
Chapter 2

Solving Linear Systems

2.1 Triangular Matrices and Their Applications

Upper triangular matrices and lower triangular matrices play a critical role in various matrix
decomposition methods such as LU decomposition and QR decomposition. They facilitate easier
computations for operations such as matrix inversion and determinant calculation due to their
triangular structure.

2.1.1 Upper Triangular Matrices

An upper triangular matrix U has all non-zero entries above and on its diagonal, and zeros below
it:

U =





u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn




(2.1.1)

Key properties of upper triangular matrices include:

• The determinant of U is the product of its diagonal entries:

det(U) =
n∏

i=1

uii (2.1.2)

• An upper triangular matrix is invertible if and only if all its diagonal entries are non-zero.
The inverse of an invertible upper triangular matrix is also upper triangular.

21

22 CHAPTER 2. SOLVING LINEAR SYSTEMS

Proof: Determinant of an Upper Triangular Matrix

Let U = [uij] be an n → n upper triangular matrix, so that uij = 0 whenever i > j. The
determinant is given by the Leibniz formula:

det(U) =
∑

ω→Sn

sgn(ω)
n∏

i=1

ui,ω(i),

where Sn is the set of all permutations of {1, 2, . . . , n}.
Suppose ω is a permutation with ω ↑= id (i.e. not every ω(i) = i). Assume for contradiction
that ω(i) ↓ i for all i. Then

n∑

i=1

ω(i) ↓
n∑

i=1

i.

However, since ω is merely a reordering of {1, 2, . . . , n}, the sum on the left is exactly
∑n

i=1 i.
Equality forces ω(i) = i for every i, which contradicts the assumption that ω is nontrivial.
Thus, there must exist at least one index i with ω(i) < i.

Because U is upper triangular, any term ui,ω(i) with i > ω(i) is zero. Hence, every permu-
tation ω ↑= id gives a zero contribution in the sum. Only the identity permutation survives,
yielding

det(U) =
n∏

i=1

uii.

2.1.2 Solving Systems with Upper Triangular Matrices

Systems of linear equations involving an upper triangular matrix U can be e!ciently solved using
the backward substitution method. This process leverages the structure to solve each variable
sequentially, starting from the last.

Backward Substitution Method

Consider an upper triangular matrix U and a vector b in the system Ux = b. The matrix U is
defined as:

U =





u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn




(2.1.3)

and b is a column vector of size n. The goal is to find the vector x.

2.1. TRIANGULAR MATRICES AND THEIR APPLICATIONS 23

The solution is obtained by solving the last equation for the last unknown, then substituting
this back into the previous equation to solve for the second last unknown, and repeating this
process up to the first equation. The steps are as follows:

1. Initialize xn:

xn =
bn
unn

(2.1.4)

2. For each i from n↔ 1 to 1, compute:

xi =
bi ↔

∑n
j=i+1 uijxj

uii
(2.1.5)

2.1.3 Example: Solving an Upper Triangular System

Consider the following system where U is an upper triangular matrix:

U =





2 3 0 0
0 1 4 0
0 0 1 5
0 0 0 2



 , b =





5
2
8
10



 (2.1.6)

Using backward substitution:

• Solve for x4:
2x4 = 10 =↗ x4 = 5 (2.1.7)

• Solve for x3 using x4:

x3 + 5x4 = 8 =↗ x3 = 8↔ 5→ 5 =↗ x3 = ↔17 (2.1.8)

• Solve for x2 using x3:

x2 + 4x3 = 2 =↗ x2 = 2↔ 4→ (↔17) =↗ x2 = 70 (2.1.9)

• Solve for x1 using x2 and x3:

2x1 + 3x2 = 5 =↗ 2x1 = 5↔ 3→ 70 =↗ x1 = ↔102.5 (2.1.10)

The solution vector x is:

x =





↔102.5
70
↔17
5



 (2.1.11)

24 CHAPTER 2. SOLVING LINEAR SYSTEMS

Python Implementation

Below is a Python code for backward substitution, suitable for solving systems involving upper
triangular matrices.

1 import numpy as np
2

3 de f backward subs t i tu t i on (U, b) :
4 n = len (b)
5 x = np . z e r o s (n)
6 # Star t s o l v i n g from the l a s t row moving upwards
7 f o r i in range (n−1, −1, −1) :
8 sum Ux = np . dot (U[i , i +1 :] , x [i +1 :])
9 x [i] = (b [i] − sum Ux) / U[i , i]

10 r e turn x
11

12 # Example usage :
13 U = np . array ([
14 [2 , 3 , 0 , 0] ,
15 [0 , 1 , 4 , 0] ,
16 [0 , 0 , 1 , 5] ,
17 [0 , 0 , 0 , 2]
18])
19 b = np . array ([5 , 2 , 8 , 1 0])
20

21 # Compute the s o l u t i o n
22 x = backward subs t i tu t i on (U, b)
23 pr in t (” So lu t i on x : ” , x)

This Python script implements the backward substitution method, calculating the solution
vector x for systems with upper triangular matrices. By beginning at the last row and progressing
upwards, it leverages the upper triangular structure to simplify and accelerate the computational
process.

2.1.4 Applications

Upper triangular matrices are extensively used in numerical linear algebra for solving systems
of linear equations, particularly when these systems are transformed via methods like Gaussian
elimination or QR decomposition, as we will see below. Their properties allow for e!cient com-
putational algorithms, reducing the complexity and enhancing the stability of solutions in com-
putational physics.

2.2. QR DECOMPOSITION 25

2.2 QR Decomposition

When dealing with systems of linear equations or studying the properties of vector spaces in
computational physics, we often encounter matrices that are di!cult to work with directly. One
powerful approach is to decompose these matrices into products of simpler matrices, each with
special properties that make computations easier. The QR decomposition is one such technique,
where we write a matrix A as the product of an orthogonal matrix Q and an upper triangular
matrix R:

A = QR (2.2.1)

The power of this decomposition lies in combining two particularly useful matrix properties:
orthogonality and triangularity. Orthogonal matrices preserve lengths and angles, making them
numerically stable to work with, while triangular matrices allow for e!cient forward or backward
substitution in solving linear systems, as discussed before.

Why would we want to perform such a decomposition? Consider the problem of solving a
system of linear equations Ax = b. Using QR decomposition, we can rewrite this as:

QRx = b (2.2.2)

Since Q is orthogonal, we can multiply both sides by QT (recall that QTQ = I):

Rx = QTb (2.2.3)

Now we have transformed our original system into one involving an upper triangular matrix R,
which is much easier to solve through back substitution. This is just one example of how QR
decomposition simplifies complex linear algebra problems.

2.2.1 Computing the QR Through The Gram-Schmidt Process

In the following, we will make extensive use of Dirac’s notation for linear algebra. Recall a n
dimensional vector v with elements vi is represented as a ket:

|v↘ =
∑

i

vi|i↘, (2.2.4)

where |i↘ are the orthonormal unit basis states, such that ≃i|j↘ = εij. Also, given an n→ n matrix
A, with matrix elements Aij, it is represented in Dirac notation as

A =
∑

ij

Aij|i↘≃j|. (2.2.5)

Also, each column of a matrix can be viewed as a vector in an n-dimensional space, such that :

Aij = ≃i|aj↘ (2.2.6)

26 CHAPTER 2. SOLVING LINEAR SYSTEMS

where |aj↘ is the j-th column vector of A. Explicitly:

|aj↘ =
n∑

i=1

Aij|i↘ (2.2.7)

Our goal is to decompose A into the product of an orthogonal matrix Q and an upper triangular
matrix R. We will achieve this by applying the Gram-Schmidt process to the column vectors
{|aj↘}nj=1.

Starting with the column vectors |a1↘, |a2↘, ..., |an↘, we construct an orthonormal set |q1↘, |q2↘, ..., |qn↘
as follows:

1. First basis vector:

|q1↘ =
|a1↘
≃a1|a1↘

(2.2.8)

2. For k = 2, . . . , n: Remove components parallel to previous orthonormal vectors:

|uk↘ = |ak↘ ↔
k↑1∑

j=1

|qj↘≃qj|ak↘ (2.2.9)

Then normalize:

|qk↘ =
|uk↘
≃uk|uk↘

(2.2.10)

This process generates an orthonormal set:

≃qi|qj↘ = εij, (2.2.11)

as it is proven below. Now, each original column vector can be expressed in this new orthonormal
basis we have constructed:

|a1↘ = |q1↘≃q1|a1↘ (2.2.12)

|a2↘ = |q1↘≃q1|a2↘+ |q2↘≃q2|a2↘ (2.2.13)

|a3↘ = |q1↘≃q1|a3↘+ |q2↘≃q2|a3↘+ |q3↘≃q3|a3↘ (2.2.14)

More generally, for any column k:

|ak↘ =
k∑

j=1

|qj↘≃qj|ak↘, (2.2.15)

where by construction |qj↘ for j > k do not enter the expansion in the Gram-Schmidt basis.

2.2. QR DECOMPOSITION 27

Proof that the Gram–Schmidt Process Yields an Orthonormal Set

Base Case: For k = 1, define

|q1↘ =
|a1↘
≃a1|a1↘

,

so that

≃q1|q1↘ =
≃a1|a1↘
≃a1|a1↘

= 1.

Inductive Step: Assume that for all indices 1 ⇐ i, j < k the vectors satisfy

≃qi|qj↘ = εij.

For k ↓ 2, define

|uk↘ = |ak↘ ↔
k↑1∑

j=1

|qj↘≃qj|ak↘,

and normalize to obtain

|qk↘ =
|uk↘
≃uk|uk↘

.

For any 1 ⇐ i < k, consider the inner product

≃qi|qk↘ =
1

≃uk|uk↘
≃qi|


|ak↘ ↔

k↑1∑

j=1

|qj↘≃qj|ak↘

.

Distributing the inner product gives

≃qi|qk↘ =
1

≃uk|uk↘


≃qi|ak↘ ↔

k↑1∑

j=1

≃qi|qj↘≃qj|ak↘

.

By the induction hypothesis, ≃qi|qj↘ = εij. Thus, the sum reduces to

k↑1∑

j=1

εij≃qj|ak↘ = ≃qi|ak↘.

Therefore,

≃qi|qk↘ =
1

≃uk|uk↘


≃qi|ak↘ ↔ ≃qi|ak↘


= 0.

Furthermore, by construction,
≃qk|qk↘ = 1.

Thus, by induction the set {|q1↘, |q2↘, . . . , |qn↘} is orthonormal:

≃qi|qj↘ = εij.

28 CHAPTER 2. SOLVING LINEAR SYSTEMS

2.2.2 Explicit Construction of Q and R

The matrices Q and R are constructed as follows:
1. Matrix Q: The columns of Q are just the components of |qj↘ in the standard basis:

Qij = ≃i|qj↘ (2.2.16)

2. Matrix R: The elements of R are the coe!cients from the Gram-Schmidt process:

Rij = ≃qi|aj↘ (2.2.17)

Note that Rij = 0 for i > j by construction.
To prove that A = QR, we examine the matrix elements of both sides:
1. Left side: Matrix element (i, j) of A is:

Aij = ≃i|aj↘ (2.2.18)

2. Right side: Matrix element (i, j) of QR is:

(QR)ij =
n∑

k=1

QikRkj =
n∑

k=1

≃i|qk↘≃qk|aj↘ (2.2.19)

3. Using the completeness relation of the orthonormal basis {|qk↘}:

≃i|aj↘ = ≃ei|


n∑

k=1

|qk↘≃qk|

|aj↘ =

n∑

k=1

≃i|qk↘≃qk|aj↘ (2.2.20)

Therefore, Aij = (QR)ij for all i, j, proving that A = QR.

2.2.3 Properties of the Decomposition

We can also immediately verify two of the most important properties of this decomposition,
namely:

1. Q is orthogonal:

(Q†Q)ij =
∑

k

Q↓
kiQkj =

∑

k

≃qi|k↘≃k|qj↘ = ≃qi|qj↘ = εij (2.2.21)

2. R is upper triangular by construction of the Gram-Schmidt process:

Rij = ≃qi|aj↘ = 0 for i > j (2.2.22)

2.2. QR DECOMPOSITION 29

2.2.4 Implementation and Numerical Considerations

Here’s a basic implementation in Python that illustrates the process:

1 de f gram schmidt qr (A) :
2 ”””
3 Compute the QR decomposit ion us ing Gram−Schmidt p roce s s .
4 ”””
5 m, n = A. shape
6 Q = np . z e r o s ((m, n))
7 R = np . z e r o s ((n , n))
8

9 f o r j in range (n) :
10 v = A[: , j]
11 f o r i in range (j) :
12 # Calcu la t e p r o j e c t i o n c o e f f i c i e n t s
13 R[i , j] = np . dot (Q[: , i] . T, A[: , j])
14 v = v − R[i , j] ∗ Q[: , i]
15 R[j , j] = np . l i n a l g . norm(v)
16 i f R[j , j] != 0 :
17 Q[: , j] = v / R[j , j]
18

19 r e turn Q, R

This implementation explicitly shows how we build up the Q and R matrices column by column.
The upper triangular structure of R emerges naturally from the process of orthogonalization.

While the Gram-Schmidt process is conceptually elegant, it can su”er from numerical instabil-
ity in practice. In most commonly used linear algebra software, one determines the decomposition
through an approach known as the Householder reflections. We will not discuss it here, but it is
worth knowing that this is the standard way of computing the QR decomposition in a numerically
stable way.

2.2.5 Computing Determinants Using QR Decomposition

Besides being useful for solving linear systems, the QR decomposition can be used for many other
applications. For example, once A is decomposed into Q and R, the determinant of A can be
computed e!ciently. Since Q is orthogonal, det(Q) = ±1, and the determinant of A is given by:

det(A) = det(Q) det(R) (2.2.23)

Since R is upper triangular, its determinant is the product of its diagonal entries:

det(R) =
n∏

i=1

rii (2.2.24)

Thus, the determinant of A is:

det(A) = det(Q)
n∏

i=1

rii (2.2.25)

30 CHAPTER 2. SOLVING LINEAR SYSTEMS

This approach simplifies the computation of determinants for large matrices and enhances numer-
ical stability in calculations.

2.2.5.1 Physical Example: Slater Determinants

Slater determinants are used in quantum mechanics to construct wavefunctions for systems of
fermions, such as electrons, that obey the Pauli exclusion principle. This principle states that no
two fermions can occupy the same quantum state simultaneously. In practical terms, this means
the overall wavefunction of a system must be antisymmetric with respect to the exchange of any
two electrons.

Consider a simple system of two electrons. The wavefunction for each electron can be described
in terms of its spatial (ϑ) and spin (ϖ) components. The total wavefunction # for the system,
considering only the spatial part for simplicity, must change sign when the positions of the two
electrons are swapped. This antisymmetry is crucial for reflecting the fermionic nature of electrons
and is elegantly handled by the Slater determinant.

For two electrons with wavefunctions ϑ1(x1) and ϑ2(x2), the Slater determinant is given by:

#(x1, x2) =
1⇒
2


ϑ1(x1) ϑ2(x1)
ϑ1(x2) ϑ2(x2)

 (2.2.26)

This determinant ensures that # is antisymmetric under the exchange of x1 and x2, i.e., swapping
x1 and x2 changes the sign of #.

The use of a determinant in forming the wavefunction for multiple electrons ensures anti-
symmetry automatically. If any two electrons were to occupy the same quantum state, their
wavefunctions would be identical, leading to two identical rows in the determinant, which makes
the determinant (and hence the wavefunction) zero. This zeros-out probability of finding two
electrons in the same state, in accordance with the Pauli exclusion principle.

As discussed in the context of matrix operations like QR decomposition, computing determi-
nants for large systems can be e!ciently achieved using numerical methods. For Slater determi-
nants, where the matrix size grows with the number of electrons, QR decomposition provides a
numerically stable method to compute the determinant as discussed earlier:

det(A) =
n∏

i=1

rii (2.2.27)

where A is the matrix formed from the wavefunctions of the electrons, and rii are the diagonal
elements of R from the QR decomposition of A.

For a two-electron system, QR decomposition not only confirms the antisymmetry but also
allows for e!cient numerical computation of properties derived from the wavefunction, such as
energy and probability densities, especially important in computational chemistry and physics
simulations involving larger molecules or more complex atomic structures.

Chapter 3

Solving The Eigenvalue Problem

Eigenvalue problems are pivotal in computational physics for understanding the behavior of various
physical systems through their eigenmodes and eigenfrequencies. This chapter will delve into
eigenvalue problems, particularly focusing on the computational methods to find eigenvalues and
eigenvectors.

3.1 Jacobi Eigenvalue Algorithm

The eigenvalue problem for a matrix A consists of finding scalars ϱ and non-zero states |v↘ that
satisfy:

A|v↘ = ϱ|v↘ (3.1.1)

For an n→ n matrix, we can collect all n eigenvectors into a resolution of identity:

n∑

i=1

|vi↘≃vi| = I (3.1.2)

The eigenvalue equation can then be written in a more complete form:

A
n∑

i=1

|vi↘≃vi| =
n∑

i=1

ϱi|vi↘≃vi| (3.1.3)

If the set of eigenvectors forms a complete basis, we can express the diagonalization as:

≃vi|A|vj↘ = ϱiεij (3.1.4)

For symmetric matrices, which are our focus in the following, we have additional important prop-
erties:

• All eigenvalues ϱi are real

31

32 CHAPTER 3. SOLVING THE EIGENVALUE PROBLEM

• Eigenvectors corresponding to di”erent eigenvalues are orthogonal: ≃vi|vj↘ = εij

• The transformation matrix can be chosen to be unitary: V † = V ↑1

3.1.1 The Jacobi Method

The Jacobi method, introduced by Carl Gustav Jacob Jacobi in 1846, provides an iterative ap-
proach to finding eigenvalues and eigenvectors of a symmetric matrix. The key insight is that a
symmetric matrix is diagonal if and only if all its o”-diagonal elements are zero. In the bra-ket
notation, we seek a sequence of unitary transformations Uk such that:

≃vi|U †
kAUk|vj↘ ⇑ ϱiεij (3.1.5)

The method works by applying a sequence of similarity transformations:

A(k+1) = G†
kA

(k)Gk (3.1.6)

where each Gk is a rotation matrix chosen to eliminate one o”-diagonal element.

3.1.2 Givens Rotations

The rotation matrices Gk used in the Jacobi method are known as Givens rotations. In an n-
dimensional space with an orthonormal basis {|1↘, |2↘, . . . , |n↘}, the Givens rotation in the (p, q)–
plane is denoted by G(p, q, ς) and acts as the identity on all coordinates except in the (p, q)–plane.
In that subspace, the matrix is given by the 2→ 2 block


cos ς ↔ sin ς

sin ς cos ς


.

Thus, the full n→ n matrix can be schematically written as

G(p, q, ς) =





1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...

0 · · · cos ς · · · ↔ sin ς · · · 0

...
...

. . .
...

...

0 · · · sin ς · · · cos ς · · · 0

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · 1





.

3.1. JACOBI EIGENVALUE ALGORITHM 33

When we multiply the matrix G(p, q, ς) by a basis vector, we are e”ectively selecting a column
of the matrix. Hence, the images of the basis states in the (p, q)–subspace are determined by the
columns of the 2→ 2 block:


cos ς ↔ sin ς

sin ς cos ς


.

Specifically,

• The pth column is 
cos ς

sin ς


,

so
G(p, q, ς) |p↘ = cos ς |p↘+ sin ς |q↘.

• The qth column is 
↔ sin ς

cos ς


,

so
G(p, q, ς) |q↘ = ↔ sin ς |p↘+ cos ς |q↘.

• For any r ↑= p, q, the matrix acts as the identity:

G(p, q, ς) |r↘ = |r↘.

Rotated Matrix Elements

For an operator A with matrix elements ≃i|A|j↘, the rotated matrix elements in the new basis
(obtained by applying G(p, q, ς)) are given by

≃i↔|A|j↔↘,

where the rotated states in the (p, q)–subspace are

|p↔↘ = G(p, q, ς)|p↘ = cos ς |p↘+ sin ς |q↘,

|q↔↘ = G(p, q, ς)|q↘ = ↔ sin ς |p↘+ cos ς |q↘.

In particular, consider the o”–diagonal element in this subspace:

≃p↔|A|q↔↘ =

cos ς ≃p|+ sin ς ≃q|


A

↔ sin ς |p↘+ cos ς |q↘


.

34 CHAPTER 3. SOLVING THE EIGENVALUE PROBLEM

Expanding, we obtain

≃p↔|A|q↔↘ = ↔ sin ς cos ς ≃p|A|p↘+ cos2 ς ≃p|A|q↘ ↔ sin2 ς ≃q|A|p↘+ sin ς cos ς ≃q|A|q↘.

If A is symmetric (or Hermitian) so that ≃p|A|q↘ = ≃q|A|p↘, this simplifies to

≃p↔|A|q↔↘ = cos(2ς) ≃p|A|q↘ ↔ 1

2
sin(2ς)


≃p|A|p↘ ↔ ≃q|A|q↘


,

using the identities

cos2 ς ↔ sin2 ς = cos(2ς) and 2 sin ς cos ς = sin(2ς).

To zero out the o”–diagonal element (the key step in the Jacobi method), one sets ≃p↔|A|q↔↘ = 0.
This yields the equation

cos(2ς) ≃p|A|q↘ ↔ 1

2
sin(2ς)


≃p|A|p↘ ↔ ≃q|A|q↘


= 0,

which can be rearranged to determine the rotation angle:

tan(2ς) =
2 ≃p|A|q↘

≃p|A|p↘ ↔ ≃q|A|q↘ . (3.1.7)

For numerical stability—especially when tan(2ς) is large—it is common to define

φ = tan(2ς), t = sign(φ)
1

|φ |+
⇒
1 + φ 2

,

and then compute

cos ς =
1⇒

1 + t2
, sin ς = t cos ς.

3.1.3 Eigenvector Construction

After N rotations, we have:

A(N) = G†
NG

†
N↑1...G

†
1AG1...GN↑1GN (3.1.8)

When the algorithm converges, A(N) is diagonal, so:

D = G†
NG

†
N↑1...G

†
1AG1...GN↑1GN (3.1.9)

where D is a diagonal matrix containing the eigenvalues. Let’s define:

V = G1G2...GN (3.1.10)

3.1. JACOBI EIGENVALUE ALGORITHM 35

Then we can write:
D = V †AV (3.1.11)

By multiplying on the left with V and remembering that V †V = I since it’s a unitary transfor-
mation, the equation above means:

AV = V D (3.1.12)

Looking at this equation column by column, for the i-th column vi of V :

A|vi↘ = ϱi|vi↘ (3.1.13)

This shows that the columns of V are just the eigenvectors of A, thus by accumulating products
of the rotation matrices we obtain both eigenvalues and eigenvectors of the original matrix.

3.1.4 Algorithm Structure

The complete Jacobi algorithm proceeds as follows:

1. Initialize V = I (to accumulate eigenvectors)

2. While o”-diagonal elements are larger than tolerance:

(a) Find indices (p, q) of largest o”-diagonal element

(b) Compute rotation angle ς using Eq. 3.1.7

(c) Construct Givens rotation matrix G(p, q, ς)

(d) Update matrix: A ⇓ GTAG

(e) Accumulate eigenvectors: V ⇓ VG

3. Extract eigenvalues from diagonal of A

Here is the implementation in Python:

1 de f j a c o b i e i g e n v a l u e s (A, t o l=1e−10, max i ter=50) :
2 ”””
3 Computes the e i g enva lu e s and e i g env e c t o r s o f a symmetric matrix A us ing the

Jacobi method .
4 ”””
5 n = A. shape [0]
6 V = np . eye (n) # I n i t i a l i z e e i g enve c t o r matrix as i d e n t i t y
7 D = A. copy ()
8

9 f o r in range (max i ter) :
10 # Find l a r g e s t o f f−d iagona l element
11 p , q = np . unrave l index (np . abs (np . t r i u (D, 1)) . argmax () , D. shape)
12 i f np . abs (D[p , q]) < t o l :
13 break

36 CHAPTER 3. SOLVING THE EIGENVALUE PROBLEM

14

15 # Compute the Jacobi r o t a t i on us ing numer i ca l ly s t ab l e formulas
16 tau = (D[q , q] − D[p , p]) / (2 ∗ D[p , q])
17 t = np . s i gn (tau) / (abs (tau) + np . sq r t (1 + tau ∗∗2))
18 c = 1 / np . sq r t (1 + t ∗∗2)
19 s = t ∗ c
20

21 R = np . eye (n)
22 R[p , p] , R[q , q] = c , c
23 R[p , q] , R[q , p] = s , −s
24

25 # Apply r o t a t i on
26 D = R.T @ D @ R
27 V = V @ R
28

29 r e turn np . diag (D) , V # Eigenva lues and e i g env e c t o r s

3.1.5 Convergence Analysis

The convergence of the Jacobi method can be analyzed using the sum of squares of o”-diagonal
elements:

S(A) =
∑

i ↗=j

|aij|2 (3.1.14)

Each rotation reduces this sum by:

S(A)↔ S(A↔) = 2|apq|2 (3.1.15)

For the classical Jacobi method where we always choose the largest o”-diagonal element, we can
prove:

S(A(k+1)) ⇐

1↔ 2

n(n↔ 1)


S(A(k)) (3.1.16)

This shows linear convergence with rate at least 1↔ 2
n(n↑1) .

3.1.6 References

1. Jacobi, C.G.J. (1846). ”Über ein leichtes Verfahren, die in der Theorie der Säcularstörungen
vorkommenden Gleichungen numerisch aufzulösen”

2. Golub, G.H.; Van Loan, C.F. (2013). ”Matrix Computations”

3. Press, W.H. et al. (2007). ”Numerical Recipes: The Art of Scientific Computing”

Chapter 4

Linear Algebra in Tensor Network
Notation

Tensor network notation, also known as Penrose graphical notation, is a concise way to represent
vectors, matrices, and higher-rank tensors, along with their contractions. Instead of writing sums
explicitly, repeated indices are shown as lines connecting tensor nodes. This approach can simplify
many linear algebra manipulations.

In index notation, for example, a matrix is written asMij, a vector as vi, and a rank-3 tensor as
Tijk. Below we show how to represent these objects diagrammatically and demonstrate common
operations like matrix-vector multiplication, matrix-matrix multiplication, and traces. We also
discuss why the trace is cyclic and how the identity matrix is drawn in this notation.

4.1 Basic Rules

1. A tensor is represented by a small shape (e.g. a circle) labeled with a letter such as M or T ,
but not with the full index structure.

2. Each index of the tensor is depicted as a line (leg) emerging from that shape.

3. Connecting two lines denotes a sum (contraction) over the shared index.

4. Any line not connected to another shape is a free index, meaning it remains in the final
result.

37

38 CHAPTER 4. LINEAR ALGEBRA IN TENSOR NETWORK NOTATION

4.2 Examples of Low-Rank Tensors

Vector vi

v

i

Matrix Mij

M
i j

Rank-3 Tensor Tijk

T

i j

k

4.3 Matrix-Vector and Matrix-Matrix Products

Matrix-Vector Product: (Mv)i =
∑

j Mij vj

Algebraically:
(Mv)i =

∑

j

Mij vj.

Diagrammatically:

M
i

v

Matrix-Matrix Product: (AB)ik =
∑

j Aij Bjk

Algebraically:
(AB)ik =

∑

j

Aij Bjk.

Diagrammatically:

A
i

B
k

4.4. TRACE AND ITS CYCLIC PROPERTY 39

4.4 Trace and Its Cyclic Property

Trace: Tr(AB) =
∑

i,j Aij Bji

Algebraically:
Tr(AB) =

∑

i,j

Aij Bji.

Diagrammatically, the lines form a loop:

A B

Cyclic Property

A key property of the trace is Tr(AB) = Tr(BA). In index notation,

Tr(AB) =
∑

i,j

Aij Bji =
∑

j,i

Bji Aij = Tr(BA).

Diagrammatically, because the lines form a closed loop, the order in which the tensors appear
around the loop does not matter.

4.5 Identity Matrices and the Identity Trick

Because contracting a tensor over one of its indices with the identity matrix has no e”ect, it is
customary to notate identity matrices as plain lines with no blob or shape. Diagrammatically,
this looks like:

εij = i j .

This notation is useful, because the diagram for contracting with an identity matrix simply extends
an index line, having no e”ect on the tensor. For example,

∑

j

Tijk εjj→ =

T

i
j↔

k

= Tij→k.

Since εjj→ merely replaces j with j↔, the tensor Tijk is unchanged apart from the index relabeling.

40 CHAPTER 4. LINEAR ALGEBRA IN TENSOR NETWORK NOTATION

