Part 11

Sparse Linear Algebra

41

Chapter 5

Sparse Matrices

5.1 Introduction to Sparse Matrices

Sparse matrices are fundamental structures in computational physics, characterized by having
most elements equal to zero. These matrices naturally arise in many physical systems where
interactions are local or limited, such as in quantum mechanics, finite element methods, and

network analysis.

5.1.1 Definition and Properties

A matrix A € R™*" is considered sparse if the number of non-zero elements is O(max(m,n)). The
sparsity of a matrix can be quantified by:

it number of zero elements] Nz (5.1.1)
sparsity = =1- 1.
P Y total number of elements mn’

where n,,, is the number of non-zero elements.
Key properties that make sparse matrices computationally advantageous include:

e Memory efficiency: Only non-zero elements need storage
e Computational efficiency: Operations can skip zero elements

e Structure preservation: Many operations preserve sparsity

43

44 CHAPTER 5. SPARSE MATRICES

5.2 Storage Formats for Sparse Matrices
Efficient storage and manipulation of sparse matrices require specialized formats. We present

three fundamental storage schemes, each with distinct advantages for different computational
tasks. Consider the following example sparse matrix for illustration:

(5.2.1)

o ot O
N O W o
o O = O
S O O N

5.2.1 Compressed Sparse Row (CSR)

The CSR format organizes data in three arrays:
e values: Non-zero elements in row-major order
e col _indices: Column indices of non-zero elements
e row_ptr: Starting positions of each row in values

For matrix A, the CSR representation is:

values 11213(4|5(6|7]8
col_indices | 0
rowptr |[0[2]|4|6|8

w
—_
[\
]
w
—_
[\

5.2.2 Compressed Sparse Column (CSC)

The CSC format is the column-oriented analog of CSR, using:
e values: Non-zero elements in column-major order
e row_indices: Row indices of non-zero elements
e col ptr: Starting positions of each column

For matrix A, the CSC representation is:

values 1151317148216
row_indices
col_ptr 0124|168

[\
—_
w
—_
w
o
\&}

5.2. STORAGE FORMATS FOR SPARSE MATRICES 45

5.2.3 Coordinate List (COO)

The COO format stores explicit coordinates for each non-zero element:
e row: Row indices of non-zero elements
e col: Column indices of non-zero elements
e data: Values of non-zero elements

For matrix A, the COO representation is:

row (01011121233
col

data |1]1211314|5|6|7]8

w
—
[\
(e
(OV)]
—
[\

5.2.4 Format Comparison and Selection

Each storage format has its advantages and specific use cases:
e CSR excels in:

— Row-wise operations and matrix-vector multiplication
— Integration with standard linear algebra libraries

— Most common format in sparse linear algebra software
e CSC is preferred for:

— Column-wise operations
— Direct solver algorithms

— Column-oriented matrix updates
e COO is optimal for:

— Matrix construction and modification

— Incremental matrix building

Simple and intuitive format for initial data input

Intermediate format before conversion to CSR/CSC

In practice, CSR is often the default choice due to its balance of simplicity and efficiency, par-
ticularly in scientific computing applications where matrix-vector multiplication is a dominant
operation.

1

2

18

NN N

WO N NN NN NN NN
© ® N O U w d

46 CHAPTER 5. SPARSE MATRICES
5.3 Operations on Sparse Matrices

5.3.1 Matrix-Vector Multiplication

Matrix-vector multiplication is a fundamental operation in many numerical algorithms. For a
sparse matrix A and a vector x, the product y = Ax can be computed efficiently.
For CSR format:

row_ptr[i+1]—1

Yi = Z Values[j] : xcol,indices[j] (531)

j=row_ptr[i]

5.3.2 Implementation and Performance Comparison

Let’s implement matrix-vector multiplication for different formats and compare their performance:

import numpy as np
import scipy.sparse as sp
import time

def create_sparse_matrix(n, density=0.01):
return sp.random(n, n, density=density , format=’csr’)

def benchmark-mv_mult(n, density=0.01, num_runs=100):

A _csr = create_sparse_matrix(n, density)
A _csc = A _csr.tocsc()
A _coo = A _csr.tocoo ()

A _dense = A _csr.toarray ()
x = np.random.rand (n)

times = {}

for format_name, A in [(’CSR’, A_csr), ('CSC’, A_csc), (’'COO’, A_coo), (’Dense

", A_dense)]:
start = time.time ()
for _ in range(num-_runs):
y=AQx
end = time.time ()
times [format_name] = (end — start) / num_runs

return times

n = 10000
results = benchmark mv_mult(n)

for format_-name, avg_time in results.items():
print (f”{format_name }: {avg_time:.6f} seconds”)

5.4. APPLICATIONS IN COMPUTATIONAL PHYSICS 47

This code benchmarks matrix-vector multiplication for different sparse matrix formats and
compares them with dense matrix multiplication.

5.4 Applications in Computational Physics

5.4.1 Finite Difference Method

Sparse matrices are particularly useful in finite difference methods for solving partial differential
equations. Consider the 1D heat equation:

ou J%u

ot~ “oa?
Here, u(z,t) is a function of position z and time ¢, representing the state of the system at each
point in space and time. The precise physical interpretation of w(z,t) depends on the specific
application of the equation:

(5.4.1)

e In thermal systems, wu(z,t) typically represents temperature. In this case, the equation
models how heat spreads through a one-dimensional medium over time.

e In diffusion processes, u(z,t) might represent the concentration of a substance. The equation
then describes how the substance diffuses through space over time.

e In probability theory, u(x,t) could represent a probability density function. The equation
would then model the evolution of probability distributions in certain stochastic processes.

The parameter « is called the diffusion coefficient. Its physical interpretation also depends on the
context:

e In heat conduction, o = k/(pc), where k is thermal conductivity, p is density, and ¢ is specific
heat capacity.

e In particle diffusion, « is related to the mobility of the diffusing particles.
e In probability theory, « is related to the variance of the underlying random process.

The heat equation is a parabolic partial differential equation that describes how the quantity u
“smooths out” over time without creating or destroying the total amount of u. This conservation
property is fundamental to many physical processes and is reflected in the mathematical structure
of the equation.

The term %—’t‘ represents the rate of change of u with respect to time at a fixed position. The

term ‘3273 represents the curvature of u with respect to position at a fixed time. The equation
essentially states that the rate of change of u at any point is proportional to the curvature of u at
that point.

48 CHAPTER 5. SPARSE MATRICES

In our numerical solution, we will discretize this continuous equation, approximating the deriva-
tives with finite differences and representing the system state at discrete points in space and time.
This discretization allows us to leverage sparse matrix techniques for efficient computation.

Discretizing this equation using central differences in space and forward difference in time
yields:

utt — ul'y — 2ul +ul
! L =a— : - 5.4.2
At T (Ar)2 (54.2)
This can be represented as a matrix equation:
ntl aAt N
=(I+—=A 5.4.3
o= (1) 643
where A is a tridiagonal sparse matrix:
[—2 1 0]
1 =2 1 0
A=10 1 =2 " (5.4.4)
: . . 1
|0 0 1 —=2]

5.4.2 Implementation of 1D Heat Equation Solver

Let’s implement a solver for the 1D heat equation using sparse matrices. We discretize the domain
in both space and time:

e Spatial discretization: x; = iAx, where i = 0,1,...,nz — 1 and Az = L/(nz — 1)
e Temporal discretization: t,, = nAt, where n = 0,1, ...,nt and At = T'/nt
Here, L is the length of the domain, T is the total simulation time, nx is the number of spatial
points, and nt is the number of time steps.
5.4.2.1 Initial Condition
For this example, we’ll use a sinusoidal initial condition:
u(z,0) = sin(rz/L) (5.4.5)

This initial condition represents a temperature distribution that varies smoothly from 0 at the
boundaries to a maximum of 1 at the center of the domain. It’s a common choice for testing heat
equation solvers because:

e It satisfies the boundary conditions u(0,¢) = u(L,t) = 0 for all ¢

1
2
3
1

NN NN
N o= O

w

24

5

6

NN NN

8
29
30

31

2

5.4. APPLICATIONS IN COMPUTATIONAL PHYSICS 49

e [t’s an eigenfunction of the Laplacian operator, which means the solution will decay expo-
nentially in time while maintaining its shape

e [t’s smooth and easy to implement numerically

5.4.2.2 Boundary Conditions

We'll use Dirichlet boundary conditions, keeping the temperature at the ends of the domain fixed
at zero:

u(0,t) =u(L,t) =0 WVt (5.4.6)

These boundary conditions are implicitly enforced by our choice of discretization and initial con-
dition.
Now, let’s implement this solver:

import numpy as np
import scipy.sparse as sp
import matplotlib.pyplot as plt

def solve_heat_equation_1d (L, nx, nt, alpha, T):
dx =L / (nx — 1)
dt =T / nt

Create sparse matrix

diagonals = [—2*np.ones(nx), np.ones(nx—1), np.ones(nx—1)]
offsets = [0, —1, 1]

A = sp.diags(diagonals, offsets, shape=(nx, nx), format=’csr’)

Initial condition
u = np.sin(np.pi * np.linspace(0, L, nx) / L)

Time stepping
for _ in range(nt):

u = u + alpha % dt / (dx**2) * (A Q@ u)
return u

Parameters

L=1.0 # Length of domain

nx = 100 # Number of spatial points
nt = 1000 # Number of time steps

7 alpha = 0.01 +# Diffusion coefficient

T = 0.5 # Total simulation time
u_final = solve_heat_equation_1d (L, nx, nt, alpha, T)

Plotting

50 CHAPTER 5. SPARSE MATRICES

33 x = np.linspace (0, L, nx)

31 plt.figure (figsize=(10, 6))

35 plt.plot(x, u_final)

36 plt.title (71D Heat Equation Solution’)

s7 plt.xlabel (’x7)

ss plt.ylabel (’Temperature)

s0 plt.grid (True)

w0 plt.savefig(’heat_equation_solution.pdf’)
1 plt.close ()

This code solves the 1D heat equation using a sparse matrix representation of the finite differ-
ence operator.

1D Heat Equation Solution

0.8

0.6 1

Temperature

0.2

0.0 1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.4.1: Solution of the 1D Heat Equation

Chapter 6

Sparse Linear Systems

6.1 Conjugate Gradient Method

In many applications, one must solve the linear system
Alx) = b), (6.1.1)

where A is real, symmetric, and positive-definite on an n-dimensional space, and |b) is given. Due
to the positive-definiteness of A, the quadratic functional

fl2)) = 3 (zlAlz) — (xlb) (6.1.2)

is strictly convex, with a unique minimizer that solves (6.1.1).

6.1.1 Motivation: Expansion in A-Conjugate Directions

Suppose there exists a basis {|po), ..., |pn—1)} such that
(pil Alpj) = 0 for i#j, (6.1.3)

i.e. the vectors are mutually A-conjugate. Then one solves A |z) = |b) by writing

n—1
2 = 3wl
i=0
and substituting into (pg|A|x) = (px|b), which gives

(pr|D)
<pk|A’pk> .

Because such directions are not known in advance, the Conjugate Gradient (CG) method con-
structs them iteratively.

W =

o1

52 CHAPTER 6. SPARSE LINEAR SYSTEMS

6.1.2 Derivation of the Iterative Updates

Initial Step. Start from an initial guess |zo). Define the residual
o) = |b) — Alzo). (6.1.4)
Since — |rg) is the negative gradient of f at |z), choose

[po) = Iro)- (6.1.5)

Optimal Step Length o). At iteration k, consider
[z(a)) = |zx) + alp).

Minimizing f(|z(a))) with respect to a gives

<pk|7“k>
o = ——————. 6.1.6
‘ <Pk|A|Pk> ()
Then we update
|$k+1> = \$k> + oy \pk% |'f’k+1> = W) —ap A |pk>- (6-1-7)

By construction, it can also be shown that the next residual is perpendicular to the current search
direction (pg|rr41) = 0.

Moreover, one shows by induction that
(pr|riy = (ri|rg) for all k. (6.1.8)
Hence « can also be expressed in its final form often used in computations as

_ (relre)
(| Alpk)

6.1. CONJUGATE GRADIENT METHOD 53

<p]\: “I’k>
Pk |Alpk)

Proof that oy = <

Statement: For the line search
|z(a)) = |ok) + o [pr),

minimizing
f(|z)) = 5 (@l Alz) — (x[b)

with respect to a gives
(Prlre)

« = T AW
’ <pk|A\pk>

where |rg) = [b) — A |zy).
Proof:

1. Substitute |x(«)) into f:

f(a) = 3 (z, + app|Alzy, + ape) — (@, + apglb).
2. Differentiate f(«) and set to zero:

da f (@) = (pelAlze) + o (pl Alp) — (pelb) = 0.
3. Recognize that (pg|b) — (pr|Alxk) = (pi|rx). Hence

(pklT)
(pk\A|pk>'

Proof that (pg|rgs1) =0

Statement: Given
(pr|re)
Q@ and |r = |ry) — a A ,
k <pk|A|pk> | k+1> | k> k |pk>
then (pg|re+1) = 0.
Proof:
r
(i) = (k) = ax Gl = (uln) = L2 () = 0

o4 CHAPTER 6. SPARSE LINEAR SYSTEMS

Proof of (pg|ri) = (ri|rx)

Base Case: For k =0, |py) = |ro), so (po|ro) = (ro|ro)-
Inductive Step: Suppose (px|rx) = (ri|rk). Define

|Dk+1) = [rrt1) + Br Pr),

with (pg|7g+1) = 0. Then

(Prs1|Tir1) = (Trgr|Trr1) + Bre (Prlre1) = (Trg1|Trr1) -

Hence the property holds for k + 1.

Determination of ;. To maintain A-conjugacy,

<pk|A|pk+1> =0.

With
1Dkt1) = |Ths1) + Br |Pk)s
we obtain
g, = _ PelAlr)
<pk|A|pk>

Using |rg+1) = |7x) — ax A |px) and the symmetry of A one shows

<7"k+1 |Tk+1>

A S Wa sl ba T
(Prl Alrps1) an ,
leading to
B = (Tk+1|7”k+1> _ (Tk+1|7”k+1>
ar (pelAlpe) — (relre)

6.1.3 Convergence Properties

In exact arithmetic, CG converges in at most n iterations. Let

lex) = &%) = lzx), [ler) [la = v/ {exl Alex).

Then
K(A)—1

K(A)+1

Hewh lla < 2 (L2 feg) (6.1.9)

where r(A) is the condition number of A. Thus, if A is well-conditioned, CG converges rapidly.

6.1. CONJUGATE GRADIENT METHOD

Algorithm 6.1 Conjugate Gradient Method

1: Input: SPD operator A, vector |b), initial guess |x(), tolerance e.
2: |ro) + |b) — Alxo)
3: |po) < [ro)
4: k <+ 0
5. while || |ry) || > € do
{rilre)

6: g LR

(pr| Alpr)

b) < k) + o |pr)
8: Per1) < [re) — o Alp)
9: B (resa|rer)

{rilre)
10: Prt1) < [Trt1) + B [pr)

11: E+—Fk+1
12: end while
13: Output: Approximate solution |xy)

6.1.4 Complete CG Algorithm

6.1.5 Implementation in Python

Here’s a Python implementation of the Conjugate Gradient method:

import numpy as np

3 def conjugate_gradient (A, b, x0=None, tol=le—10, max_iter=1000):

n = len (b)
if x0 is None:
X = np.zeros(n)

else:
x = x0.copy ()

b - A@x
r.copy ()

for i in range(max_iter):
Ap=AQp
alpha = np.dot(r, r) / np.dot(p, Ap)
x += alpha * p
r.new = r — alpha *x Ap

if np.linalg .norm(r_new) < tol:
return x, i+l

beta = np.dot(r-new, r.new) / np.dot(r, r)

56 CHAPTER 6. SPARSE LINEAR SYSTEMS

= r_new + beta * p
I = r_new

raise ValueError (f”CG did not converge within {max_iter} iterations”)

Example usage

= np.array ([[4, 1], [1, 3]])

= np.array ([1, 2])

x, iterations = conjugate_gradient (A, b)
print (f” Solution: {x}”)
print (f” Iterations: {iterations}”)

#*
A
b

6.2 Extensions for Non—Positive Definite or Non—Symmetric

Matrices

The derivation of the conjugate gradient method in the previous sections assumes that the co-
efficient matrix A is symmetric and positive-definite. These properties are crucial because they
ensure that the quadratic functional

1
fllz)) = 5zl Alz) — (2]b) (6.2.1)
is strictly convex, which guarantees a unique minimizer that coincides with the solution of
Alx) = 1b). (6.2.2)

When A is not positive definite—or if it is non—symmetric—the functional (6.2.1) may lose its
convexity, and the standard CG method cannot be applied directly. In these cases, one may
consider the following approaches:

1. CG on the Normal Equations

If A is not positive definite or is non—symmetric but has full column rank, one strategy is to form
the normal equations:

ATA|z) = AT |b). (6.2.3)
The matrix AT A is symmetric and, provided A has full column rank, positive-definite. The CG
method can then be applied to (6.2.3) with the guarantee of convergence. However, note that:

e The condition number of AT A is the square of that of A, potentially leading to slower
convergence.

e Forming AT A explicitly is generally discouraged because of increased computational cost
and the possibility of exacerbating numerical errors.

6.3. APPLICATION: THE LAPLACE EQUATION 57

2. Modified Methods for Symmetric Indefinite Matrices

If A is symmetric but indefinite (i.e., it has both positive and negative eigenvalues), the quadratic
form in (6.2.1) is no longer convex. In such cases, the standard CG method may not converge.
Two popular alternatives are:

¢ MINRES (Minimum Residual Method): This algorithm is designed for symmetric
(possibly indefinite) systems. It minimizes the residual over the Krylov subspace at each
iteration while maintaining the symmetry of the underlying operator.

e SYMMLQ: Similar in spirit to MINRES, SYMMLAQ is another iterative method for sym-
metric indefinite systems and is often preferred when the residual norm is not a reliable
indicator of convergence.

6.3 Application: The Laplace Equation

As an application of the CG method, let’s consider the numerical solution of the Laplace equation
in two dimensions:
2¢ 0%

2
__ Z 7 3.1
Vi = 5+ 57 = (6.3.1)

6.3.1 Discretization

We'll use a finite difference method to discretize the equation on a square grid. Let ¢; ; represent
the value of ¢ at the grid point (¢, 7). The discrete approximation of the Laplace equation is:

Pit1,; + Pic1j + Gij1 + i1 — 405
2
where h is the grid spacing. This discretization leads to a system of linear equations Ax = b,
where A is a sparse matrix with a specific structure. For a grid of size N x N, A is an N? x N?
matrix with five non-zero diagonals.

=0 (6.3.2)

6.3.2 Python Implementation

Here’s a Python implementation to solve the Laplace equation using the CG method:

1 import numpy as np
> import matplotlib.pyplot as plt

i def laplace_matrix (N):

5 n = NxN

6 diag = 4xnp.ones(n)

7 off _diag = —np.ones(n—1)

58

o

-
N

def

w

[
~

00

CHAPTER 6. SPARSE LINEAR SYSTEMS

off _diag [N—1::N] = 0 # Adjust for boundary

A = np.diag(diag) + np.diag(off_diag , k=1) + np.diag(off_diag , k=—1)
A += np.diag(-np.ones(nN), k=N) + np.diag(—np.ones(n-N), k=N)

return A

solve_laplace (N, boundary_condition):
A = laplace_matrix (N)

b = np.zeros (N«N)

Apply boundary condition

19 b[-N:] = boundary_condition

20

21 X, - = conjugate_gradient (A, b)
22 return x.reshape ((N, N))

23

24 # Solve and plot

25 N = 50

26 boundary_condition = 1.0

~

NN N
R o0

plt

30 plt.
31 plt.
32 plt.
33 plt.
.show ()

31 plt

phi = solve_laplace (N, boundary_condition)

colorbar (label="Potential ")

title (’Solution of Laplace Equation’)
xlabel (’x7)

ylabel ('y ")

6.4 Conclusion

.imshow (phi, cmap=’"hot’, interpolation=’nearest’)

The Conjugate Gradient method is a powerful tool for solving large, sparse linear systems, par-
ticularly those arising from the discretization of partial differential equations. Its efficiency and
relatively simple implementation make it a popular choice in scientific computing and engineering
applications. However, it’s important to note that the method’s performance can degrade for ill-
conditioned matrices, and preconditioning techniques are often employed to improve convergence
in such cases.

6.4. CONCLUSION 59

Solution of Laplace Equation

0
0.8
10
0.6
20
= 5
~E g
) &
O
ol
30
40

Figure 6.3.1: Visualization of the solution to the Laplace equation using the Conjugate Gradient
method. The color represents the potential value at each point in the 2D grid.

60

CHAPTER 6. SPARSE LINEAR SYSTEMS

Chapter 7

Sparse Eigenvalue Problem

Eigenvalue problems are central in many areas of physics and engineering, particularly when
systems are linear and described by matrices. Sparse eigenvalue problems, where the matrix
contains predominantly zero elements, are especially important for representing large-scale systems
efficiently.

7.1 The Power Method

Consider a linear operator (or matrix) A on an n-dimensional space with eigenvalues
)\la)‘27 R)‘na

ordered so that
ALl > Ao > > A

Let the corresponding (orthonormal) eigenvectors be

lv1), |v2), .., |Un).
The Power Method seeks the eigenvector associated with A; by iterating

_ Al
|rs1) = AT (7.1.1)

starting from some [1)g).
Assume the initial vector has a nonzero component along |v;):

n

|tho) = ZCi vi), e # 0. (7.1.2)

i=1

61

62 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

If ¢, = 0, then |¢) is orthogonal to |v;) and the method will not converge to |v;). Otherwise,

define
A Jeho)

) = ARG

Below, we show two things:
1. |[¢y) converges to |vq).

2. The distance from |v;) decreases at a rate governed by |A2/As].

Convergence to |v;)

After k£ multiplications by A,

n n k
Al = S ek o) = Al [cl o)) + Zc(;_) |vi>] . (7.1.3)
i=1 i
Because ‘)\i /)\1‘ < 1 for ¢ > 2, the terms in the sum become negligible for large k. Thus,

AFlpo) = Meep|vy), when k is large.

Normalizing,
A¥[to)
lihy,) = IIA’“|¢0>|| — |u) as k — oo. (7.1.4)
Rate of Convergence
Define the error vector
lex) = [Y) — [u1).

We wish to show that
A2

k
2)

Hewl = Of

From (7.1.3) and normalization, one finds

ey = L)+ EEpa ()) 715)

V0l + S, el

2| Ai |2
A1

Subtract |v;) to get
lex) = [vw) — [v1).

7.1. THE POWER METHOD 63
We can group terms to show that each component in |e;) contains a factor of at most |)\2 / Allk
A direct bounding argument (by considering the numerator and how the denominator behaves)
yields

el = of|]). (716)

Hence, each iteration reduces the error roughly by a factor |)\2 /A1 ‘ A larger gap between A\; and
A2 gives faster convergence.

A2
A1

Algorithm 7.1 Power Method

1: Choose an initial ket |vg) with || |vg) || = 1.
2: for k =1,2,3,... until convergence do
3: |wk> = A| |'Uk>_1>
Wy,

4: lug) = ————

[) ||
5: AL = <Uk|A|’Uk>
6: end for

7.1.1 Python Implementation
import numpy as np

def power_method (A, tol=le—8, max_iter=1000):
Finds the dominant eigenvalue and eigenvector of matrix A using the Power
Method .
Parameters:

A : ndarray

Square numpy array or matrix.
tol : float

Tolerance for convergence.
max_iter : int

Maximum number of iterations.

Returns:
lambda_new : float

Approximate dominant eigenvalue.
v : ndarray

Approximate corresponding eigenvector .

n = A.shape[0]
= np.random.rand (n)
v =v / np.linalg .norm(v)

<
|

64 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

lambda_old = 0.0

for _ in range(max_iter):
w=AQyv
v =w / np.linalg .norm(w)
lambda.new = v.T @ A @ v
if abs(lambda_new — lambda_old) < tol:
break
lambda_old = lambda_new

return lambda_new, v

Listing 7.1: Python Implementation of the Power Method

7.2 The Inverse Power Method

The inverse power method is an iterative algorithm used to find the smallest eigenvalue and its
corresponding eigenket. It is especially useful in quantum mechanics for finding the ground state
of a system described by a Hamiltonian.

7.2.1 Theory

For an operator A acting on an n-dimensional space, the inverse power method seeks the eigenvalue
A with the smallest magnitude and its corresponding eigenket |v). By choosing a shift p close to
the desired eigenvalue, consider the operator

(A—pl)™t (7.2.1)

Its dominant eigenvalue is
1
/\1 — /L’
where A; is the eigenvalue of A closest to p.

(7.2.2)

7.2.2 Algorithm

The inverse power method algorithm is as follows:

7.3 Convergence Rate of the Inverse Power Method

For the standard Power Method, the error after k iterations is proportional to
Ao |F
A

where \; and Ay are the dominant and subdominant eigenvalues, respectively.

(7.3.1)

Y

7.3. CONVERGENCE RATE OF THE INVERSE POWER METHOD 65

Algorithm 7.2 Inverse Power Method

1: Choose an initial ket |vg) such that || |vg) || = 1.
2: Choose a shift p close to the expected smallest eigenvalue (often p = 0).
3: for k =1,2,... until convergence do
4: Solve (A — ul)|wy) = |vg—1) for |wy).
|we)
=
6: Ak = (vi| Alvg) > Rayleigh quotient
7: if [A\x — A\r_1| < tolerance then
8: break
9: end if
10: end for

11: return A, |vg)

7.3.1 Convergence Analysis for the Inverse Power Method

In the inverse power method, we apply the Power Method to the operator
(A —pul)™t (7.3.2)

If)\ is an eigenvalue of A, then X\ — i is an eigenvalue of (A — uI) and the eigenvalues of (A — ul)™!

are
1

,uz-:)\i_u, 1=1,2,...,n. (7.3.3)
Thus, the convergence rate for the inverse power method is given by
k k
) ‘Al — (7.3.4)
1 Ay —

where \; is the eigenvalue closest to p (typically the smallest eigenvalue) and A, is the next closest.

7.3.2 Analysis of the Convergence Rate

Key observations include:

1. When seeking the smallest eigenvalue, the shift u is chosen close to, but slightly less than,
the smallest eigenvalue ;.

2. As p approaches A1, the quantity |A\; — p| becomes very small, causing

‘ AL —
A2 — [t
to be much smaller than i—f from the standard Power Method.

3. This results in a faster convergence rate when using the inverse power method.

66 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

7.4 Application to Quantum Mechanics: The Harmonic
Oscillator

In quantum mechanics, we often need to find the ground state of a system, which corresponds to
the smallest eigenvalue of the Hamiltonian. The inverse power method is well-suited for this task,
especially when dealing with sparse Hamiltonians.

7.4.1 The Harmonic Oscillator Hamiltonian

Consider the one-dimensional harmonic oscillator, described by the Hamiltonian:

(7.4.1)

where m is the mass of the particle, w is the angular frequency of the oscillator, and A is the
reduced Planck constant. For simplicity, we often use natural units where A = m = w = 1, which
gives us:

1d? 1,

g% 1 7.4.2
5de? 2" (7.4.2)

7.4.2 Discretization of the Hamiltonian

To apply numerical methods like the inverse power method, we need to discretize this continuous
Hamiltonian. We do this by approximating the system on a grid of points.
We define a spatial grid with N points, spanning a region [—L/2, L/2]:

L
r=—g +ilr, i=01.,N~1 (7.4.3)

where Az = ﬁ is the grid spacing.

The kinetic energy term involves the second derivative operator. We can approximate this
using the finite difference method:

ldQQ/JN 1 (
2dr?2 " 2Ax2

This approximation has an error of order O(Az?). The potential energy term is simply a function
of position, so it can be directly evaluated at each grid point:

Yir1 + i1 — 24) (7.4.4)

1
a2
2

V(z,) = (7.4.5)

Combining these discretizations, we can write the Hamiltonian as a matrix:

7.4. APPLICATION TO QUANTUM MECHANICS: THE HARMONIC OSCILLATOR 67

d —t 0 0 0 .0
—t d —t 0 0 .0
0 -t d —t O .0 1 .
H = 0 0 —t d —t --- 0 where d= L5 + 1o
t = ﬁ
0O 0 0 0 O d

Figure 7.4.1: Structure of the discretized Hamiltonian matrix for the harmonic oscillator

1
22
where 9; ; is the Kronecker delta.

Figure 7.4.1 shows the structure of the discretized Hamiltonian matrix. It is a tridiagonal
matrix, where:

1
(85441 + 0ijo1 — 26:5) + =270, (7.4.6)

Hyj =
2

e The main diagonal contains the sum of the kinetic energy term A%EQ and the potential energy
term 122,
2

1

5a5z from the kinetic energy term.

e The off-diagonals contain the constant value —

This sparse structure makes the Hamiltonian particularly suitable for efficient numerical compu-
tations.

7.4.3 Boundary Conditions

The choice of boundary conditions affects the structure of the Hamiltonian at the edges of the
grid. Common choices include:

e Dirichlet boundary conditions: ¥ (x¢) = ¥(xy_1) =0
e Periodic boundary conditions: ¥(zg) = ¥ (xn_1)

For the harmonic oscillator, we typically use Dirichlet boundary conditions, assuming the wave-
function vanishes at the boundaries of our computational domain. This is a good approximation
if we choose L to be sufficiently large compared to the characteristic length of the oscillator.

7.4.4 Implementation Considerations

When implementing this discretized Hamiltonian:

19

NN NN NN
I SO OCR R

Y o

68 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

e Use sparse matrix representations to take advantage of the tridiagonal structure.

e Choose N and L carefully: N should be large enough for good resolution, and L should be
large enough to contain the relevant part of the wavefunction.

e Be aware of discretization errors, which decrease as Az decreases (as N increases for fixed

L).

7.5 Python Implementation for the Harmonic Oscillator

Let’s implement the inverse power method for finding the ground state of the harmonic oscillator.
For simplicity, we’ll use SciPy’s sparse matrix functionality to solve the linear systems.

import numpy as np

import scipy.sparse as sp

import scipy.sparse.linalg as spla
import matplotlib.pyplot as plt

def create_hamiltonian (N, L):
777 Create the sparse Hamiltonian for a harmonic oscillator .”””
dx =L / (N — 1)
x = np.linspace(—L/2, L/2, N)

Kinetic energy term
T = sp.diags([—1, 2, —1], [-1, 0, 1], shape=(N, N)) % (0.5 / dx*x2)

Potential energy term

V = sp.diags (0.5 % x%%2)
return T + V

def inverse_power_method (A, tol=le—10, max_iter=1000):
7?7 Implement the inverse power method.”””

= A.shape [0]

= np.random.rand (n)

v /= np.linalg .norm(v)

< B

energies = []

for _ in range(max_iter):
w = spla.spsolve (A, v)
v =w / np.linalg .norm(w)
energy = v. T @ (A Q v)
energies .append (energy)

if len(energies) > 1 and abs(energies[—1] — energies[—2]) < tol:
break

7.5. PYTHON IMPLEMENTATION FOR THE HARMONIC OSCILLATOR 69

35

36 return energy, v, energies

37

38 # Set up the problem

30 N = 1000 +# Number of grid points
20 L = 10.0 +# Length of the well

12 # Create Hamiltonian
s H = create_hamiltonian (N, L)

15 # Find the ground state
s EO, psi0, energy-convergence = inverse_power_method (H)

s print (f”Computed ground state energy: {E0:.6f{}”)
print (f” Analytical ground state energy: {0.5:.6f}")
so print (f” Relative error: {abs(E0 — 0.5) / 0.5:.6%}”)

s

52 # Plot the ground state wavefunction

55 x = np.linspace(—L/2, L/2, N)

54 plt.figure (figsize=(10, 6))

55 plt.plot(x, psi0)

56 plt . title (”Ground State Wavefunction of Harmonic Oscillator”)

57 plt.xlabel (" Position”)

55 plt.ylabel (” Amplitude”)

50 plt . grid (True)

6o plt.savefig(’ground_state_ wavefunction.png’, dpi=300, bbox_inches="tight)
61 plt.close ()

63 # Plot the energy convergence

61 plt.figure (figsize=(10, 6))

65 plt.plot(energy_convergence)

66 plt.title (”Convergence of Ground State Emnergy”)

67 plt.xlabel (" Iteration”)

6s plt.ylabel (”Energy”)

6o plt.grid(True)

70 plt.savefig(’energy_convergence.png’, dpi=300, bbox_inches=’tight)
71 plt.close ()

Print the final few energy values

print (”\nFinal few energy values:”)

for i, e in enumerate(energy_-convergence|[—5:], start=len(energy_convergence)—4):
print (f”Iteration {i}: {e:.8f}”)

1
oW N

Y >

PRI T B B

Figure 7.5.1 (left) shows the computed ground state wavefunction. It has a Gaussian shape
centered at x = 0, which is characteristic of the harmonic oscillator ground state. Figure 7.5.1
(right) illustrates the convergence of the ground state energy during the inverse power method
iterations. As you can see, the algorithm converges quickly to the exact ground state energy of

1
EO:i'

70 CHAPTER 7. SPARSE EIGENVALUE PROBLEM

Ground State Wavefunction of Harmonic Oscillator Convergence of Ground State Energy
0.58
0.07
0.57
0.06 -
0.56
0.05 1
0.55
]
] >
2 0o 054
s 2
£ o
< 0.03 1
. 0.53
0.027 0.52
0.01 4 0.51
0.00 1 0.50
-4 -2 0 2 4 0 1 2 3 4 5 6 7 8
Position Iteration

Figure 7.5.1: Ground State Wavefunction of the Harmonic Oscillator (left) and Convergence of
the Ground State Energy (right)

