
Chapter 15

Thermodynamical Properties of Spin
Models

We now turn to one of the most important applications of Monte Carlo methods to physics,
namely the estimation of thermodynamic properties of physical systems. We will specialize our
discussion to the case of idealized magnets, that can be described in terms of a set of N discrete
spin variables s → s1, . . . , sN that can be in one of two states: up (+1) or down (↑1). In this case,
the task is to compute thermal expected values of some observable that, generally speaking, also
depend on the spin variables, say O(s), over the Boltzmann probability distribution:

↓O↔ =

∑
s
e→ωE(s) O(s)∑
s→ e

→ωE(s→)
, (15.0.1)

this expression can be immediately recast as a Monte Carlo–friendly object, since it is just an
expected value

↓O↔ = EP [O] , (15.0.2)

over the probability density

P (s) =
e→ωE(s)

∑
s→ e

→ωE(s→)
. (15.0.3)

Notice that the summation over s means summing over all possible values of the N spins, which
entails a summation over 2N possible configurations. This is an astronomically large number of
possible states, and performing this summation by brute force, by enumerating all possible states,
is unfeasible already starting at N ↗ 30. On the other hand, as we have seen from the previous
discussion Monte Carlo methods can bypass the curse of dimensionality.

15.1 The 2D Ising Model Hamiltonian

The Ising model is a simplified mathematical model of ferromagnetism in statistical mechanics.
In two dimensions, it consists of a square lattice of N = L↘ L spins s1 . . . sN .
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The Hamiltonian (energy function) for the 2D Ising model is given by:

E(s) = ↑J
∑

↑l,m↓

slsm ↑ h
N∑

l=1

sl (15.1.1)

where:

• sl = ±1 is the spin at site l

• J is the coupling constant (J > 0 for ferromagnetic interactions)

• h is the external magnetic field

• ↓l,m↔ denotes summation over nearest neighbors

15.2 Critical Behavior and Correlation Length

The 2D Ising model exhibits a second-order phase transition at the critical temperature Tc. Near
this temperature, several quantities show power-law behavior:

1. Magnetization (for T < Tc):

m ≃ (Tc ↑ T )ω, ω =
1

8
(15.2.1)

2. Susceptibility:

ε ≃ |T ↑ Tc|
→ε, ϑ =

7

4
(15.2.2)

3. Specific heat:

c ≃ |T ↑ Tc|
→ϑ, ϖ = 0 (logarithmic divergence) (15.2.3)

4. Correlation length:

ϱ ≃ |T ↑ Tc|
→ϖ , ς = 1 (15.2.4)

The correlation length ϱ is defined through the spin-spin correlation function:

G(r) = ↓slsm↔ ↑ ↓sl↔↓sm↔ ≃ e→r/ϱ (15.2.5)

where r is the distance between spins l and m.
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15.3 Critical Temperature

In the absence of an external field, the critical temperature for the 2D Ising model is known
exactly:

Tc =
2J

kB ln(1 +
⇐
2)

⇒ 2.269185J/kB (15.3.1)

This result was first derived by Lars Onsager in 1944.

15.4 The Metropolis Algorithm for the Ising Model

The Metropolis algorithm is used to sample configurations from the Boltzmann distribution:

P (s) ⇑ e→ωE(s) (15.4.1)

where ω = 1/(kBT ), kB is the Boltzmann constant, and T is the temperature.
Using the notation developed in the previous Chapter, we identify i → s(i), with i ⇓ [1, 2N ]

labelling all possible spin configurations, e.g. with the following ordering

s(1) = (1, 1, . . . 1)

s(2) = (↑1, 1, . . . 1)

. . . = . . .

s(2N) = (↑1,↑1, · · ·↑ 1)

Pi → P (s(i)) and the transition probability Qij → Q(s(i)|s(j)). In this case, we will consider a
simple transition probability that involves picking a spin at random and flipping its sign. This
transition probability is clearly symmetric (Qij = Qji) and simplifies the acceptance probability
ϖij → A(s(j)|s(i)), which reads

A(s(j)|s(i)) = min

[
1,

P (s(j))

P (s(i))

]
(15.4.2)

= min [1, exp↑ω [E(s(j))↑ E(s(i))]] (15.4.3)

= min [1, exp↑ω [!E]] . (15.4.4)

Importantly, this acceptance probability can be compute without the knowledge of the normal-
ization of the Boltzmann probability (which is hard to compute), and involves only computing an
energy di”erence between two spin configurations. Moreover, the energy change !E for flipping
a spin can be calculated e#ciently, making use of the locality of the interactions. Say for example
we pick a random spin r to be flipped, then after the flip we have

s(j) = (s1 · · ·↑ sr . . . sN), (15.4.5)
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thus

E(s(j)) = ↑J
∑

↑l,m↓↔=r

slsm ↑ h
N∑

l ↔=r

sl + J
∑

↑r,m↓

srsm + hsr (15.4.6)

= ↑J
∑

↑l,m↓

slsm ↑ h
N∑

l

sl + 2J
∑

↑r,m↓

srsm + 2hsr (15.4.7)

= E(s(i)) + 2sr



J
∑

↑r,m↓

sm + h



 , (15.4.8)

thus the energy di”erence is simply

!E = 2sr



J
∑

↑r,m↓

sm + h



 (15.4.9)

where ↓r,m↔ denotes a summation over the 4 nearest neighbors of site r.
Algorithmically we have the following steps:

Algorithm 15.1 Ising Model Monte Carlo Simulation
1: Initialize spin configuration {sl} (e.g., randomly or all spins up)
2: for many Monte Carlo steps do
3: Choose a spin sl randomly
4: Calculate the energy change !E if this spin were flipped
5: if !E ⇔ 0 then
6: Accept the flip
7: else
8: Accept the flip with probability e→ω!E

9: end if
10: if flip is accepted then
11: Flip the spin si
12: end if
13: end for
14: After equilibration, calculate observables of interest

15.5 Observables

Key observables in the Ising model simulation include:
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Flip with
probability P

Figure 15.4.1: Illustration of the Metropolis algorithm with local spin flip. Left: Initial state with
chosen spin (green circle). Red circles represent up spins, blue circles represent down spins. Right:
Possible state after attempting to flip the chosen spin.

1. Magnetization per spin:

m =
1

N

∑

l

sl (15.5.1)

2. Energy per spin:

e =
1

N
E (15.5.2)

3. Specific heat:

c =
ω2

N
(↓E2

↔ ↑ ↓E↔
2) (15.5.3)

4. Magnetic susceptibility:
ε = ωN(↓m2

↔ ↑ ↓m↔
2) (15.5.4)

where ↓·↔ denotes thermal average, and N is the total number of spins.

15.6 Implementation Considerations

1. Periodic boundary conditions are typically used to minimize finite-size e”ects.

2. The system should be equilibrated before collecting data for observables.

3. Multiple independent runs or long runs with appropriate error analysis are necessary for
accurate results.

4. The critical temperature for the 2D Ising model is known exactly:

Tc =
2J

kB ln(1 +
⇐
2)

⇒ 2.269J/kB (15.6.1)
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15.7 Finite-Size Scaling

For finite systems, observables near the critical point follow scaling relations. For a system of
linear size L:

1. Magnetization: m ≃ L→ω/ϖm̃(tL1/ϖ)

2. Susceptibility: ε ≃ Lε/ϖε̃(tL1/ϖ)

3. Specific heat: c ≃ Lϑ/ϖ c̃(tL1/ϖ)

where t = (T ↑ Tc)/Tc is the reduced temperature, and m̃, ε̃, and c̃ are scaling functions. These
scaling relations allow for the precise extraction of critical exponents from simulations of finite
systems.



Chapter 16

Advanced Sampling Methods

16.1 Cluster Algorithms for the Ising Model

While the Metropolis algorithm is e”ective for simulating the Ising model, it can su”er from
critical slowing down near the phase transition. Cluster algorithms, such as the Wol” algorithm,
can significantly reduce this problem by updating large clusters of spins simultaneously. The Wol”
algorithm is summarized below.

Algorithm 16.1 Wol” Algorithm for Ising Model Simulation
1: Choose a random starting spin
2: Initialize an empty cluster
3: Add the starting spin to the cluster
4: while there are unchecked neighbors of the cluster do
5: for each unchecked neighboring spin of the same sign do
6: Calculate p = 1↑ e→2ωJ

7: Generate a uniform random number r ⇓ [0, 1]
8: if r < p then
9: Add the neighboring spin to the cluster
10: end if
11: end for
12: end while
13: Flip all spins in the cluster

16.1.1 Detailed Balance

To understand the algorithm, let’s consider two configurations a and b that di”er by a flipped
cluster, as shown in Figure 16.1.1.

Let’s examine the transition probabilities:
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Figure 16.1.1: The Wol” cluster algorithm for the Ising model adds, with probability p, a link
connecting a site outside the cluster to a site already in the cluster (thereby adding the site). In the
configuration a, construction of the cluster (as shown) stopped with 9 links “↑↑”, corresponding
to an a priori probability Q(b|a) = Ainterior ↘ (1 ↑ p)9. The return move stops with probability
Q(a|b) = Qinterior ↘ (1 ↑ p)19, as there are 19 links “++” across the boundary in configuration b.
Figure reproduced from W. Krauth, arXiv:0311623 (2003).

Q(b|a) = Qinterior ↘ (1↑ p)nsame (16.1.1)

Q(a|b) = Qinterior ↘ (1↑ p)ndi! (16.1.2)

where:

• Qinterior is the probability of growing the interior of the cluster (same for both directions)

• nsame is the number of bonds between same-sign spins across the cluster boundary in con-
figuration a

• ndi” is the number of bonds between di”erent-sign spins across the cluster boundary in
configuration b

The energy di”erence between configurations a and b is crucial for understanding how the algo-
rithm satisfies detailed balance. This di”erence arises solely from the bonds crossing the cluster
boundary, as all internal bonds of the cluster contribute the same energy before and after the flip.

Let’s define:
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• nsame: number of bonds between same-sign spins across the cluster boundary in configuration
a

• ndi”: number of bonds between di”erent-sign spins across the cluster boundary in configu-
ration a

For each same-sign bond in configuration a:

• It contributes ↑J to the energy in configuration a

• After the cluster flip, it becomes a di”erent-sign bond in b, contributing +J

• The energy di”erence for each such bond is +2J

Conversely, for each di”erent-sign bond in configuration a:

• It contributes +J to the energy in configuration a

• After the cluster flip, it becomes a same-sign bond in b, contributing ↑J

• The energy di”erence for each such bond is ↑2J

Therefore, the total energy di”erence is:

E(b)↑ E(a) = (2J ↘ nsame) + (↑2J ↘ ndi”) = 2J(nsame ↑ ndi”) (16.1.3)

The acceptance probability for the cluster flip is:

A(b|a) = min

{
1,

P (b)Q(a|b)

P (a)Q(b|a)

}
(16.1.4)

= min

{
1, e→2ωJ(nsame→ndi!)

(1↑ p)ndi!

(1↑ p)nsame

}
(16.1.5)

= min

{
1,

[
e→2ωJ

1↑ p

]nsame [1↑ p

e→2ωJ

]ndi!
}

(16.1.6)

We clearly see that if we choose p = 1 ↑ e→2ωJ , this acceptance always evaluates to 1, meaning
every proposed cluster flip is accepted.

This algorithm is particularly e#cient because:

• It flips large clusters of spins in a single step, allowing for rapid changes in the system’s
state.

• The cluster size naturally adapts to the system’s correlation length, becoming especially
e”ective near the critical point.

• Every proposed move is accepted, eliminating wasted computation on rejected moves.
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16.2 Parallel Tempering

Parallel tempering, also known as replica exchange, is an advanced Monte Carlo method designed
to improve sampling e#ciency, especially for systems with rugged energy landscapes. This tech-
nique is particularly useful for simulations of complex systems that may get trapped in local energy
minima.

The key idea of parallel tempering is to simulate multiple replicas of the system at di”erent tem-
peratures simultaneously. Periodically, the method attempts to exchange configurations between
neighboring temperatures. This allows configurations to move between di”erent temperatures,
helping to overcome energy barriers and explore the phase space more e#ciently.

Monte Carlo steps

Temperature

T1

T2

T3

T4

T5

swap

swap

swap

swap

Figure 16.2.1: Schematic representation of parallel tempering. Each horizontal line represents a
replica at a di”erent temperature. Black dots represent Monte Carlo steps, and red arrows indicate
attempted configuration swaps between adjacent temperatures.

The parallel tempering algorithm can be described as follows:
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Algorithm 16.2 Parallel Tempering
1: Initialize M replicas at temperatures T1 < T2 < · · · < TM

2: for each Monte Carlo step do
3: for each replica k do
4: Perform a Monte Carlo move (e.g., Metropolis) at temperature Tk

5: end for
6: for k = 1 to M ↑ 1 with probability pswap do
7: Calculate ! = (ωk ↑ ωk+1)(Ek ↑ Ek+1)
8: where ωk = 1/(kBTk) and Ek is the energy of replica k
9: Accept swap with probability min(1, e!)
10: if swap accepted then
11: Exchange configurations of replicas k and k + 1
12: end if
13: end for
14: Collect data for analysis
15: end for

16.2.1 Proof of Acceptance Probability

The acceptance probability for swapping configurations between two adjacent temperatures is
derived from the Metropolis-Hastings acceptance rule, by considering an enlarged configuration
space comprising all the replicas at the di”erent temperatures. Specifically, call the state of the
system

X = (X1 . . . XM),

and the energies of each replica:

E(Xl) → El,

then the joint probability of all replicas having a certain energy is just the product of the individual
probabilities (since there are no interactions among replicas):

P (X) = $M
i=1P (Xi)

= $M
i=1

e→ωiEi

Zi

⇑ e→
∑

i ωiEi.

When we consider swapping two replicas, say k and l with inverse temperatures ωk and ωl, and
energies Ek and El, respectively, we have that the new configuration is just

Xswap = (X1 . . . Xl . . . Xk . . . XM),
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where without loss of generality we have taken k < l. Then,

P (Xswap)

P (X)
=

e→ωlEk→ωkEl

e→ωlEl→ωkEk
(16.2.1)

= e→ωl(Ek→El)→ωk(El→Ek). (16.2.2)

= e(ωl→ωk)(El→Ek). (16.2.3)

Since the swap move is clearly symmetric, the Metropolis-Hastings acceptance is just for this ratio
is:

A(Xswap|X) = min
[
1, e(ωl→ωk)(El→Ek)


. (16.2.4)

This proves the acceptance probability used in the algorithm.

16.2.2 Key Considerations

• Temperature selection: The range and spacing of temperatures are crucial for e#cient sam-
pling. Temperatures should be close enough to allow frequent exchanges but far enough
apart to span the desired range.

• Swap frequency: The frequency of attempted swaps (pswap) should be balanced to allow
su#cient sampling at each temperature while promoting exploration across temperatures.

• Number of replicas: More replicas can improve sampling but increase computational cost.
The optimal number depends on the system and available resources.

Parallel tempering is particularly e”ective for systems with multiple metastable states or those ex-
hibiting phase transitions. It helps in overcoming energy barriers that might trap standard Monte
Carlo methods, leading to more e#cient exploration of the configuration space and improved
convergence of thermodynamic averages.


