carré des trous rectangulaires:

Réseau carré des trous circulaires:



Le principe de Babinet

Réseau 
de trous:

Réseau 
d’obstacles:

Photo Diffraction
Eléments 
rectangulaires

• Prenons la formule de Sommerfeld-

Kirchhoff: 𝑈8 𝑃, = )$
": ∫8

.!"(𝒓$%,𝒓(%)

/$%/(%
𝐾 θ 𝑑𝑠 , 

dans le cas d'une ouverture S et de son 
complémentaire (une obstruction) S'. 

• La somme des deux structures donne une 
parois entière, qui ne laisse rien passer, 
donc: 𝑈8 𝑃, + 𝑈8= 𝑃, = 0 , ou:   𝑈8 𝑃, =
− 𝑈8= 𝑃, .

• L'intensité est donc: 𝐼8 𝑃, = 𝑈8% 𝑃, = 𝐼8= .
• C'est le principe de Babinet: la diffraction 

d'une forme S est égale à celle de son 
complément S'. 



Diffraction de Fraunhofer d’un trou circulaire
• Dans le cas d'un trou circulaire, la diffraction de Fresnel est donnée par: 𝑈8 𝑃, = %6)$

":9 ∫,
A 𝐽,

2C/
9

𝑒"2/(/%9𝑟𝑑𝑟
• La diffraction de Fraunhofer est la transformée de Fourier de l'ouverture circulaire, qui est la fonction de Bessel.

• L'intensité de la diffraction d'un trou de rayon a est donc: 𝐼 𝜃 = 4𝐼,
[%(2A RST U)
2A RST U

%
.

• Le premier zéro de cette fonction est à: 𝑘𝑎 sin 𝜃 = 3.83 , ou: sin 𝜃 ≈ 𝜃 = 1.22𝜆/𝐷 (D=2a).

Une série de trous de taille croissante:
Passage de la diffraction de Fraunhofer 
(haut Gauche) à Fresnel (bas)



La résolution d’un microscope optique

Le critère de 
Rayleigh: 

• Prenons un objectif de microscope, sans aberrations, avec un diamètre D et de longueur focale f . L'image d'un 

point forme un cercle de diffraction, de rayon: 𝑅 ≈ 𝑓𝜃 = -.%%:I
Q

= -.%%:
#/B

≈ ,.^-:
K_

(NA ≡ sin(a) , #/F ≡D/f=2tg(a) ).

• Pour distinguer dans l'image entre deux points de l'objet, on utilise le critère de Rayleigh: Le maximum de l'image 
d'un point doit coïncider avec le premier zéro du point voisin.

• La résolution du microscope est donc égale au rayon décrit ci-dessous: 𝑅 = -.%%:
#/B

≈ ,.^-:
K_

. C'est une limite 

fondamentale de la résolution d'un microscope, due à la diffraction.

Deux points 
distincts

Seuil de 
résolution

Deux points 
non-résolus



Bonus: Le point d'Arago (de Poisson)
• Selon le principe de Babinet, la diffraction de Fresnel d'un objet circulaire est donnée par:

𝑈8 𝑃, = − %6)$
":9 ∫,

A 𝐽,
2C/
9

𝑒"2/(/%9𝑟𝑑𝑟

• Le même principe s'applique à diffraction de Fraunhofer, qui donne: 𝐼 𝜃 = 4𝐼,
[%(2A RST U)
2A RST U

%
.

• Le résultat est qu'au centre de l'ombre d'un cercle / d'une bille il y a un point lumineux, appelé le point d'Arago (ou 
de Poisson).

• Cela a été aussi démontré pour des fonctions d'ondes quantiques.
Une série de trous de taille croissante:
Passage de la diffraction de Fraunhofer à Fresnel

https://vanderbei.princeton.edu/PoissonSpot/PoissonSpot.html
https://www.researchgate.net/figure/Schematic-diagram-of-the-Poisson-
spot-experiment-and-notation-for-the-classical_fig7_231153832



Bonus: Le point d'Arago (de Poisson)
• Selon le principe de Babinet, la diffraction de Fresnel d'un objet circulaire est donnée par:

𝑈8 𝑃, = − %6)$
":9 ∫,

A 𝐽,
2C/
9

𝑒"2/(/%9𝑟𝑑𝑟

• Le même principe s'applique à diffraction de Fraunhofer, qui donne: 𝐼 𝜃 = 4𝐼,
[%(2A RST U)
2A RST U

%
.

• Le résultat est qu'au centre de l'ombre d'un cercle / d'une bille il y a un point lumineux, appelé le point d'Arago (ou 
de Poisson).

• Cela a été aussi démontré pour des fonctions d'ondes quantiques.
Une série de trous de taille croissante:
Passage de la diffraction de Fraunhofer à Fresnel

https://vanderbei.princeton.edu/PoissonSpot/PoissonSpot.html
https://www.researchgate.net/figure/Schematic-diagram-of-the-Poisson-
spot-experiment-and-notation-for-the-classical_fig7_231153832



La diffraction d'un petit trou d<<l

• Puisse que d<<l<<r01 , r01 peut être considéré comme constant sur la 

surface S. L'intégrale est donc triviale, donnant: 𝑈 𝑃, = )$.!"𝒓$%
":/$%

𝑆 cos G𝒏, 𝒓,-
(S=surface de l'ouverture S). C'est une source ponctuelle d'une onde 

sphérique, modulé par l'angle. L'intensité est: 𝐼 𝑃, = 𝐼,
&

:/$%

%
cos% G𝒏, 𝒓,- . 

• L'intensité totale (intégrée sur une demi-sphère) est:

𝐼$`$ = 𝐼,
&

:/$%

%
∬, ,

=
( %6 𝑟,-% cos% 𝜃 sin 𝜃 𝑑𝜃𝑑𝜑

= 𝐼,
&

:/$%

%
2𝜋𝑟,-% ∫,

=
( cos% 𝜃 sin 𝜃 𝑑𝜃 = 𝐼,

%6
N

&
:

%
. 

• En effet, notre petit trou mesure un échantillon de l'onde plane, donc 
l'intensité mesuré est proportionnelle à la surface du trou.

P0

q

• Imaginons une ouverture S dont le diamètre est d<<l , illuminée par une onde plane; 𝑈,𝑒"29 . Le champ qui arrive 

sur un point P0 est donné par la formule de Sommerfeld: 𝑈 𝑃, = )$
": ∫8

.!"𝒓$%
/$%

cos G𝒏, 𝒓,- 𝑑𝑠 .



Bonus: Imagerie en champ proche: le SNOM/NSOM
• Si nous mettons un échantillon partiellement transparent à proximité immédiate d'un petit trou (d<<l), l'intensité qui 

passe est multipliée par la transmission de la (petite) partie de l'échantillon qui se trouve derrière le trou.
• Nous mesurons l'intensité totale qui passe, qui représente la transmission de l'échantillon sur une échelle de la taille 

du trou, qui est <<l. On n'est plus limité par la diffraction! Mais, c'est une mesure d'un seul point de l'échantillon…
• On dit que la mesure est faite en champ proche.
• Pour obtenir une image complète, il faut balayer la position de l'objet semi-transparent (en x-y) par rapport au 

système optique (trou, lentille de focalisation, détecteur…), tout en restant à proximité de l'ouverture.
• C'est le principe du microscope à champ proche, le SNOM/NSOM.
• Souvent, on remplace la paroi opaque par une fibre optique couverte de métal, avec un trou au bout.

https://www.slideshare.net/Dhanyarajesh
2/near-field-scanning-optical-microscopy

q

Seul cette partie 
serait mesuré



Bonus: Imagerie en champ proche: structure du SNOM/NSOM
• On utilise un système de positionnement x-y-z de haute résolution. Un système de feedback en z maintient une 

distance constante de 1-10 nm entre la fibre et la surface de l'échantillon pendant le balayage de la surface.
• La lumière transmise est collecté par un objectif de microscope et un détecteur, pour former une image numérisée.
• Il y a plusieurs méthodes de SNOM:

• Transmission entre fibre et lentille (montré ici)
• Réflexion entre fibre et lentille, ou vers la même fibre
• Couplage par des ondes évanescentes d'un prisme, détecté par une fibre.
• Perturbation locale du champ électrique par un point métallique, 

créant une onde secondaire
• On peut obtenir une résolution optique de 50-100 nm.
• A cause du balayage, ce microscope est lent: >5min. par image.

https://www.researchgate.net/profile/Niek_Van_Hulst2/publication/116163
12/figure/fig2/AS:394544186183684@1471078072334/Schematic-lay-out-
of-a-near-field-scanning-optical-microscope-The-NSOM-probe-is-a.png



Bonus: Images des molécules fluorescentes par SNOM

J. Kerimo et al., Inter-Amer. Photochem. Soc. Newslett., 19, (1996)



• L'holographie a comme but de répliquer à l'identique l'image d'un objet en 3D, c.à.d. reconstruire toutes les ondes 
émises par un objet dans toutes les directions.

• Les ondes émises par l'objet peuvent être décomposées, par la transformée de Fourier, en un ensemble d'ondes 
planes partantes dans différentes directions.

• Pour reconstruire une onde plane qui se propage dans un angle (𝜃>,𝜃?), nous pouvons faire passer une onde plane 
𝑈 = 𝑈,𝑒"29 au travers d’un transparent 𝑓 𝑥, 𝑦 = 𝑒" > RST U1<? RST U2 .

• Malheureusement, une photographie n'est sensible qu'à l'intensité, donc toute l'information de la phase est 
perdue…

L'holographie - but

http://www.swinburne.edu.au/media/swinburneeduau/media-
centre/images/news-articles/republished/star-wars-hologram-ls-oo.jpg



• Pour préserver la phase, il faut la transformer en intensité, en utilisant l'interférence.
• Pour enregistrer un hologramme, on expose un film photographique (ou une couche de substance photosensible) à 

l'interférence créée entre la lumière réfléchie par l'objet 𝑈` et un faisceau de référence 𝑈/ (il faut une longueur de 
cohérence suffisante pour couvrir tout le chemin optique).

• La transmission du film développé est proportionnelle à l'intensité de l'exposition initiale: 
𝑇 ∝ 𝐼 = 𝑈` + 𝑈/ % = 𝑈` % + 𝑈/ % + 𝑈/∗𝑈` + 𝑈`∗𝑈/ = (𝐼` + 𝐼/) + 𝑈/∗𝑈` + 𝑈`∗𝑈/ = 𝐼` + 𝐼/ + 2 𝐼`𝐼/ cos 𝜑` − 𝜑/ .

• Pour la reconstruction, on illumine le film par le même faisceau de référence 𝑈/, pour obtenir:
𝑈 = 𝑇𝑈/ = 𝐼` + 𝐼/ 𝑈/ + 𝑈/∗𝑈`𝑈/ + 𝑈`∗𝑈/𝑈/ = 𝐼` + 𝐼/ 𝑈/ + 𝐼/𝑈` + 𝑈/%𝑈`∗

• Le premier terme est proportionnel à l'illumination, dans la direction du faisceau de référence.
• Le deuxième terme est proportionnel à l'onde original venant de l'objet – c'est la reconstitution fidèle !
• Le troisième terme est le conjugué de l'onde de l'objet, qui va dans un sens opposé. On l'appelle "image 

conjuguée" ou "image fantôme". 

L'holographie – comment ça marche



• Pour une onde plane à un angle q: l'enregistrement donne un réseau 
régulier.

• La reconstruction donne trois ondes, aux angles: q, 0, -q.

• Pour une onde sphérique, venant d'un point (0,0,-d): l'enregistrement 
donne une série de cercles concentriques.

• La reconstruction donne trois ondes, une qui continue l'expansion de 
l'onde sphérique, une onde plane (la référence), et une onde qui se 
focalise sur un point (0,0,d).

• Pour un objet fortement désaxé par un angle q qui est plus grand 
que la gamme des angles contenus dans la réflexion de l'objet: il y 
aura une nette séparation entre la reconstruction (centrée sur l'angle 
de propagation q), la référence (onde plane à l'angle 0) et l'onde 
conjuguée, centrée sur l'angle -q.

L'holographie – exemples simples



• En utilisant une lentille de longueur focale f, nous pouvons enregistrer l'hologramme de la transformée de Fourier 

d'un transparent f(x,y): 𝑈` 𝑥, 𝑦 = ℱ >
:I
, ?
:I

.

• La reconstruction avec une lentille donnera la transformée inverse, revenant à la fonction d'origine f(x,y).

• Nous pouvons aussi enregistrer l'hologramme de la transformée de Fourier ℋ >
:I
, ?
:I

d'un filtre h(x,y), puis l'utiliser 

entre deux lentilles pour le multiplier par la transformées ℱ >
:I
, ?
:I

d'un objet f(x,y) ; la transformée inverse 

donnera l'image g(x,y) ,qui est la convolution du filtre et de l'objet.

Bonus: L'holographie de Fourier



• On peut calculer l'hologramme des structures simples par moyens informatique, puis l'imprimer sur un transparent 
comme un hologramme classique. On peut ainsi générer un faisceau avec une forme spécifique:
• Générer une image spécifique pour les pointeurs laser.
• Générer une ligne pour les "niveau à laser" pour la construction.
• Générer des multiples faisceaux pour les scanneurs des code-barres.

L'hologramme produit par ordinateur

https://www.bccourier.com/wp-
content/uploads/2020/02/Laser-Level.jpg

https://www.indiamart.com/proddetail/
barcode-reader-21748345988.html

https://www.alibaba.com/product-detail/5-
in-1-Red-Laser-Projector_717360307.html

https://www.amazon.in/Diffrent-Shape-
Professional-Laser-Pointer/dp/B07CTJ6Z7J

https://www.indiamart.com/proddetail/omni-
directional-barcode-scanner-10695419530.html


