
La superposition spatiale: 𝜔! = 𝜔"
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• Prenons deux ondes: 𝐸! = 𝐸"! cos𝜑! , avec la même polarisation, et supposons: 𝐸"# = 𝐸"$ (pas toujours!) et 𝜔# =
𝜔$ = 𝜔 . Il faut dériver les deux champs de la même source!

• Comme pour les battements, nous définissons la différence de phase:
∆𝜑 ≡ 𝜑# − 𝜑$ = 𝒌 , 𝒓 # − 𝒌 , 𝒓 $ + 𝜙# − 𝜙$

• L'intensité est: 𝐼 ∝ 𝐸"# 𝑐𝑜𝑠 𝜑# + 𝐸"$ 𝑐𝑜𝑠 𝜑$ $
% = 𝐸"# 𝑐𝑜𝑠 𝜑# $

% + 𝐸"$ 𝑐𝑜𝑠 𝜑$ $
% + 2 𝐸"#𝐸"$ 𝑐𝑜𝑠 𝜑# 𝑐𝑜𝑠 𝜑$ % =

𝐸"#$ 𝑐𝑜𝑠$𝜑# % + 𝐸"$$ 𝑐𝑜𝑠$𝜑$ % + 𝐸"#𝐸"$ 𝑐𝑜𝑠(𝜑#+𝜑$) + 𝑐𝑜𝑠(𝜑#−𝜑$) % =
#
$
𝐸"#$ + #

$
𝐸"$$ + 𝐸"#𝐸"$ 𝑐𝑜𝑠 ∆𝜑 = 𝐼# + 𝐼$ +

2 𝐼#𝐼$ 𝑐𝑜𝑠 ∆𝜑 = 2𝐼" 1 + 𝑐𝑜𝑠 ∆𝜑 = 4𝐼"𝑐𝑜𝑠$ ∆𝜑/2 .
• L'intensité ne dépend que de la différence de parcours optique ∆𝜑. 
• Pour une multitude d’ondes planes 𝐸! = 𝐸"! cos𝜑! , le champ est: 𝐸 = ∑!&#' 𝐸"! cos𝜑! , et l'intensité est:

𝐼 ∝ ∑!&#' 𝐼! + 2∑!&#' ∑()!' 𝐸"!𝐸"( cos ∆𝜑!( , avec: ∆𝜑!(≡ 𝜑! − 𝜑( .



Interférence: superposition des ondes de la même fréquence

Deux faisceaux Multiples faisceaux

Propagation directe:

• Expérience de Young
• Interféromètres de:

- Michelson
- Mach-Zhender
- Sagnac

• Réseau de diffraction (en transmission)

Réflexion:
• Couches minces (simples)
• La cale
• Bulles de savon
• Anneaux de Newton

• Réseau de diffraction (en réflexion)
• Interféromètre de Fabri-Perrot
• Couches minces (multiples)

𝐼 ∝ 2𝐼" 1 + 𝑐𝑜𝑠 ∆𝜑 % 𝐼 ∝ ∑!&#' 𝐼! + ∑!&#' ∑()!' 𝐸"!𝐸"( cos ∆𝜑!( %

Nous allons traiter plusieurs cas, selon le nombre des faisceaux et la direction de propagation:



L'expérience de Grimaldi (publié en 1665): deux trous sous le soleil

• C'est le premier à traiter (et à nommer) la diffraction de la lumière
• Il essaye de démontrer l'interférence entre la lumière passante par deux 

trous proches.
• Le résultat n'est pas génial...
• Le soleil n'a pas la cohérence nécessaire pour obtenir une bonne 

interférence
https://upload.wikimedia.org/wikipedia/commons/c/ca/Francesco_Maria_Grimaldi.jpghttp://lhldigital.lindahall.org/cdm/ref/collection/color/id/6930



L'expérience de Young (1805): trois trous font mieux que deux
• Pour améliorer la cohérence, un premier trou transforme 

la lumière du soleil à une source ponctuelle
• L'expérience de deux trous peut donc réussir
• On préfère aujourd'hui démontrer cette expérience avec 

des fentes – ou avec un bain d'ondes

Lumière 
(incohérent) 
du soleil

1er 
trou

Deux 
trous interférenceOnde 

sphériqueBain d'ondes avec deux sources



L'expérience de Young : analyse simple avec des fentes

a
smymax
l

=

a

s

Intensité mesuré
Intensité théorique

• Les deux sources ont la même intensité I0 , l'intensité totale est donc: 𝐼 = 2𝐼" 1 + 𝑐𝑜𝑠 ∆𝜑 % = 4𝐼" 𝑐𝑜𝑠$ ∆𝜑/2 %

• La différence de phase vient de la différence du chemin optique entre les deux ondes.
• Les maxima d'intensité correspondent à: ∆𝜑 = 2𝑚𝜋 , et les minima à: ∆𝜑 = (2𝑚 + 1)𝜋 . Cela se traduit par une 

différence de parcours qui est un multiple de ml pour un maximum et de (m+½)l pour un minimum.
• En utilisant l'approximation paraxiale (S>>a,y) on obtient:

∆𝜑 = 𝑘∆𝑟 = $*
+
𝑎 sin 𝜃 ≈ $*

+
,-
.

;  L'intensité est donc: 𝐼(𝑦) = 4𝐼"𝑐𝑜𝑠$
*
+
,-
.

.

• Les positions des maxima sont: 𝑦/,0 = 𝑚 +.
,

, m = 0, ±1, ±2, …

• Les minima sont à: 𝑦/12 = (𝑚 + #
$
) +.
,

.
• Pourquoi la brillance diminue-t-elle 

quad m et grand?
• Cohérence
• Diffraction (Ch.9)



Δϕ = kΔr = 2π
λ
ya
s

Interférence entre deux 
parties du même paquet

Interférence entre deux 
paquets différents

L'effet de la cohérence temporelle sur l'intensité (généralités)
• Jusqu'ici nous avons traité une source d'ondes continue. Or, la plupart des 

sources émettent des paquets d'ondes, assez courts (ns), sans rapport de 
phase entre eux.

• Ce "temps de vie" est traduit en longueur, par: 𝑙𝑐 = 𝜏𝑐 (1ns <-> 30cm).
• Pour une interférence correcte, la différence de parcours doit être plus petit 

que la longueur des paquets d'ondes. Sinon, la lumière qui arrive sur l'écran 
vient des deux paquets différents, avec un rapport de phase aléatoire.

• Si Δ𝑟 = 𝑦 ⁄𝑎 𝑠 < 𝑙! , les franges sont visibles
• Si Δ𝑟 = 𝑦 ⁄𝑎 𝑠 > 𝑙! , les franges diminuent en intensité
• La limite de visibilité est donc:  yc =

lcs
a

Temps de 
recouvrement

Paquet A

Paquet B



L'effet de la cohérence sur l'intensité en détail (1)
• Afin de comprendre l'effet de la cohérence temporelle de la source, imaginons que l'interférence se fait 

entre deux ondes d'une cohérence partielle, qu'on écrit:
𝐸" = 𝐸! cos 𝒌 2 𝒓 − 𝜔𝑡 + 𝐸#! cos 𝒌 2 𝒓 − 𝜔𝑡 + 𝜑"
𝐸$ = 𝐸! cos 𝒌 2 𝒓 − 𝜔𝑡 + Δ𝜑 + 𝐸#! cos 𝒌 2 𝒓 − 𝜔𝑡 + Δ𝜑 + 𝜑$

• Ici Ec et Eic sont les champs cohérent et incohérent, Dj est la phase due à la différence de parcours, et 
j1,j2 sont des phases aléatoires des sources.

• La somme est: 𝐸" + 𝐸$ = 2𝐸! cos
$𝒌&𝒓($)*+,-

$ cos ,-
$ + 2𝐸#! cos

$𝒌&𝒓($)*+-!+-"+,-
$ cos -!+-"+,-

$ .

• L'intensité est: 𝐼 = 𝐸" + 𝐸$ $
. = 2 𝐸!$ cos$

,-
$ + 𝐸#!$ cos$

-!+-"+,-
$ .

= 2𝐸!$ cos$
,-
$ + 𝐸#!$ =

2𝐼! 1 + cos Δ𝜑 + 2𝐼#! .
• Nous avons utilisé le fait que: cos 𝑋 . = 0

et:  cos$ 𝑋 . = 1/2 , si l'argument X contient wt
ou des phases aléatoires.



L'effet de la cohérence sur l'intensité en détail (2)
• L'intensité est: 𝐼 = 2𝐼! 1 + cos Δ𝜑 + 2𝐼#! .
• Dans le cas d'une cohérence parfaite (p. ex. une source laser): Eic=0 , donc: 𝐼 = 2𝐼! 1 + 𝑐𝑜𝑠 ∆𝜑 ; 
Imax=4Ic , Imin = 0 (franges de contraste maximal).

• Sans cohérence: Ec=0 , donc: I = 2Iic (constante).
• Pour la cohérence partielle, nous définissons:

- L'intensité moyenne: ̅𝐼 = /#$%+/#&'
$

= 2 𝐼! + 𝐼#!

- La visibilité (contraste) de l'interférence: 𝜈 = /#$%(/#&'
/#$%+/#&'

= /(
/(+/&(

.

• On peut donc réécrire l'intensité comme: 𝐼 = ̅𝐼 1 + 𝜈𝑐𝑜𝑠 ∆𝜑 .



Cohérence temporelle et spatiale
L'incohérence peut être lié aux propriétés de la source:
• Temporelles (paquets d'ondes émis par la source en temps différents)
• Spatiales (paquets d'ondes émis par des parties différentes de la source)

(In)cohérence spatialeUne source cohérente

Une source avec une cohérence limitée

(In)cohérence temporelle



Le miroir de Lloyd:
Le prisme de Fresnel:

Le double miroir de Fresnel:

Expériences similaires aux fentes de Young:



Franges d'interférence équidistantes (réflexion): la cale
Deux plaques de verre, qui se touchent dans un coin. On regarde la réflexion en incidence normale:
• La différence de phase entre les deux réflexions est de: ∆𝜑 = 2𝑘𝛿 𝑥 + 𝜋 (il y a une réflexion interne et une externe, 

donc une différence de phase de p en plus du déphasage lié au parcours). 
• Si l'angle a est petit: 𝛿 𝑥 ≅ 𝑥𝛼 , ce qui donne:  ∆𝜑 = 2𝑘𝛼𝑥 + 𝜋 .

• On a des franges blanches (intensité max) pour: ∆𝜑 = 2𝑚𝜋 , ou:  𝑥 = 𝑚 + #
$

+
$4

; m=0,1,2, …

• On a des franges noires (intensité min) pour: ∆𝜑 = (2𝑚 + 1)𝜋 , ou: 𝑥 = 𝑚 +
$4

.
• Le centre (x=m=0) est noir (pas de réflexion) !
• L'intensité réfléchie est faible (réflectivité = 4%, donc intensité max = 16%).



Les annaux de Newton
Une lentille de profile sphérique, posée sur une plaque de verre plate. On regarde la réflexion en incidence normale:

• La même analyse que le coin donne ∆𝜑 = 2𝑘𝛿 𝑥 + 𝜋 , mais: 𝛿 𝑥 ≅ 0!

$5
.

• On a des franges blanches (intensité max) pour: 𝑥 = 𝑚 + #
$
𝑅𝜆 ; m=0,1,2, …

• On a des franges noires (intensité min) pour: 𝑥 = 𝑚𝑅𝜆. 
• Le centre (x=m=0) est noir (pas de réflexion) !
• L'intensité réfléchie est faible (réflectivité = 4%, donc max 16%).
• Un appareil utile pour contrôler les lentilles sphériques, très sensible (<l/10).

https://en.wikipedia.org/wiki/Newton%27s_rings https://www.physics.purdue.edu/demos/display_page.php?item=7B-12

Annaux de Newton: Lentille parfaite Lentilles imparfaites



Les couches minces (bulles de savon)
• L'interférence des réflexions d'un faisceau entrant à en angle 𝜃1 dans une 

couche mince d'épaisseur d et indice n dans l'air.
• La phase au chemin ABC est: ∆𝜑 = 2𝑘"𝑛𝑑/ cos 𝜃6 + 𝜋, et au chemin AD est: 

∆𝜑 = 2𝑘"𝑑 sin 𝜃1 tan 𝜃6 , ou en utilisant Snell: ∆𝜑 = 2𝑘"𝑛𝑑 sin$ 𝜃6 / cos 𝜃6 .
• La différence de phase entre les deux réflexions (AD et ABC) est:

∆𝜑 = $("27
89: ;#

1 − sin$ 𝜃6 1 + 𝜋 = 2𝑘"𝑛𝑑 cos 𝜃6 + 𝜋 .

• Comme avec la cale, il y a une réflexion interne et une externe, donc une 
différence de phase de p en plus du déphasage lié au parcours. 

• En incidence normale, c'est plus simple: ∆𝜑 = 2𝑘"𝑛𝑑 + 𝜋 .
• Exemple: bulle de savon. Avec la lumière blanche, on a un maximum de 

réflexion pour chaque longueur d'onde à une position différente. Il y a aussi un 
gradient de l'épaisseur, qui fait varier la distance entre les franges. 

Franges d'interférence dans une bulle de savon:



n1

n2

n3

La couche antireflet simple
• La réflexion dans une interface (en incidence normale) est (Fresnel): 𝑟 = 2#<2$

2#=2$
, et R = 2#<2$

2#=2$

$
. Pour air-verre 

(n=1.5) cela vaut 4%, pour air-GaAs (n=3.5) c'est 31%. Parfois (plusieurs éléments optiques) c'est trop!
• Pour annuler la réflexion, on dépose une couche mince avec une indice intermédiaire, afin de créer une 

interférence destructrice entre les rayons réfléchis des deux interfaces.

• La réflexion de la surface 1 est:  𝐸># = 𝐸1
2!<2%
2!=2%

, et de la surface 2 est:  𝐸>$ = 𝐸1
$2%

2!=2%

2&<2!
2&=2!

$2!
2!=2%

𝑒?*12!7/+ ≈ 𝐸1
2!<2&
2&=2!

. 

On choisit l'épaisseur: 𝑑 = 𝜆/4𝑛$ pour obtenir une phase de p, donc une interférence destructrice. 
• Pour une couche antireflet parfaite, il faut encore égaliser l'intensité des deux réflexions: 𝐸># = 𝐸>$ , ce qui donne 

la condition supplémentaire: 𝑛$$ = 𝑛#𝑛A . Parfois il est difficile de trouver de la matière adéquate!
• La condition pour la phase n'est valable que pour une longueur d'onde…
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Interféromètres avec miroirs: Mach-Zehnder, Michelson, Sagnac
• On utilise un ou deux miroirs semi-transparents (ou un 

cube FTIR) et des miroirs pour diviser un faisceau un deux 
parties et les recombiner pour former de l'interférence.

• L'interférence est très sensible aux changements du 
chemin optique ∆𝜑 = ∆ 𝑘𝑥 dans une "branche" de 
l'interféromètre par rapport à l'autre "branche":

• Changement de x (position des miroirs).
• Changement de k=nk0 (indice du milieu).

• Ces interféromètres ont plusieurs applications!

Mach-Zehnder:

Michelson:



Interféromètre de Michelson
• L'interféromètre de Michelson a 

l'avantage de ne pas dépendre 
de la transparence du miroir: 
chaque faisceau traverse le 
miroir une fois par transmission 
et une fois par réflexion.



Interféromètre de Michelson: Comment ça marche

• A l'entrée: 𝐸0 = 𝐸1 𝑐𝑜𝑠 𝑘𝑥 − 𝜔𝑡 , et: 𝐼0 =
2)"

$
. Le diviseur de 50% produit des intensités: 𝐼",$ =

2)!,""

$
= /+

$
, 

et le champ vu par le détecteur est donc: 𝐸4 = 𝐸" + 𝐸$ = 𝐼0 𝑐𝑜𝑠 𝑘𝑥" − 𝜔𝑡 + 𝑐𝑜𝑠 𝑘𝑥$ − 𝜔𝑡 =

2 𝐼0 𝑐𝑜𝑠 𝑘𝑥5 − 𝜔𝑡 𝑐𝑜𝑠 𝑘∆𝑥/2 , avec le chemin optique moyen: 𝑥5 = (𝑥" + 𝑥$)/2 et la différence du 
chemin optique entre les faisceaux: ∆𝑥 = 𝑥" − 𝑥$ .

• L'intensité mesuré est: 𝐼4 ∝ 𝐸4$ . = 4𝐼0 𝑐𝑜𝑠$ 𝑘𝑥5 − 𝜔𝑡 . 𝑐𝑜𝑠$ 𝑘∆𝑥/2 = 2𝐼0 𝑐𝑜𝑠$ 𝑘∆𝑥/2 = 𝐼0[

]

1 +

cos 𝑘∆𝑥 = 𝐼0 1 + cos 2𝜋∆𝑥/𝜆 = 𝐼0 1 + cos 2𝜋∆𝑥𝜎 , avec la définition de la fréquence spatiale 𝜎 = "
6

. 

L'unités de s est le cm-1, donc l=1 µm correspond à s=104 cm-1 , ou:  𝜎(𝑐𝑚(") = "
"116(89)

.

Dj=wDr/c

• Avec un miroir fixe et un 
amovible, le déplacement du 
miroir par une distance x
correspond à une différence de 
chemin Dx=2x, donc l'intensité 
est: 𝐼𝑑 ∝ 𝐼𝑠 1 + cos 4𝜋𝑥/𝜆 =
𝐼𝑠 1 + cos 400𝜋𝑥𝜎



• Le but: détecter si la lumière est transporté par un milieu ("ether") invisible fixe, tandis 
que la terre tourne autour du soleil à une vitesse linéaire de 30 km/s.

• Le chemin optique aca1 est: 

• Le chemin optique aba1 est: 

• La différence entre les chemins optiques aba1 et aca1 est:

• En tournant le système de 90º, on double la différence: 2∆𝐿 = 2𝐷 B
C

$
≈ 0.4𝜆 (D=11m)

• Le résultat de l'expérience: moins de 1/30 du signal théorique!

Bonus: L'expérience de Michelson-Morley (1887):
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https://en.wikipedia.org/wiki/Michelson%E2%80%93Morley_experiment



http://www.zygo.com/met/markets/stageposition/zmi/zmisystem_lg.jpg

http://www.win.tue.nl/casa/research/casaprojects/_kraaij_images/Stepper.jpg

L'interféromètre laser pour le nano-positionnement des plaquettes
• Un système d'exposition des plaquettes de Si pour la micro-

électronique, l'aligneur des masques
• On utilise un laser HeNe (l=633nm), très stable, dans un 

interféromètre de Michelson.
• L'interpolation numérique du signal d'interférence permet une 

résolution de l/1024 = 0.6 nm

Source (Laser, 200nm)

Lentille de focalisation 
(D=50cm, H=150cm)

Plaquette (wafer) de  Si (30cm) sur 
plaque nano-positionnée



x

FT-IR: Spectroscopie avec l'interféromètre de Michelson

http://www.ece.ucdavis.edu/misl/Web/Pages/LSMweb/FTtran99.htm

Principes de l'opération:
• Pour une fréquence optique unique s1, 

l'interférence donne: 𝐼7(𝑥) = 𝐼. 𝜎# cos(400𝜋𝜎#𝑥)
• Pour une autre fréquence s2: 

𝐼7(𝑥) = 𝐼. 𝜎$ cos(400𝜋𝜎$𝑥)
• Pour la somme de deux fréquences, il n'y a pas 

d'interférence croisée, donc: 𝐼7(𝑥) =
𝐼. 𝜎# cos 400𝜋𝜎#𝑥 + 𝐼. 𝜎$ cos(400𝜋𝜎$𝑥)

• Pour plusieurs fréquences (spectre de lumière): 
l'interférogramme 𝐼. 𝜎 est: 𝐼7(𝑥) =
∑! 𝐼. 𝜎! cos 400𝜋𝜎!𝑥 = ℱ 𝐼. 𝜎 , c'est la 
transformée de Fourier du spectre.

• On peut retrouver facilement le spectre d'origine 
par la transformée inverse: 𝐼. 𝜎 = ℱ<# 𝐼7(𝑥)

• Rappelle: 𝜎(𝑐𝑚<#) = #
#""+(E/)

(l=1µm correspond 

à s=104 cm-1)



FT-IR: Utilisation en (bio)chimie

http://www.ece.ucdavis.edu/misl/Web/Pages/LSMweb/FTtran99.htm

D'habitude, on utilise une lampe pour produire un large spectre dans l'IR 
(1-10 µm) et on met l'échantillon devant le detecteur. En comparant les 
spectres avec et sans échantillon, on obtient le spectre d'absorption de 
l'échantillon, qui permet d'identifier sa composition chimique

https://www.researchgate.net/publication/328323
626/figure/fig1/AS:682529958920201@1539739
231843/Fourier-transform-infrared-spectroscopy-
FTIR-spectrum-of-the-graphene-oxide-GO.png

Lignes d'absorption des différents liens 
moléculaires, déterminées par FTIR



• Le spectre (Intensité en fonction de la fréquence s = 1/l) est 
calculé par la transformé de Fourier numérique (FFT) de la figure 
d'interférence (Intensité en fonction de la distance). Si le miroir a 
un déplacement total de xmax et une résolution de Dx, l'appareil 
aura les caractéristiques suivantes:

• La fréquence maximale mesurable est: 𝜎/,0 ∝
#
G0

.

• La résolution en fréquence est : Δ𝜎 ∝ #
0'()

.

• La résolvance est définie comme: +
G+
= +

+!GH
∝ 0'()

+
.

• Des valeurs typiques à l=1µm:

• Souvent, une résolution de 0.1 nm est suffisante pour identifier 
les lignes spectrales des molécules.

• Ce spectromètre est très rapide (un mouvement du miroir suffit).
• Pour améliorer la stabilité, des structures intégrant les miroirs 

sont utilisées.
• On peut aussi ajouter un laser de fréquence connue pour 

calibrage du mouvement des miroirs.

FTIR: Résolution spectrale

Structure alternative des miroirs 
pour améliorer la stabilité

H
eN

e
Laser

D
etector

Ajout d'un laser de calibrage 
pour améliorer la précision

Xmax l/Dl Dl(nm)
1mm 103 1
1cm 104 0.1
10cm 105 0.01



Appareils FTIR typiques
Il y a typiquement des apareils pour mesurer l'absorption dans les 
solutions pour la chimie, et des apareils portatifs qui peuvent mesurer 
des liquids, poudres, etc. pour l'identification forensique

https://www.thermofisher.com/TFS-Assets/CAD/product-images/F202194.jpg-650.jpg
https://www.bruker.com/fileadmin/_processed_/csm_Bruker-Optics_FTIR-
Spectrometer-INVENIO-S_Touch-Display_Platinum-ATR_Kachel_d9fc2bdbea.jpg

Spectrophotomètre (mesure d'absorption) FTIR

Spectrophotomètre FTIR portatif



Applications typiques de la spectroscopie FTIR
En (bio)chimie:
• Identification des molécules.
• Caractérisation des réactions chimiques.
En science forensique (police, douane):
• Identification rapide et précise des drogues, explosives et autres substances, même en petites 

quantités et en présence d'autres substances

https://www.researchgate.net/profile/Ewan_Blanch/publication/284921406/figure/fig16/AS:66094613764916
3@1534593247730/Chemical-structures-right-and-Raman-spectra-left-of-a-5-w-v-aqueous-solution-of.png https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/1518/2017/10/05153652/octane_1.png



• La version intégré est composée des guides d'ondes et des coupleurs planes.
• Utilisation principale: filtre (séparation des fréquences):

• Si on veut Imax pour l1 , la différence du chemin doit être: 𝑘#∆𝑑 =
$*
+%
∆𝑑 = 2𝜋𝑚 .

• Si on veut Imin pour l2 , on a : 𝑘$∆𝑑 =
$*
+!
∆𝑑 = 2𝜋 𝑚 + #

$
.

• Le résultat: ∆𝑑 = 𝑚𝜆# = 𝑚 + #
$
𝜆$ , ou: 𝜆# = 1 + #

$/
𝜆$ , ce qui donne:  ∆+

+!
= #

$/
.

• En télécom: standard de transmission autour de
l = 1.3 et 1.55 µm, WDM = multiplexage de plusieurs
longueurs d'onde espacées de 20 nm dans une fibre.
Cette séparation demande donc: m=40.

l1 l2

Version 
discrete:

L'interféromètres de Mach-Zehnder Version intégrée:

http://www.chinacablesbuy.com/
wp-content/uploads/2017/04/4-
Channel-CWDM-Network-1.png

Cascade de filtres 
(démultiplexage):



Version discrete:

• On crée l'interférence entre deux faisceaux qui tournent dans un sens opposé dans 
une "cavité" formée des miroirs. Le système tourne avec une vitesse angulaire W.

• La différence de temps de parcours entre les deux faisceaux (calcul classique)
pour un chemin circulaire (on a la même pour un chemin carré): 

• La différence de phase est donc: ∆𝜑 = $*C
+
Δ𝑡 = 2𝜋 ?JK

+C
(A=surface de l'interféromètre)

• La version moderne: gyroscope à fibre
• Pour une longueur de fibre de 1 km (en plusieurs tours), on peut mesurer une 

rotation de 0.1 º/hr. Il faut une bonne stabilisation de la température! 

R

c+v

c-vW

Interféromètres de Sagnac (1913)

22

2

22

2

c
A4

c
R4

)R(c
R4

Rc
R2

Rc
R2t W

=
Wp

»
W-
Wp

=
W+

p
-

W-
p

=D

Version en fibres:



• C'est un laser dont la cavité est un interféromètre du Sagnac, avec une longueur de parcours totale =L.
• Le laser produit une fréquence qui satisfait la condition de résonance dans la cavité, c.à.d. que la phase accumulée 

en circulant l'interféromètre doit être: 𝐿𝑘 = $*L
+
= LM

C
= 2𝜋𝑚 (typiquement m=L/l≈105-106).

• La différence de vitesse des faisceaux cause une différence de leurs fréquences: 𝜔# =
$*/
L

𝑐 + 𝑅Ω , 𝜔$ =
$*/
L

𝑐 − 𝑅Ω ; donc: ∆𝜔 = 4𝜋𝑚 5
L
Ω , ou: ∆𝑓 = 2𝑚 5

L
Ω = $5

+
Ω .

• Il est facile de mesurer des petites ∆𝜔. Pour R=0.1 m, on peut mesurer une rotation de 0.01 º/hr.
• Utilisation: dans les avions

Bonus: Le gyroscope-laser

R

https://i.kinja-img.com/gawker-
media/image/upload/c_fit,f_aut
o,fl_progressive,q_80,w_470/g
irka2ijae6givozeqld.jpg

Gyroscope d'avion, 3 axes



• Un modèle simple: réseau de transmission, illuminé par 
une onde plane = ensemble de N sources identiques, 
séparés par une distance a; chacune émet un champ: 

E = ℰ"𝑒1 𝒌O𝒓<M6 , avec: ℰ" = 2𝐼" = 2𝐼12/𝑁 .
• Les faisceaux qui partent dans un angle 𝛽 ont un 

déphasage de plus en plus grand. Entre deux faisceau 

successifs, il y a: ∆𝜑 = 𝑘Δ𝑟 = 𝑘𝑎 sin 𝛽 = $*,
+
sin 𝛽 , et le 

faisceau j a un déphasage de: ∆𝜑!= (𝑗 − 1)∆𝜑 par 
rapport au premier (j=1).

• L'intensité total est (le moyennage temporel donne ½): 

• 𝐼(𝛽) = #
$
∑!&#' ℰ"𝑒1Q*

$
= 𝐼" ∑!&#' 𝑒1∆Q(!<#) $ =

𝐼"
#<R$∆,-

#<R$∆,

$
= 𝐼"

R$∆,-/! R/$∆,-/!<R$∆,-/!

R$∆,/! R/$∆,/!<R$∆,/!

$
=

𝐼"
<$1 :ST ∆Q'/$
<$1 :ST ∆Q/$

$
= 𝐼"

:ST! ∆Q'/$
:ST! ∆Q/$

= U$0
'
:ST! ∆Q'/$
:ST! ∆Q/$

. 

Interférence d'un grand nombre des faisceaux
Le réseau de diffraction (transmission, incidence normale): analyse

Iin

b

b

b

I0



Le réseau de diffraction (transmission, incidence normale): résultats

• La somme des intensités est:  𝐼 = 𝐼"
:ST! ∆Q'/$
:ST! ∆Q/$

, avec: ∆𝜑 = $*,
+
sin 𝛽 .

• Les grands maxima: quand sin$ ∆𝜑/2 = 0, donc: Djmax = 2mp . 
m=…,-2,-1,0,1,2,… est l' ordre de diffraction. L'intensité est: Imax =N2I0 =NIin . 

• Les minima (I=0), quand: sin$ ∆𝜑𝑁/2 = 0, donc: Djmin = 2m'p/N. 
• Les petits maxima, quand: sin$ ∆𝜑𝑁/2 = 1 , donc: Djmax' = (2m'+1)p/N .

L'intensité est: 𝐼/,0V =
U"

:ST! $/V=# */$'
≈ ?'!U"

*! $/1=# ! =
?'U$0

*! $/V=# ! (si N>>1). 

Le premier petit maximum: m' = 1, Imax' = 0.045.Imax .
• Les faisceaux sortants sont parallèles, 

il faut une lentille ou miroir pour les
focaliser sur un écran. Avec une distance
focale L, le déplacement du faisceau sur
l'écran est: y≈Lb .

• Dans un réseau réel, N = 105 ; la fonction
sin$ ∆𝜑𝑁/2 est extrêmement étroite!
le premier zéro est à: Dj0 = 2p/N≈10-4. 

0
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Réseaux de diffraction,  N=20



Le réseau de diffraction (transmission, incidence à un angle a)
• Quand l'onde entrante arrive sur le réseau avec un angle a, il y a un déphasage supplémentaire avant le réseau:  

∆𝜑JW= − $*,
+
sin 𝛼 , qui s'ajoute au déphasage après le réseau: ∆𝜑XY=

$*,
+
sin 𝛽 .

• Le déphasage total devient donc: ∆𝜑 = $*,
+

sin 𝛽 − sin 𝛼 .

• La condition pour les angles des maxima: Djmax = 2mp donne l'équation du réseau: sin 𝛽 − sin 𝛼 = /+
,

.
• l'intensité des grand maxima reste la même: I = N2I0 =NIin . 

• La condition pour l'angle des minima: Djmin = 2m'p/N donne maintenant: sin 𝛽 − sin 𝛼 = /V+
,'

= /V+
L2

(Lr = longueur 

totale du réseau).
• Le désavantage du réseau de transmission est sa mauvaise efficacité, due à:

• La perte par la partie caché des fentes (Transmission d'env. 50%).
• L'intensité est divisé entre les modes de diffraction.

• Il y a des réseaux de transmission "holographiques", avec une couche transparente
ondulée en place des fentes, pour une meilleure transmission.



Le réseau de réflexion, le réseau optimisé ("blazed grating")
• L'utilisation du réseau des miroirs (réseau de réflexion) est plus efficace. On peut choisir l'angle des miroirs 𝜃X.

L'angle des maxima est donné par la même équation du réseau: sin 𝛽 − sin 𝛼 = /+
,

. 
• La réflexion des miroirs permet de maximiser l'intensité dans un ordre spécifique de diffraction, en satisfaisant 

simultanément la condition de réflexion de chaque miroir: 𝛼 − 𝛽 = 2𝜃X , pour obtenir: 2sin 𝜃X cos(𝛼 − 𝜃X) =
/+'()

,
.

• La géométrie du système (a,qB) détermine la valeur de lmax . Pour d'autres longueurs d'onde, l'intensité diminue.

• Il y a des systèmes spécifiques de réseau à réflexion, comme le réseau de Littrow ( a=-b=qB ): 2 sin 𝜃X =
/+
,

, qui 
est utilisé dans les lasers.

https://www.horiba.com/uk/scientific/products/diffraction-gratings/for-industrial-applications/holographic-plane-gratings/

Efficacité d'un réseau 
optimisé à 550 nm

𝜃X

𝜃X



Réseau de diffraction: Recouvrement des ordres
• La formule du réseau: sin 𝛽 − sin 𝛼 = /+

,
montre qu'il y a recouvrement partiel entre tous les ordres de diffraction.

• Prenons deux longueurs d'onde: 𝜆# de l'ordre m et  𝜆$ de l'ordre m+1. La lumière est diffractée dans le même angle 

b si:  sin 𝛽 − sin 𝛼 = /+%
,
= (/=#)+!

,
, ou: 𝑚𝜆# = (𝑚 + 1)𝜆$ . La différence est: ∆𝜆 = 𝜆# − 𝜆$ =

+!
/
= +%

/=#
.

• La moitié du premier ordre est donc couverte par le deuxième ordre, un tiers du deuxième ordre est couvert par le 
troisième ordre, etc.

https://s3-us-west-2.amazonaws.com/courses-images-archive-read-only/wp-
content/uploads/sites/222/2014/12/20111410/Figure_28_04_01a.jpg

https://www.shimadzu.com/sites/shimadzu.com/files/opt/gui
de/diffraction/k25cur0000003vph-img/oh80jt0000001uxj.gif



Le monochromateur/spectrograph
à réseau :

Quand on ouvre le capot…

http://www.horiba.com/us/en/scientific/products/monochromators/

Entrée:
Sorties:

Détecteur 
(CCD)

Entrée 1 Sortie 1

Réseau

Miroirs

Sortie 2

Entrée 2

Le chemin optique



(CCD)
y

Utilisation des monochromateurs
• Comme source de lumière: on filtre la lumière blanche d'une lampe 

pour obtenir une lumière monochromatique. L'efficacité est faible.
• Pour analyser le spectre d'une source inconnue. Il y a deux types:

• Spectromètre: Une fente étroite de sortie limite la longueur d'onde 
qui sorte vers un détecteur. Pour mesurer un spectre complet, on 

tourne le réseau. sin 𝛽 − sin 𝛼 = /+
,

.
• Spectrographe: Une caméra (CCD) ou réseau de détecteurs à la 

sortie enregistre tout le spectre. sin -
L
− sin 𝛼 = /+

,
. Si la taille de la 

caméra est D, la gamme d'un spectre est: ∆𝜆 ≈ ,Y
/L

. Au-delà de 
cette gamme, il faut tourner le réseau. Valeurs typiques:

https://blogs.maryville.edu/aas/wp-content/uploads/sites/1601/2015/04/monochromater.jpg
https://www.researchgate.net/profile/Jianwei_Qin/publication/312956040/figure/fig1/AS:456608141582336@1
485875272925/Wavelength-dispersive-imaging-spectrographs-a-prism-grating-prism-PGP-transmission.png

Photo-

https://upload.wikimedia.org/wikipedia/commons/4/48/White_LED.png

a=0.83 µm
(1200 l/mm)
L=550 mm
D=25mm

=> Dl=38 nm



Réseaux de diffraction: Dispersion
• L'angle des maxima: sin 𝛽 − sin 𝛼 ≈ sin -

L
− sin 𝛼 = /+

,
(y≈Lb est la position du maximum sur le détecteur). 

• La dispersion du réseau (mouvement du maximum par changement de longueur d'onde): 7Z
7+
= /

, 89: Z
; 7-
7+
≈ /L

,
.

• Des valeurs typiques: a=0.83µm (1200 l/mm), L=550mm, N=91000, b=28° ; cela donne en 1er ordre: 7-
7+
= 6.6 , 10[

ou: 7+
7-
≅ 1.5 𝑛𝑚/𝑚𝑚 . Un élément typique d'un détecteur CCD (12.5 µm), ou une fente de sortie de la même 

largeur, correspond à une largeur spectrale: dl=19 pm.
• La gamme spectrale est: Dl=38 nm, qui corresponde aux 2000 pixels de la CCD.

(CCD)
y



Réseaux de diffraction: Résolution

Le critère de Rayleigh: Imax à l superposé avec Imin à l+dl

• La résolution optique est donnée par le critère de Rayleigh: La coïncidence du maximum d'une longueur d'onde 
𝜆# avec le minimum d'une longueur d'onde 𝜆$ = 𝜆# + 𝛿𝜆 , ce qui permet de les distinguer (contraste de ~10%). 

• L'angle correspondante est donné par: 𝑎 sin 𝛽 − sin 𝛼 = 𝑚𝜆# = 𝑚′𝜆$/𝑁 ; La différence des longueurs d'onde est: 

𝛿𝜆 = 𝜆$
/'</1

/'
. La résolution (le cas minimal: mN-m' = 1) est:  \+

+
= #

/'
. La résolvance est:  R ≡ +

\+
= 𝑚𝑁. 

• Des valeurs typiques: a=0.83µm (1200 l/mm), L=550mm, N=91000, b=28° ; cela donne en 1er ordre: 

résolution:  \+
+
≅ 1.1 , 10<[ , résolvance: R=N=91000 .

(CCD)
y

l+dl



b

b

b

DL=Nl

Dt=Nl/c

• La résolution du réseau (1er ordre) est: ∆+
+
= #

'
. Dans un réseau typique 

de haute résolution, N≈105 .
• Si le réseau est illuminé par une onde plane, la différence de chemin 

optique entre le premier (haut) et le dernier (bas) faisceau est de N.l.
• Cela implique une différence de temps de: Dt = N.l/c (300 ps pour N = 

105 , l = 1 µm). 
• Si l'illumination est une impulsion courte (une durée de t ), l'interférence 

serait possible entre moins de faisceaux, seulement N’ = t .c/l . Cela 
réduira la résolution spectrale à: Dl/l = l/tc , ou: Dl.t = l2/c .

• Une impulsion d'un laser de 3 ps limitera la résolution à 1 nm, et une 
impulsion ultracourte de 150 fs serait limité à seulement 20 nm. C'est à 
comparer avec la résolution initiale du réseau de 10 pm. C'est une 
perte de 100-2000!

• Une autre manière d'arriver à ce résultat, en utilisant le lien entre 

largeur temporel et spectral de l'impulsion: 𝜔 = $*C
+

, donc: ∆𝜔 = $*C
+!
∆𝜆

ou: ∆+
∆M

= +!

$*C
. Mais: ∆𝜔 = 2𝜋∆𝑓 = $*

]
, donc: ∆𝜆 = +!∆M

$*C
= +!

C]
.

Bonus: Réseaux de diffraction et paquets d'ondes / impulsions



Application typique du spectromètre à réseau
• Mesure des niveaux d'énergie des structures quantiques en semiconducteurs, ici des boites 

quantiques

https://ars.els-cdn.com/content/image/1-s2.0-S0022024816306947-gr2.jpg

Spectres d'émission des ensembles d'env. 10 boites quantiques
Isolation des transitions électronique 
d'une boite quantique dans l'ensemble



• En radio- astronomie: on utilise un réseau des radio-télescopes de taille moyenne pour réaliser un équivalent d'une 
taille beaucoup plus grande (l'intensité des grand maxima est : I = N2I0 ).

• Les systèmes de radar utilisent des réseaux d'antennes, où on peut diriger le faisceau en changeant la phase entre 
les antennes.

Bonus: Autres systèmes similaires au réseau de diffraction
Interférence d'un grand nombre des faisceaux

https://www.universetoday.com/wp-content/uploads/2012/01/VLATwilight_lo.jpg

https://www.darpa.mil/DDM_Gallery/(2Q2)%20Timeline%201959%20-%20Phased%20Array%20copy.jpg



L'étalon de Fabry-Pérot: Principe d'opération
• L'étalon de Fabry-Pérot est composé de deux miroirs presque parfaits, avec une transmission t1,t2 et réflexion r1,r2 .
• Un faisceau entrant traverse les deux miroirs, donnant un premier composant à la sortie: 𝐸^_6% = 𝐸"𝑡#𝑡$𝑒1(L .

• Les réflexions successives ajoutent à ce champ une contribution (par chaque aller-retour): 𝐸^_6* = 𝐸^_6*/%𝑟#𝑟$𝑒
1$(L .

• Le champ total à la sortie est donc: 𝐸^_6 = 𝐸"𝑡#𝑡$𝑒1(L ∑!&"` 𝑟#𝑟$𝑒1$(L
! . 

• En définissant: ∆𝜑 = 2𝑘𝐿 = 4𝜋𝐿/𝜆 et: r = 𝑟#𝑟$ , nous avons: 𝐸^_6 = 𝐸"𝑡#𝑡$𝑒1∆Q/$ ∑!&"` 𝑟!𝑒1∆Q! = 𝐸"𝑡#𝑡$
R$∆,/!

#<>R$∆,
.

• L'intensité est: 𝐼^_6 = 𝐼"𝑡#$𝑡$$
#

#<>R$∆,
$
= U"6%!6!!

#<>R$∆, #<>R/$∆,
= U"6%!6!!

#=>!<> R$∆,=R/$∆,
= U"6%!6!!

#=>!<$> 89: ∆Q
=

U"6%!6!!

#=>!<$> #<$ :ST! ∆Q/$
= U"6%!6!!

#<> !=?> :ST! ∆Q/$
= U'()

#= !ℱ
4

!
:ST! ∆Q/$

, avec les définitions: 𝐼/,0 ≡
U"6%!6!!

#<> ! , ℱ ≡ * >
#<>

= *⋅5 5%5!
#< 5%5!

(𝑅#,$ = 𝑟#,$$ ) .

• Si: R1=R2=R,  ℱ ≡ * 5
#<5

.
• Pour augmenter F, il faut une 

réflectivité très proche de 1: R ℱ
0.73134 10
0.9690737 100
0.99686334 1000



L'étalon de Fabry-Pérot: Gamme spectrale, résolution.
• L'intensité est: 𝐼^_6 =

U'()

#= !ℱ
4

!
:ST! ∆Q/$

, les maxima sont donnés par: sin$ ∆𝜑/2 = 0 , donc: Djmax=2pm (m=1,2,3,…) .

• La largeur à mi-hauteur des pics est donné par: $ℱ
*

$
sin$ ∆𝜑#/$/2 = 1 . Si F > 30 on peut utiliser l'approximation 

linéaire du sinus, pour obtenir: 2Dj1/2=2p/F . On a donc: Djp-p/Dj1/2=F . 

• En utilisant: ∆𝜑 = 2𝑘𝐿 = ?*L
+

, on a des maxima pour: L=lm/2. Typiquement, L=10 mm, donc: m=2L/l=2.104.
• Pour passer d'un pic au suivant, il faut changer la longueur L de l/2, ou changer la longueur d'onde de: Dl=l2/2L. 

On appelle Dl la gamme spectrale (FSR). Pour L=10mm, l=1µm, Dl=50pm !
• La résolution est dl=Dl/F . Pour L=10mm et F=1000, dl=50fm !
• On exprime souvent Dl, dl en MHz/GHz (f=c/l): Df=cDl/l2 = 3.1020Dl . Notre exemple: Df=15GHz , df=15MHz .



L'étalon Fabry-Pérot: pratique

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=859

• L'appareil est souvent fabriqué avec des miroirs sphériques, pour faciliter l'alignement (voir plus loin). Cela double 
le chemin optique, donnant pour les pics: L=lm/4. 

• Un actuateur piézoélectrique permet un mouvement relatif des miroirs avec grande précision (gamme de 
mouvement de quelques microns, résolution de nm).

• Seuls les miroirs diélectriques ont une réflectivité suffisante, afin d'assurer la finesse désirée.

L=50 mm

Réflectivité du miroir diélectrique 
et finesse du Fabri-Pérot Réflectivité du miroir métallique



L'étalon Fabry-Pérot: utilisation
• La spécificité de l'étalon Fabry-Pérot: pics de transmission très étroits, qui se répètent périodiquement.
• Utilisation principale: analyse de la largeur de ligne des lasers, des boites quantiques, etc. L'appareil sert comme 

un filtre très étroit, qu'on balaye dans la (petite) gamme de longueur d'onde pour tracer la forme du spectre 
mesuré. La largeur à mi-hauteur du pic du Fabry-Pérot doit être plus petite que celle de la ligne mesurée, tandis 
que la FSR doit en être plus large.
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Transmission du F.P. à 
3 positions des miroirs
(couleurs)

Balayage de la cavité

Intensité mesuré à la sortieIntensité de la source

FSR



Les effets de désalignement
• Dans l'interféromètre de Fabry-Pérot, notre calcul concernait une propagation perpendiculaire aux miroirs.
• Si la propagation est à un angle a, il y a deux changements au calcul:

• La distance est augmenté par 1/cos(a). Si a est petit, cela ne change pas beaucoup les résonances (cos(a)≈1- a2/2).
• A chaque passage, le faisceau change de position par 2Ltg(a). La taille des miroirs H doit être assez grande pour contenir 

toutes les réflexions nécessaires à obtenir la finesse, car leur nombre doit être > F. La taille du miroir doit donc être au 
moins: H>2FLtg(a) , ou l'angle maximale du faisceau doit être plus petite que: amax=tg-1(H/2FL). Pour des dimensions 
typiques (H=2cm, L=1cm, F =200), amax=0.3° (pour F =1000, amax=0.06°) !  On dit que la cavité est marginalement stable, 
car la finesse est très sensible à la direction du faisceau et demande un alignement très précis.

• Pour résoudre ce problème, il faut une cavité stable, p. ex. composée de deux miroirs concaves (voir plus loin):



Les ondes stationnaires (1D)
• Regardons l'interférence entre une onde plane: 𝐸 𝑧, 𝑡 = 𝐸" cos 𝑘𝑧 − 𝜔𝑡 et sa réflexion par un miroir parfait: 

𝐸′ 𝑧, 𝑡 = 𝐸" cos 𝑘𝑧 + 𝜔𝑡 . La somme des deux ondes est: 𝐸6^6 𝑧, 𝑡 = 𝐸" cos 𝑘𝑧 − 𝜔𝑡 + cos 𝑘𝑧 + 𝜔𝑡 =

2𝐸" cos
(d<M6 = (d=M6

$
cos (d<M6 < (d=M6

$
= 2𝐸" cos 𝑘𝑧 cos 𝜔𝑡 . 

• C'est une onde stationnaire: la dépendance en z et en t sont séparées, contrairement aux ondes propageantes, 
qui dépendent de l'argument combiné (kz-wt).

• Un développement plus général: on cherche une solution 𝐸 𝑧, 𝑡 = 𝑓 𝑧 𝑔(𝑡) à l'équation d'onde: e
!f
ed!

= #
C!

e!f
e6!

. La 

substitution donne: #
g
e!g
ed!

= #
C!h

e!h
e6!

= 𝐶 . Une solution à ces équations serait: 𝑓 𝑧 = 𝑓" cos 𝑘𝑧 et: 𝑔 𝑧 = 𝑔" cos 𝜔𝑡 , 

ce qui donne: 𝜔 = 𝑐𝑘 et: 𝐸 𝑧, 𝑡 = 𝐸" cos 𝑘𝑧 cos 𝜔𝑡 .
• On peut décrire les mêmes ondes stationnaires avec des sinus: 𝐸 𝑧, 𝑡 = 𝐸" sin 𝑘𝑧 sin 𝜔𝑡 , ou des exponentiels: 

𝐸 𝑧, 𝑡 = ℜ𝔢 ℰ"𝑒1(d𝑒1M6 .



Les modes de cavité (1D)
• Entre deux miroirs, il y a une onde stationnaire avec deux conditions aux bords: E(0,t)=0 et: E(L,t)=0 . Ceci ajoute à 

la solution: 𝐸6^6 𝑧, 𝑡 = 2𝐸" sin 𝑘𝑧 cos𝜔𝑡 la condition: kL=mp , ou: L=ml/2 . On appelle ces solutions les modes de 
la cavité formée par les deux miroirs. Dans beaucoup de cavités, L>>1mm, donc m est très grand (>>1000). 

• La fréquence des modes est donnée par: f=mc/2L . La différence en fréquence entre deux modes est donc:  
Df=c/2L . Nous pouvons définir la densité des modes M(f) = nombre de modes par unité de fréquence et de 
longueur de cavité, ce qui donne: M(f)=4/c (en comptant deux polarisations par mode). 

• Parfois, il y a une combinaison entre onde stationnaire et onde propageante:
• Dans l'interféromètre de Fabry-Pérot, le champ réfléchi est de >99%;

cela forme une onde stationnaire entre les miroirs, plus un composant
propageant de <1% . Cette partie est nécessaire, sinon la lumière ne pourrait
jamais entrer ou sortir de la cavité…

• Une cavité plus complexe peut supporter des ondes stationnaires qui ont besoin
de plusieurs passages pour revenir à la configuration initiale.



Bonus: La stabilité des cavités
• Il existent différents types de cavités, utilisant des miroirs plans ou sphériques.
• Si la trajectoire d'un faisceau qui fait un aller-retour revient avec les mêmes 

conditions (angle, position), la cavité est stable.

• On peut définir les facteurs de stabilité: 𝑔#,$ ≡ 1 − L
5%,!

, 𝑅1 = rayon de courbure 

du miroir 𝑖 (𝑅1 = ∞ pour le miroir plane, donc: 𝑔ij,2R = 1). 
• La cavité est stable si: 𝑔#𝑔$ ≤ 1 (zones colorés dans le diagramme), et 

marginalement stable si: 𝑔#𝑔$ = 1. Il faut donc au moins un miroir courbe!

https://en.wikipedia.org/wiki/Optical_cavity
https://www.groundai.com/project/feasibility-of-near-
unstable-cavities-for-future-gravitational-wave-detectors/4

https://i.stack.imgur.com/4Z0z3.png

Trajectoire des rayons 
dans une cavité confocale

http://pyweb.swansea.ac.uk/LaserChemistry-book/fig1_a0327.jpg

Faisceau Gaussien dans 
une cavité confocale



Bonus: Les cavités en 2D
• De la même manière d'une cavité à 1D, on peut construire une cavité en 2D, voir 3D.
• P. ex. un système avec 2 miroirs parallèles à l'axe x (distance b) et 2 miroirs parallèles à l'axe y (distance a) vont 

définir des modes pour kx , ky : 𝑘0 = 𝜋𝑚/𝑎 et: 𝑘- = 𝜋𝑙/𝑏 .
• Ces modes peuvent être combinés, formant des motifs complexes en x,y.



Bonus: Approche matricielle de l'interférence dans des couches
• L'idée: Accumuler toutes les réflexions multiples en deux valeurs de champs: 

U(+) et U(-), qui propagent dans les deux directions, de chaque coté de l'interface.
• Ces champs sont interliés par une matrice de coefficients, qui exprime les 

propriétés du système. Il y a deux systèmes de matrices:
• Matrice de transfert: lie les champs "à droite" (dans les deux directions de 

propagation) U2(+) et U2(-) , aux champs "à gauche" U1(+) et U1(-) :

• Matrice de diffusion: Connecte les champs "sortants" U2(+) et U1(-) , aux 
champs "entrants" U1(+) et U2(-) :
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Bonus: Les liens entre les différentes matrices
• Transformation entre la matrice de transfert et la matrice de diffusion:

• Transformation entre la matrice de diffusion et la matrice de transfert:

• S'il n'y a pas d'absorption, l'energie est conservée, et si un système a 
les mêmes indices des deux cotés, nous obtenons:

ce qui donne des equations:

ou, pour la matrice M:

• Si, en plus, le système est "réciproque":

ou, pour la matrice M:
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Bonus: Exemples de matrices S, M
• Propagation dans un milieu homogène, avec un indice n et épaisseur d: 

Il n'y a pas de réflexion, ni de réfraction; seulement un déphasage:

• Interface entre deux matériaux, en incidence normale, les équations de 
Fresnel donnent:

• En consequence, la matrice M est:

• Un miroir semi-transparent, avec transmission t et réflexion r :

• L'étalon Fabry-Pérot: une combinaison de deux miroirs et un milieu 
transparent:

• La transmission est donc: 
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• Une couche avec indice n2 entre deux matériaux avec indices n1, n3 (p. ex. air et verre) en incidence normale. La 
matrice de transmission est:

• La réflexion est donnée par:

• Pour une couche antireflet, il faut que C=0, ou:
• Si nous supposons : 2n2kd2 = p, ou n2d2 = l/4, cela donne:                                                   ou:              
• Nous avons vu que c'est difficile de trouver des matériaux avec l'indice intermédiaire requis.
• De la même manière, pour deux couches avec indices n2,n3

entre deux matériaux avec indices n1,n4 .
la réflexion est nulle si: n2d2 = l/4 , n3d3 = l/4 , et:

• Il est plus facile de trouver des deux matériaux intermédiaires pour
satisfaire le rapport entre les indices demandé par cette équation.

• Avec 3 couches, on peut diminuer la réflexion d'avantage dans
une gamme étendue des longueurs d'onde.

Bonus: La couche antireflet revisité
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Bonus: Interférence dans des multiples couches diélectriques
• Une structure de paires des couches avec des indices haut nH et bas nL. , en incidence normale. La matrice de 

transmission pour une paire est:

• Pour un nombre N de paires, et nHdH=nLdL=l/4, 𝑅 = 2"27
!-<2829
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• Si N est suffisamment grand, R—>1 . Dans ce cas, si nous cherchons R=1-e, nous devrons utiliser 𝑁 = kT l28/2"
$ kT 27/29

pairs. C'est le principe des miroirs diélectriques, qui permettent d'obtenir une réflectivité très proche de 1. 

• La gamme de longueur d'onde est limité par la condition de la phase ci-dessus, à: ∆+
+
= ?

*
sin<# 27<29

27=29
.

• Des couches typiques: SiO2 (n=1.5), TiO2 (n=2.38).
• On l'appelle miroir de Bragg . 
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B. Osting, App. Mat. Lett. 25, 1926-1930 (2012)



Bonus: Utilisation des miroirs diélectriques:

Couches anti-reflet:

Miroir sélectif IR/visible pour une lampe "froide":

… Mais aussi pour des miroirs "parfaits" (R>0.99), pour des 
faisceaux laser de puissance et pour l'interféromètre F-P

https://www.thorlabs.com



Bonus: Comparaison des moyens de spectroscopie (l=500nm)
Paramètre Prisme Réseau Etalon F-P FTIR

(à l=1µm)

Charactéristiques Verre N-PK52A
a=30°
D=5cm

1200 l/mm
L=5cm

L = 10 mm
F=1000

L = 1 cm

Dispersion -

Résolution

𝑑𝜆
𝜆 =

𝜆
4𝐿𝐹 = 1.2 * 10!"

𝑑𝜆 = 6.3 𝑝𝑚

Dl/l = 10-4

dl = 100 pm

Gamme spectrale 300-2500 nm 1-100 µm

dθ
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=
dn
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α

= 2.4 ⋅10−5rad / nm

dθ
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=
m

acosθ
=1.5 ⋅10−3rad / nm

dλ
λ
=
1.22

Dα dn
dλ

=1⋅10−3

dλ = 500pm

dλ
λ
=
1
mN

=1.7 ⋅10−5

dλ = 8.5pm

λ
m+1

= 250nm λ 2

4L
= 6.3nm

λ
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λ

λ 2Δσ
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xmax
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