
Part II

Sparse Linear Algebra

41

Chapter 5

Sparse Matrices

5.1 Introduction to Sparse Matrices

Sparse matrices are fundamental structures in computational physics, characterized by having
most elements equal to zero. These matrices naturally arise in many physical systems where
interactions are local or limited, such as in quantum mechanics, finite element methods, and
network analysis.

5.1.1 Definition and Properties

A matrix A 2 Rm⇥n is considered sparse if the number of non-zero elements is O(max(m,n)). The
sparsity of a matrix can be quantified by:

sparsity =
number of zero elements

total number of elements
= 1� nnz

mn
, (5.1.1)

where nnz is the number of non-zero elements.

Key properties that make sparse matrices computationally advantageous include:

• Memory e�ciency: Only non-zero elements need storage

• Computational e�ciency: Operations can skip zero elements

• Structure preservation: Many operations preserve sparsity

43

44 CHAPTER 5. SPARSE MATRICES

5.2 Storage Formats for Sparse Matrices

E�cient storage and manipulation of sparse matrices require specialized formats. We present
three fundamental storage schemes, each with distinct advantages for di↵erent computational
tasks. Consider the following example sparse matrix for illustration:

A =

0

BB@

1 0 0 2
0 3 4 0
5 0 0 6
0 7 8 0

1

CCA (5.2.1)

5.2.1 Compressed Sparse Row (CSR)

The CSR format organizes data in three arrays:

• values: Non-zero elements in row-major order

• col indices: Column indices of non-zero elements

• row ptr: Starting positions of each row in values

For matrix A, the CSR representation is:

values 1 2 3 4 5 6 7 8
col indices 0 3 1 2 0 3 1 2
row ptr 0 2 4 6 8

5.2.2 Compressed Sparse Column (CSC)

The CSC format is the column-oriented analog of CSR, using:

• values: Non-zero elements in column-major order

• row indices: Row indices of non-zero elements

• col ptr: Starting positions of each column

For matrix A, the CSC representation is:

values 1 5 3 7 4 8 2 6
row indices 0 2 1 3 1 3 0 2
col ptr 0 2 4 6 8

5.2. STORAGE FORMATS FOR SPARSE MATRICES 45

5.2.3 Coordinate List (COO)

The COO format stores explicit coordinates for each non-zero element:

• row: Row indices of non-zero elements

• col: Column indices of non-zero elements

• data: Values of non-zero elements

For matrix A, the COO representation is:

row 0 0 1 1 2 2 3 3
col 0 3 1 2 0 3 1 2
data 1 2 3 4 5 6 7 8

5.2.4 Format Comparison and Selection

Each storage format has its advantages and specific use cases:

• CSR excels in:

– Row-wise operations and matrix-vector multiplication

– Integration with standard linear algebra libraries

– Most common format in sparse linear algebra software

• CSC is preferred for:

– Column-wise operations

– Direct solver algorithms

– Column-oriented matrix updates

• COO is optimal for:

– Matrix construction and modification

– Incremental matrix building

– Simple and intuitive format for initial data input

– Intermediate format before conversion to CSR/CSC

In practice, CSR is often the default choice due to its balance of simplicity and e�ciency, par-
ticularly in scientific computing applications where matrix-vector multiplication is a dominant
operation.

46 CHAPTER 5. SPARSE MATRICES

5.3 Operations on Sparse Matrices

5.3.1 Matrix-Vector Multiplication

Matrix-vector multiplication is a fundamental operation in many numerical algorithms. For a
sparse matrix A and a vector x, the product y = Ax can be computed e�ciently.

For CSR format:

yi =
row ptr[i+1]�1X

j=row ptr[i]

values[j] · xcol indices[j] (5.3.1)

5.3.2 Implementation and Performance Comparison

Let’s implement matrix-vector multiplication for di↵erent formats and compare their performance:

1 import numpy as np
2 import s c ipy . spar s e as sp
3 import time
4

5 de f c r e a t e s pa r s e ma t r i x (n , dens i ty =0.01) :
6 r e turn sp . random(n , n , dens i ty=dens i ty , format=’ c s r ’)
7

8 de f benchmark mv mult (n , dens i ty =0.01 , num runs=100) :
9 A csr = c r e a t e s pa r s e ma t r i x (n , dens i ty)

10 A csc = A csr . t o c s c ()
11 A coo = A csr . tocoo ()
12 A dense = A csr . toar ray ()
13 x = np . random . rand (n)
14

15 t imes = {}
16

17 f o r format name , A in [(’CSR ’ , A csr) , (’CSC ’ , A csc) , (’COO’ , A coo) , (’ Dense
’ , A dense)] :

18 s t a r t = time . time ()
19 f o r in range (num runs) :
20 y = A @ x
21 end = time . time ()
22 t imes [format name] = (end − s t a r t) / num runs
23

24 r e turn t imes
25

26 n = 10000
27 r e s u l t s = benchmark mv mult (n)
28

29 f o r format name , avg t ime in r e s u l t s . i tems () :
30 pr in t (f ”{ format name } : { avg t ime : . 6 f } seconds ”)

5.4. APPLICATIONS IN COMPUTATIONAL PHYSICS 47

This code benchmarks matrix-vector multiplication for di↵erent sparse matrix formats and
compares them with dense matrix multiplication.

5.4 Applications in Computational Physics

5.4.1 Finite Di↵erence Method

Sparse matrices are particularly useful in finite di↵erence methods for solving partial di↵erential
equations. Consider the 1D heat equation:

@u

@t
= ↵

@2u

@x2
(5.4.1)

Here, u(x, t) is a function of position x and time t, representing the state of the system at each
point in space and time. The precise physical interpretation of u(x, t) depends on the specific
application of the equation:

• In thermal systems, u(x, t) typically represents temperature. In this case, the equation
models how heat spreads through a one-dimensional medium over time.

• In di↵usion processes, u(x, t) might represent the concentration of a substance. The equation
then describes how the substance di↵uses through space over time.

• In probability theory, u(x, t) could represent a probability density function. The equation
would then model the evolution of probability distributions in certain stochastic processes.

The parameter ↵ is called the di↵usion coe�cient. Its physical interpretation also depends on the
context:

• In heat conduction, ↵ = k/(⇢c), where k is thermal conductivity, ⇢ is density, and c is specific
heat capacity.

• In particle di↵usion, ↵ is related to the mobility of the di↵using particles.

• In probability theory, ↵ is related to the variance of the underlying random process.

The heat equation is a parabolic partial di↵erential equation that describes how the quantity u
”smooths out” over time without creating or destroying the total amount of u. This conservation
property is fundamental to many physical processes and is reflected in the mathematical structure
of the equation.

The term @u
@t represents the rate of change of u with respect to time at a fixed position. The

term @2u
@x2 represents the curvature of u with respect to position at a fixed time. The equation

essentially states that the rate of change of u at any point is proportional to the curvature of u at
that point.

48 CHAPTER 5. SPARSE MATRICES

In our numerical solution, we will discretize this continuous equation, approximating the deriva-
tives with finite di↵erences and representing the system state at discrete points in space and time.
This discretization allows us to leverage sparse matrix techniques for e�cient computation.

Discretizing this equation using central di↵erences in space and forward di↵erence in time
yields:

un+1
i � un

i

�t
= ↵

un
i+1 � 2un

i + un
i�1

(�x)2
(5.4.2)

This can be represented as a matrix equation:

un+1 =

✓
I +

↵�t

(�x)2
A

◆
un (5.4.3)

where A is a tridiagonal sparse matrix:

A =

2

666664

�2 1 0 · · · 0
1 �2 1 · · · 0

0 1 �2 . . .
...

...
...

. 1
0 0 · · · 1 �2

3

777775
(5.4.4)

5.4.2 Implementation of 1D Heat Equation Solver

Let’s implement a solver for the 1D heat equation using sparse matrices. We discretize the domain
in both space and time:

• Spatial discretization: xi = i�x, where i = 0, 1, ..., nx� 1 and �x = L/(nx� 1)

• Temporal discretization: tn = n�t, where n = 0, 1, ..., nt and �t = T/nt

Here, L is the length of the domain, T is the total simulation time, nx is the number of spatial
points, and nt is the number of time steps.

5.4.2.1 Initial Condition

For this example, we’ll use a sinusoidal initial condition:

u(x, 0) = sin(⇡x/L) (5.4.5)

This initial condition represents a temperature distribution that varies smoothly from 0 at the
boundaries to a maximum of 1 at the center of the domain. It’s a common choice for testing heat
equation solvers because:

• It satisfies the boundary conditions u(0, t) = u(L, t) = 0 for all t

5.4. APPLICATIONS IN COMPUTATIONAL PHYSICS 49

• It’s an eigenfunction of the Laplacian operator, which means the solution will decay expo-
nentially in time while maintaining its shape

• It’s smooth and easy to implement numerically

5.4.2.2 Boundary Conditions

We’ll use Dirichlet boundary conditions, keeping the temperature at the ends of the domain fixed
at zero:

u(0, t) = u(L, t) = 0 8t (5.4.6)

These boundary conditions are implicitly enforced by our choice of discretization and initial con-
dition.

Now, let’s implement this solver:

1 import numpy as np
2 import s c ipy . spar s e as sp
3 import matp lo t l i b . pyplot as p l t
4

5 de f s o l v e h ea t equa t i on 1d (L , nx , nt , alpha , T) :
6 dx = L / (nx − 1)
7 dt = T / nt
8

9 # Create spar s e matrix
10 d iagona l s = [−2∗np . ones (nx) , np . ones (nx−1) , np . ones (nx−1)]
11 o f f s e t s = [0 , −1, 1]
12 A = sp . d iags (d iagona l s , o f f s e t s , shape=(nx , nx) , format=’ c s r ’)
13

14 # I n i t i a l cond i t i on
15 u = np . s i n (np . p i ∗ np . l i n s p a c e (0 , L , nx) / L)
16

17 # Time stepp ing
18 f o r in range (nt) :
19 u = u + alpha ∗ dt / (dx∗∗2) ∗ (A @ u)
20

21 r e turn u
22

23 # Parameters
24 L = 1.0 # Length o f domain
25 nx = 100 # Number o f s p a t i a l po in t s
26 nt = 1000 # Number o f time s t ep s
27 alpha = 0.01 # Di f f u s i on c o e f f i c i e n t
28 T = 0.5 # Total s imu la t i on time
29

30 u f i n a l = so l v e h ea t equa t i on 1d (L , nx , nt , alpha , T)
31

32 # Plo t t i ng

50 CHAPTER 5. SPARSE MATRICES

33 x = np . l i n s p a c e (0 , L , nx)
34 p l t . f i g u r e (f i g s i z e =(10 , 6))
35 p l t . p l o t (x , u f i n a l)
36 p l t . t i t l e (’ 1D Heat Equation So lu t i on ’)
37 p l t . x l ab e l (’ x ’)
38 p l t . y l ab e l (’ Temperature ’)
39 p l t . g r i d (True)
40 p l t . s a v e f i g (’ h e a t e qua t i on s o l u t i o n . pdf ’)
41 p l t . c l o s e ()

This code solves the 1D heat equation using a sparse matrix representation of the finite di↵er-
ence operator.

Figure 5.4.1: Solution of the 1D Heat Equation

Chapter 6

Sparse Linear Systems

6.1 Conjugate Gradient Method

In many applications, one must solve the linear system

A |xi = |bi, (6.1.1)

where A is real, symmetric, and positive-definite on an n-dimensional space, and |bi is given. Due
to the positive-definiteness of A, the quadratic functional

f(|xi) = 1
2 hx|A|xi � hx|bi (6.1.2)

is strictly convex, with a unique minimizer that solves (6.1.1).

6.1.1 Motivation: Expansion in A-Conjugate Directions

Suppose there exists a basis {|p0i, . . . , |pn�1i} such that

hpi|A |pji = 0 for i 6= j, (6.1.3)

i.e. the vectors are mutually A-conjugate. Then one solves A |xi = |bi by writing

|xi =
n�1X

i=0

!i |pii,

and substituting into hpk|A|xi = hpk|bi, which gives

!k =
hpk|bi
hpk|A|pki

.

Because such directions are not known in advance, the Conjugate Gradient (CG) method con-
structs them iteratively.

51

52 CHAPTER 6. SPARSE LINEAR SYSTEMS

6.1.2 Derivation of the Iterative Updates

Initial Step. Start from an initial guess |x0i. Define the residual

|r0i = |bi � A |x0i. (6.1.4)

Since � |r0i is the negative gradient of f at |x0i, choose

|p0i = |r0i. (6.1.5)

Optimal Step Length ↵k. At iteration k, consider

|x(↵)i = |xki+ ↵ |pki.

Minimizing f(|x(↵)i) with respect to ↵ gives

↵k =
hpk|rki
hpk|A|pki

. (6.1.6)

Then we update

|xk+1i = |xki+ ↵k |pki, |rk+1i = |rki � ↵k A |pki. (6.1.7)

By construction, it can also be shown that the next residual is perpendicular to the current search
direction hpk|rk+1i = 0.

Moreover, one shows by induction that

hpk|rki = hrk|rki for all k. (6.1.8)

Hence ↵k can also be expressed in its final form often used in computations as

↵k =
hrk|rki
hpk|A|pki

.

6.1. CONJUGATE GRADIENT METHOD 53

Proof that ↵k =
hpk|rki

hpk|A|pki

Statement: For the line search

|x(↵)i = |xki+ ↵ |pki,

minimizing
f(|xi) = 1

2 hx|A|xi � hx|bi

with respect to ↵ gives

↵k =
hpk|rki
hpk|A|pki

,

where |rki = |bi � A |xki.
Proof:

1. Substitute |x(↵)i into f :

f(↵) = 1
2 hxk + ↵pk|A|xk + ↵pki � hxk + ↵pk|bi.

2. Di↵erentiate f(↵) and set to zero:

d
d↵f(↵) = hpk|A|xki+ ↵ hpk|A|pki � hpk|bi = 0.

3. Recognize that hpk|bi � hpk|A|xki = hpk|rki. Hence

↵ =
hpk|rki
hpk|A|pki

.

Proof that hpk|rk+1i = 0

Statement: Given

↵k =
hpk|rki
hpk|A|pki

and |rk+1i = |rki � ↵k A |pki,

then hpk|rk+1i = 0.
Proof:

hpk|rk+1i = hpk|rki � ↵k hpk|A|pki = hpk|rki �
hpk|rki
hpk|A|pki

hpk|A|pki = 0.

54 CHAPTER 6. SPARSE LINEAR SYSTEMS

Proof of hpk|rki = hrk|rki

Base Case: For k = 0, |p0i = |r0i, so hp0|r0i = hr0|r0i.
Inductive Step: Suppose hpk|rki = hrk|rki. Define

|pk+1i = |rk+1i+ �k |pki,

with hpk|rk+1i = 0. Then

hpk+1|rk+1i = hrk+1|rk+1i+ �k hpk|rk+1i = hrk+1|rk+1i.

Hence the property holds for k + 1.

Determination of �k. To maintain A-conjugacy,

hpk|A|pk+1i = 0.

With
|pk+1i = |rk+1i+ �k |pki,

we obtain

�k = � hpk|A|rk+1i
hpk|A|pki

.

Using |rk+1i = |rki � ↵k A |pki and the symmetry of A one shows

hpk|A|rk+1i = �
hrk+1|rk+1i

↵k
,

leading to

�k =
hrk+1|rk+1i
↵k hpk|A|pki

=
hrk+1|rk+1i
hrk|rki

.

6.1.3 Convergence Properties

In exact arithmetic, CG converges in at most n iterations. Let

|eki = |x⇤i � |xki, k |eki kA =
p
hek|A|eki.

Then

k |eki kA  2
⇣p

(A)�1p
(A)+1

⌘k

k |e0i kA, (6.1.9)

where (A) is the condition number of A. Thus, if A is well-conditioned, CG converges rapidly.

6.1. CONJUGATE GRADIENT METHOD 55

Algorithm 6.1 Conjugate Gradient Method
1: Input: SPD operator A, vector |bi, initial guess |x0i, tolerance ✏.
2: |r0i |bi � A |x0i
3: |p0i |r0i
4: k 0
5: while k |rki k > ✏ do

6: ↵k
hrk|rki
hpk|A|pki

7: |xk+1i |xki+ ↵k |pki
8: |rk+1i |rki � ↵k A |pki

9: �k
hrk+1|rk+1i
hrk|rki

10: |pk+1i |rk+1i+ �k |pki
11: k k + 1
12: end while
13: Output: Approximate solution |xki

6.1.4 Complete CG Algorithm

6.1.5 Implementation in Python

Here’s a Python implementation of the Conjugate Gradient method:

1 import numpy as np
2

3 de f c on juga t e g rad i en t (A, b , x0=None , t o l=1e−10, max i ter =1000) :
4 n = len (b)
5 i f x0 i s None :
6 x = np . z e r o s (n)
7 e l s e :
8 x = x0 . copy ()
9

10 r = b − A @ x
11 p = r . copy ()
12

13 f o r i in range (max i ter) :
14 Ap = A @ p
15 alpha = np . dot (r , r) / np . dot (p , Ap)
16 x += alpha ∗ p
17 r new = r − alpha ∗ Ap
18

19 i f np . l i n a l g . norm(r new) < t o l :
20 r e turn x , i+1
21

22 beta = np . dot (r new , r new) / np . dot (r , r)

56 CHAPTER 6. SPARSE LINEAR SYSTEMS

23 p = r new + beta ∗ p
24 r = r new
25

26 r a i s e ValueError (f ”CG did not converge with in {max iter } i t e r a t i o n s ”)
27

28 # Example usage
29 A = np . array ([[4 , 1] , [1 , 3]])
30 b = np . array ([1 , 2])
31 x , i t e r a t i o n s = con juga t e g rad i en t (A, b)
32 pr in t (f ” So lu t i on : {x}”)
33 pr in t (f ” I t e r a t i o n s : { i t e r a t i o n s }”)

6.2 Extensions for Non–Positive Definite or Non–Symmetric
Matrices

The derivation of the conjugate gradient method in the previous sections assumes that the co-
e�cient matrix A is symmetric and positive–definite. These properties are crucial because they
ensure that the quadratic functional

f(|xi) = 1

2
hx|A|xi � hx|bi (6.2.1)

is strictly convex, which guarantees a unique minimizer that coincides with the solution of

A |xi = |bi. (6.2.2)

When A is not positive definite—or if it is non–symmetric—the functional (6.2.1) may lose its
convexity, and the standard CG method cannot be applied directly. In these cases, one may
consider the following approaches:

1. CG on the Normal Equations

If A is not positive definite or is non–symmetric but has full column rank, one strategy is to form
the normal equations:

ATA |xi = AT |bi. (6.2.3)

The matrix ATA is symmetric and, provided A has full column rank, positive–definite. The CG
method can then be applied to (6.2.3) with the guarantee of convergence. However, note that:

• The condition number of ATA is the square of that of A, potentially leading to slower
convergence.

• Forming ATA explicitly is generally discouraged because of increased computational cost
and the possibility of exacerbating numerical errors.

6.3. APPLICATION: THE LAPLACE EQUATION 57

2. Modified Methods for Symmetric Indefinite Matrices

If A is symmetric but indefinite (i.e., it has both positive and negative eigenvalues), the quadratic
form in (6.2.1) is no longer convex. In such cases, the standard CG method may not converge.
Two popular alternatives are:

• MINRES (Minimum Residual Method): This algorithm is designed for symmetric
(possibly indefinite) systems. It minimizes the residual over the Krylov subspace at each
iteration while maintaining the symmetry of the underlying operator.

• SYMMLQ: Similar in spirit to MINRES, SYMMLQ is another iterative method for sym-
metric indefinite systems and is often preferred when the residual norm is not a reliable
indicator of convergence.

6.3 Application: The Laplace Equation

As an application of the CG method, let’s consider the numerical solution of the Laplace equation
in two dimensions:

r2� =
@2�

@x2
+
@2�

@y2
= 0 (6.3.1)

6.3.1 Discretization

We’ll use a finite di↵erence method to discretize the equation on a square grid. Let �i,j represent
the value of � at the grid point (i, j). The discrete approximation of the Laplace equation is:

�i+1,j + �i�1,j + �i,j+1 + �i,j�1 � 4�i,j

h2
= 0 (6.3.2)

where h is the grid spacing. This discretization leads to a system of linear equations Ax = b,
where A is a sparse matrix with a specific structure. For a grid of size N ⇥N , A is an N2 ⇥N2

matrix with five non-zero diagonals.

6.3.2 Python Implementation

Here’s a Python implementation to solve the Laplace equation using the CG method:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 de f l ap l a c e mat r i x (N) :
5 n = N∗N
6 diag = 4∗np . ones (n)
7 o f f d i a g = −np . ones (n−1)

58 CHAPTER 6. SPARSE LINEAR SYSTEMS

8 o f f d i a g [N−1: :N] = 0 # Adjust f o r boundary
9

10 A = np . diag (diag) + np . d iag (o f f d i a g , k=1) + np . diag (o f f d i a g , k=−1)
11 A += np . diag(−np . ones (n−N) , k=N) + np . diag(−np . ones (n−N) , k=−N)
12 r e turn A
13

14 de f s o l v e l a p l a c e (N, boundary condit ion) :
15 A = lap l a c e mat r i x (N)
16 b = np . z e r o s (N∗N)
17

18 # Apply boundary cond i t i on
19 b[−N:] = boundary condit ion
20

21 x , = con juga t e g rad i en t (A, b)
22 r e turn x . reshape ((N, N))
23

24 # Solve and p lo t
25 N = 50
26 boundary condit ion = 1 .0
27 phi = s o l v e l a p l a c e (N, boundary condit ion)
28

29 p l t . imshow (phi , cmap=’ hot ’ , i n t e r p o l a t i o n=’ nea r e s t ’)
30 p l t . c o l o rba r (l a b e l= ’ Po t en t i a l ’)
31 p l t . t i t l e (’ So lu t i on o f Laplace Equation ’)
32 p l t . x l ab e l (’ x ’)
33 p l t . y l ab e l (’ y ’)
34 p l t . show ()

6.4 Conclusion

The Conjugate Gradient method is a powerful tool for solving large, sparse linear systems, par-
ticularly those arising from the discretization of partial di↵erential equations. Its e�ciency and
relatively simple implementation make it a popular choice in scientific computing and engineering
applications. However, it’s important to note that the method’s performance can degrade for ill-
conditioned matrices, and preconditioning techniques are often employed to improve convergence
in such cases.

6.4. CONCLUSION 59

x

y

P
ot
en
ti
al

Solution of Laplace Equation

Figure 6.3.1: Visualization of the solution to the Laplace equation using the Conjugate Gradient
method. The color represents the potential value at each point in the 2D grid.

60 CHAPTER 6. SPARSE LINEAR SYSTEMS

Chapter 7

Sparse Eigenvalue Problem

Eigenvalue problems are central in many areas of physics and engineering, particularly when
systems are linear and described by matrices. Sparse eigenvalue problems, where the matrix
contains predominantly zero elements, are especially important for representing large-scale systems
e�ciently.

7.1 The Power Method

Consider a linear operator (or matrix) A on an n-dimensional space with eigenvalues

�1, �2, . . . , �n,

ordered so that
|�1| > |�2| � · · · � |�n|.

Let the corresponding (orthonormal) eigenvectors be

|v1i, |v2i, . . . , |vni.

The Power Method seeks the eigenvector associated with �1 by iterating

| k+1i =
A | ki
kA | kik

, (7.1.1)

starting from some | 0i.
Assume the initial vector has a nonzero component along |v1i:

| 0i =
nX

i=1

ci |vii, c1 6= 0. (7.1.2)

61

62 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

If c1 = 0, then | 0i is orthogonal to |v1i and the method will not converge to |v1i. Otherwise,
define

| ki =
Ak | 0i
kAk| 0i k

.

Below, we show two things:

1. | ki converges to |v1i.

2. The distance from |v1i decreases at a rate governed by
���2/�1

��.

Convergence to |v1i
After k multiplications by A,

Ak| 0i =
nX

i=1

ci �
k
i |vii = �k1

"
c1 |v1i +

nX

i=2

ci
⇣

�i
�1

⌘k

|vii
#
. (7.1.3)

Because
���i/�1

�� < 1 for i � 2, the terms in the sum become negligible for large k. Thus,

Ak| 0i ⇡ �k1 c1 |v1i, when k is large.

Normalizing,

| ki =
Ak| 0i
kAk| 0ik

�! |v1i as k !1. (7.1.4)

Rate of Convergence

Define the error vector
|eki = | ki � |v1i.

We wish to show that

k |ekik = O
⇣����2

�1

���
k⌘

.

From (7.1.3) and normalization, one finds

| ki =
c1 |v1i +

Pn
i=2 ci

�
�i
�1

�k|viiq
|c1|2 +

Pn
i=2 |ci|2

�� �i
�1

��2k
. (7.1.5)

Subtract |v1i to get
|eki = | ki � |v1i.

7.1. THE POWER METHOD 63

We can group terms to show that each component in |eki contains a factor of at most
���2/�1

��k.
A direct bounding argument (by considering the numerator and how the denominator behaves)
yields

k |ekik = O
⇣����2

�1

���
k⌘

. (7.1.6)

Hence, each iteration reduces the error roughly by a factor
���2/�1

��. A larger gap between �1 and
�2 gives faster convergence.

Algorithm 7.1 Power Method
1: Choose an initial ket |v0i with k |v0i k = 1.
2: for k = 1, 2, 3, . . . until convergence do
3: |wki = A |vk�1i

4: |vki =
|wki
k |wki k

5: �k = hvk|A|vki
6: end for

7.1.1 Python Implementation

1 import numpy as np
2

3 de f power method (A, t o l=1e−8, max i ter =1000) :
4 ”””
5 Finds the dominant e i g enva lue and e i g enve c t o r o f matrix A us ing the Power

Method .
6 Parameters :
7 −−−−−−−−−−−
8 A : ndarray
9 Square numpy array or matrix .

10 t o l : f l o a t
11 Tolerance f o r convergence .
12 max iter : i n t
13 Maximum number o f i t e r a t i o n s .
14

15 Returns :
16 −−−−−−−−
17 lambda new : f l o a t
18 Approximate dominant e i g enva lue .
19 v : ndarray
20 Approximate corre spond ing e i g enve c t o r .
21 ”””
22 n = A. shape [0]
23 v = np . random . rand (n)
24 v = v / np . l i n a l g . norm(v)

64 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

25 lambda old = 0 .0
26

27 f o r in range (max i ter) :
28 w = A @ v
29 v = w / np . l i n a l g . norm(w)
30 lambda new = v .T @ A @ v
31 i f abs (lambda new − lambda old) < t o l :
32 break
33 lambda old = lambda new
34

35 r e turn lambda new , v

Listing 7.1: Python Implementation of the Power Method

7.2 The Inverse Power Method

The inverse power method is an iterative algorithm used to find the smallest eigenvalue and its
corresponding eigenket. It is especially useful in quantum mechanics for finding the ground state
of a system described by a Hamiltonian.

7.2.1 Theory

For an operator A acting on an n-dimensional space, the inverse power method seeks the eigenvalue
� with the smallest magnitude and its corresponding eigenket |vi. By choosing a shift µ close to
the desired eigenvalue, consider the operator

(A� µI)�1. (7.2.1)

Its dominant eigenvalue is
1

�1 � µ
, (7.2.2)

where �1 is the eigenvalue of A closest to µ.

7.2.2 Algorithm

The inverse power method algorithm is as follows:

7.3 Convergence Rate of the Inverse Power Method

For the standard Power Method, the error after k iterations is proportional to
����
�2
�1

����
k

, (7.3.1)

where �1 and �2 are the dominant and subdominant eigenvalues, respectively.

7.3. CONVERGENCE RATE OF THE INVERSE POWER METHOD 65

Algorithm 7.2 Inverse Power Method
1: Choose an initial ket |v0i such that k |v0i k = 1.
2: Choose a shift µ close to the expected smallest eigenvalue (often µ = 0).
3: for k = 1, 2, . . . until convergence do
4: Solve (A� µI)|wki = |vk�1i for |wki.

5: |vki =
|wki
k |wki k

6: �k = hvk|A|vki . Rayleigh quotient
7: if |�k � �k�1| < tolerance then
8: break
9: end if
10: end for
11: return �k, |vki

7.3.1 Convergence Analysis for the Inverse Power Method

In the inverse power method, we apply the Power Method to the operator

(A� µI)�1. (7.3.2)

If � is an eigenvalue of A, then ��µ is an eigenvalue of (A�µI) and the eigenvalues of (A�µI)�1

are

µi =
1

�i � µ
, i = 1, 2, . . . , n. (7.3.3)

Thus, the convergence rate for the inverse power method is given by
����
µ2

µ1

����
k

=

����
�1 � µ

�2 � µ

����
k

, (7.3.4)

where �1 is the eigenvalue closest to µ (typically the smallest eigenvalue) and �2 is the next closest.

7.3.2 Analysis of the Convergence Rate

Key observations include:

1. When seeking the smallest eigenvalue, the shift µ is chosen close to, but slightly less than,
the smallest eigenvalue �1.

2. As µ approaches �1, the quantity |�1 � µ| becomes very small, causing
����
�1 � µ

�2 � µ

����

to be much smaller than
����2
�1

��� from the standard Power Method.

3. This results in a faster convergence rate when using the inverse power method.

66 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

7.4 Application to Quantum Mechanics: The Harmonic
Oscillator

In quantum mechanics, we often need to find the ground state of a system, which corresponds to
the smallest eigenvalue of the Hamiltonian. The inverse power method is well-suited for this task,
especially when dealing with sparse Hamiltonians.

7.4.1 The Harmonic Oscillator Hamiltonian

Consider the one-dimensional harmonic oscillator, described by the Hamiltonian:

H = � ~2
2m

d2

dx2
+

1

2
m!2x2 (7.4.1)

where m is the mass of the particle, ! is the angular frequency of the oscillator, and ~ is the
reduced Planck constant. For simplicity, we often use natural units where ~ = m = ! = 1, which
gives us:

H = �1

2

d2

dx2
+

1

2
x2 (7.4.2)

7.4.2 Discretization of the Hamiltonian

To apply numerical methods like the inverse power method, we need to discretize this continuous
Hamiltonian. We do this by approximating the system on a grid of points.

We define a spatial grid with N points, spanning a region [�L/2, L/2]:

xi = �
L

2
+ i�x, i = 0, 1, ..., N � 1 (7.4.3)

where �x = L
N�1 is the grid spacing.

The kinetic energy term involves the second derivative operator. We can approximate this
using the finite di↵erence method:

�1

2

d2

dx2
⇡ � 1

2�x2
(i+1 + i�1 � 2 i) (7.4.4)

This approximation has an error of order O(�x2). The potential energy term is simply a function
of position, so it can be directly evaluated at each grid point:

V (xi) =
1

2
x2
i (7.4.5)

Combining these discretizations, we can write the Hamiltonian as a matrix:

7.4. APPLICATION TO QUANTUM MECHANICS: THE HARMONIC OSCILLATOR 67

d �t 0 0 0 · · · 0

�t d �t 0 0 · · · 0

0 �t d �t 0 · · · 0

0 0 �t d �t · · · 0

...
...

...
...

...
. . .

...

0 0 0 0 0 · · · d

0

BBBBBBBBBB@

1

CCCCCCCCCCA

H = where d = 1
�x2 +

1
2x

2
i

t = 1
2�x2

Figure 7.4.1: Structure of the discretized Hamiltonian matrix for the harmonic oscillator

Hij = �
1

2�x2
(�i,j+1 + �i,j�1 � 2�i,j) +

1

2
x2
i �i,j (7.4.6)

where �i,j is the Kronecker delta.
Figure 7.4.1 shows the structure of the discretized Hamiltonian matrix. It is a tridiagonal

matrix, where:

• The main diagonal contains the sum of the kinetic energy term 1
�x2 and the potential energy

term 1
2x

2
i .

• The o↵-diagonals contain the constant value � 1
2�x2 from the kinetic energy term.

This sparse structure makes the Hamiltonian particularly suitable for e�cient numerical compu-
tations.

7.4.3 Boundary Conditions

The choice of boundary conditions a↵ects the structure of the Hamiltonian at the edges of the
grid. Common choices include:

• Dirichlet boundary conditions: (x0) = (xN�1) = 0

• Periodic boundary conditions: (x0) = (xN�1)

For the harmonic oscillator, we typically use Dirichlet boundary conditions, assuming the wave-
function vanishes at the boundaries of our computational domain. This is a good approximation
if we choose L to be su�ciently large compared to the characteristic length of the oscillator.

7.4.4 Implementation Considerations

When implementing this discretized Hamiltonian:

68 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

• Use sparse matrix representations to take advantage of the tridiagonal structure.

• Choose N and L carefully: N should be large enough for good resolution, and L should be
large enough to contain the relevant part of the wavefunction.

• Be aware of discretization errors, which decrease as �x decreases (as N increases for fixed
L).

7.5 Python Implementation for the Harmonic Oscillator

Let’s implement the inverse power method for finding the ground state of the harmonic oscillator.
For simplicity, we’ll use SciPy’s sparse matrix functionality to solve the linear systems.

1 import numpy as np
2 import s c ipy . spar s e as sp
3 import s c ipy . spar s e . l i n a l g as sp l a
4 import matp lo t l i b . pyplot as p l t
5

6 de f c r ea t e hami l t on i an (N, L) :
7 ”””Create the spar s e Hamiltonian f o r a harmonic o s c i l l a t o r . ”””
8 dx = L / (N − 1)
9 x = np . l i n s p a c e (−L/2 , L/2 , N)

10

11 # Kinet i c energy term
12 T = sp . d iags ([−1 , 2 , −1] , [−1 , 0 , 1] , shape=(N, N)) ∗ (0 . 5 / dx∗∗2)
13

14 # Poten t i a l energy term
15 V = sp . d iags (0 . 5 ∗ x∗∗2)
16

17 r e turn T + V
18

19 de f inverse power method (A, t o l=1e−10, max i ter =1000) :
20 ””” Implement the i nv e r s e power method . ”””
21 n = A. shape [0]
22 v = np . random . rand (n)
23 v /= np . l i n a l g . norm(v)
24

25 e n e r g i e s = []
26

27 f o r in range (max i ter) :
28 w = sp la . sp so l v e (A, v)
29 v = w / np . l i n a l g . norm(w)
30 energy = v .T @ (A @ v)
31 e n e r g i e s . append (energy)
32

33 i f l en (e n e r g i e s) > 1 and abs (e n e r g i e s [−1] − e n e r g i e s [−2]) < t o l :
34 break

7.5. PYTHON IMPLEMENTATION FOR THE HARMONIC OSCILLATOR 69

35

36 r e turn energy , v , e n e r g i e s
37

38 # Set up the problem
39 N = 1000 # Number o f g r i d po in t s
40 L = 10.0 # Length o f the we l l
41

42 # Create Hamiltonian
43 H = crea t e hami l t on i an (N, L)
44

45 # Find the ground s t a t e
46 E0 , ps i0 , energy convergence = inverse power method (H)
47

48 pr in t (f ”Computed ground s t a t e energy : {E0 : . 6 f }”)
49 pr in t (f ” Ana ly t i c a l ground s t a t e energy : { 0 . 5 : . 6 f }”)
50 pr in t (f ” Re la t i v e e r r o r : {abs (E0 − 0 . 5) / 0 .5 : . 6%} ”)
51

52 # Plot the ground s t a t e wavefunct ion
53 x = np . l i n s p a c e (−L/2 , L/2 , N)
54 p l t . f i g u r e (f i g s i z e =(10 , 6))
55 p l t . p l o t (x , p s i 0)
56 p l t . t i t l e (”Ground State Wavefunction o f Harmonic O s c i l l a t o r ”)
57 p l t . x l ab e l (” Pos i t i on ”)
58 p l t . y l ab e l (”Amplitude”)
59 p l t . g r i d (True)
60 p l t . s a v e f i g (’ g round sta te wave funct i on . png ’ , dpi=300 , bbox inches=’ t i g h t ’)
61 p l t . c l o s e ()
62

63 # Plot the energy convergence
64 p l t . f i g u r e (f i g s i z e =(10 , 6))
65 p l t . p l o t (energy convergence)
66 p l t . t i t l e (”Convergence o f Ground State Energy”)
67 p l t . x l ab e l (” I t e r a t i o n ”)
68 p l t . y l ab e l (”Energy”)
69 p l t . g r i d (True)
70 p l t . s a v e f i g (’ energy convergence . png ’ , dpi=300 , bbox inches=’ t i g h t ’)
71 p l t . c l o s e ()
72

73 # Print the f i n a l few energy va lue s
74 pr in t (”\nFinal few energy va lue s : ”)
75 f o r i , e in enumerate (energy convergence [−5 :] , s t a r t=len (energy convergence)−4) :
76 pr in t (f ” I t e r a t i o n { i } : {e : . 8 f }”)

Figure 7.5.1 (left) shows the computed ground state wavefunction. It has a Gaussian shape
centered at x = 0, which is characteristic of the harmonic oscillator ground state. Figure 7.5.1
(right) illustrates the convergence of the ground state energy during the inverse power method
iterations. As you can see, the algorithm converges quickly to the exact ground state energy of
E0 =

1
2 .

70 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

Figure 7.5.1: Ground State Wavefunction of the Harmonic Oscillator (left) and Convergence of
the Ground State Energy (right)

