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Chapter 8

Ritz Method in Quantum Mechanics

8.1 The Variational Principle

The variational method provides a powerful approach to approximate the ground state energy of
a quantum system. The principle states that for any trial wavefunction !, the expectation value
of the Hamiltonian Ĥ will always be greater than or equal to the ground state energy E0:

E0 →
↑!|Ĥ|!↓
↑!|!↓ (8.1.1)

This principle forms the foundation of the Ritz method and other variational techniques in quan-
tum mechanics.

8.2 Application of the Ritz Method

In the Ritz method, we express the trial wavefunction ! as a linear combination of basis functions
{!i}:

|!↓ =
N∑

i=1

ci|!i↓ (8.2.1)

where ci are variational parameters to be determined. Starting from the variational principle, we
want to minimize the energy expectation value:

E[!] =
↑!|Ĥ|!↓
↑!|!↓ (8.2.2)

Substituting our trial wavefunction (Eq. 8.2.1) into this expression:
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E[ci] =

〈∑
j c

→
j!j

∣∣∣ Ĥ |
∑

i ci!i↓
〈∑

j c
→
j!j|

∑
i ci!i

〉

=

∑
i,j c

→
i cj↑!j|Ĥ|!i↓∑

i,j c
→
i cj↑!j|!i↓

(8.2.3)

Now, we introduce the Hamiltonian matrix H and the overlap matrix S:

Hij = ↑!i|Ĥ|!j↓, Sij = ↑!i|!j↓ (8.2.4)

With these definitions, we can rewrite the energy functional in matrix form:

E[ci] =
c†Hc

c†Sc
(8.2.5)

where c is the column vector of coe”cients ci.

8.2.1 Minimization Procedure

To find the best approximation to the ground state, we need to minimize E[ci] with respect to
the coe”cients ci. We do this by setting the derivative of E[ci] with respect to c→k to zero:

ωE

ωc→k
= 0 (8.2.6)

Let’s evaluate this derivative:

ωE

ωc→k
=

ω

ωc→k

(
c†Hc

c†Sc

)

=
(Hc)k(c†Sc)↔ (c†Hc)(Sc)k

(c†Sc)2

(8.2.7)

Setting this to zero and simplifying:

(Hc)k(c
†Sc) = (c†Hc)(Sc)k (8.2.8)

This equation must hold for all k. We can rewrite it as:

Hc = εSc (8.2.9)

where ε = c
†
Hc

c†Sc .
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8.2.2 Generalized Eigenvalue Problem

Equation 8.2.9 is known as the generalized eigenvalue problem. To solve the generalized eigenvalue
problem numerically, we can transform it into a standard eigenvalue problem. This is achieved
through the following steps:

1. Since S is Hermitian positive definite, we can compute its matrix square root:

S1/2 = U!1/2U† (8.2.10)

where U and ! are obtained from the eigendecomposition of S.

2. We can then transform the Hamiltonian to create a new Hermitian matrix:

H↑ = S↓1/2HS↓1/2 (8.2.11)

3. This transforms our generalized eigenvalue problem into a standard eigenvalue problem:

H↑c↑ = εc↑ (8.2.12)

where c↑ = S1/2c.

The transformed problem can now be solved using standard eigenvalue algorithms such as the
Jacobi method.

Hc = εSc S↓1/2HS↓1/2c↑ = εc↑ H↑c↑ = εc↑
Transform Solve

Figure 8.2.1: Transformation of the generalized eigenvalue problem to standard form.

8.2.3 Example: Two-State System

To illustrate these concepts, let’s consider a simple two-state system. Suppose we have a basis of
two states |!1↓, |!2↓. Our trial wavefunction is:

|!↓ = c1|!1↓+ c2|!2↓ (8.2.13)

The Hamiltonian and overlap matrices are 2x2:

H =

(
H11 H12

H21 H22

)
, S =

(
S11 S12

S21 S22

)
(8.2.14)

The generalized eigenvalue problem becomes:
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(
H11 ↔ εS11 H12 ↔ εS12

H21 ↔ εS21 H22 ↔ εS22

)(
c1
c2

)
= 0 (8.2.15)

The characteristic equation is:

det(H↔ εS) = 0 (8.2.16)

Expanding this determinant gives a quadratic equation in ε, which can be solved to find the
two energy eigenvalues. The corresponding eigenvectors give the coe”cients c1 and c2 for each
approximate eigenstate.

This two-state example, while simple, illustrates all the key features of the Ritz method:
formulation of the trial wavefunction, construction of the Hamiltonian and overlap matrices, and
solution of the generalized eigenvalue problem to obtain approximate energies and wavefunctions.

8.3 Choice of Basis Functions

The e#ectiveness of the Ritz method heavily depends on the choice of basis functions. Some
common choices include:

• Harmonic oscillator eigenfunctions

• Hydrogen-like atomic orbitals

• Plane waves (for periodic systems)

• Gaussian functions

The choice is often guided by the symmetry of the problem and the behavior of the expected
solution.

8.4 Example: Anharmonic Oscillator

Let’s apply the Ritz method to find the ground state of a harmonic oscillator with a small anhar-
monic (x4) perturbation. This system is described by the Hamiltonian:

Ĥ = ↔ ⊋2
2m

d2

dx2
+

1

2
mϑ2x2 + εx4 (8.4.1)

where ε is a small parameter characterizing the strength of the anharmonic term. We’ll use the
eigenfunctions of the unperturbed harmonic oscillator as our basis set:

ϖn(x) =
1↗
2nn!

(mϑ

ϱ⊋

)1/4

e↓
mωx2

2⊋ Hn

(√
mϑ

⊋ x

)
(8.4.2)

where Hn(x) are the Hermite polynomials.
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8.4.1 Matrix Elements

The Hamiltonian matrix elements are:

Hmn = ↑ϖm|Ĥ|ϖn↓ = H(0)
mn + εVmn (8.4.3)

where H(0)
mn are the matrix elements of the unperturbed harmonic oscillator Hamiltonian, and Vmn

are the matrix elements of the x4 term.
The unperturbed terms are diagonal by construction:

H(0)
mn = ⊋ϑ(n+

1

2
)ςmn (8.4.4)

For the x4 term, we can use the properties of Hermite polynomials to calculate:

Vmn = ↑ϖm|x4|ϖn↓

=
⊋2

4m2ϑ2

[
(2n2 + 2n+ 1)ςmn

+
√

(n+ 1)(n+ 2)(n+ 3)(n+ 4)ςm,n+4

+
√

n(n↔ 1)(n↔ 2)(n↔ 3)ςm,n↓4

+ 6(n+ 1)
↗
n+ 2ςm,n+2

+ 6n
↗
n↔ 1ςm,n↓2

]

(8.4.5)

8.4.2 Numerical Implementation

Let’s implement this in Python, using a truncated basis of the first few harmonic oscillator eigen-
states:

1 import numpy as np
2 from sc ipy . l i n a l g import e igh
3

4 # Constants
5 hbar = 1 .0
6 m = 1.0
7 omega = 1 .0
8 lambda param = 0.01 # Strength o f anharmonic term
9

10 de f hami l ton ian e lement (m, n , lambda param ) :
11 i f m == n :
12 r e turn hbar ∗ omega ∗ (n + 0 . 5 ) + lambda param ∗ ( hbar ∗∗2 / (4 ∗ m∗∗2 ∗

omega∗∗2) ) ∗ (2∗n∗∗2 + 2∗n + 1)
13 e l i f m == n + 4 or n == m + 4 :
14 k = min (m, n)
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15 r e turn lambda param ∗ ( hbar ∗∗2 / (4 ∗ m∗∗2 ∗ omega∗∗2) ) ∗ np . sq r t ( ( k+1)∗( k
+2)∗( k+3)∗( k+4) )

16 e l i f m == n + 2 or n == m + 2 :
17 k = min (m, n)
18 r e turn lambda param ∗ ( hbar ∗∗2 / (4 ∗ m∗∗2 ∗ omega∗∗2) ) ∗ 6 ∗ ( k+1) ∗ np .

s q r t ( k+2)
19 e l s e :
20 r e turn 0
21

22 # Number o f b a s i s s t a t e s to use
23 N = 10
24

25 # Construct Hamiltonian matrix
26 H = np . z e r o s ( (N, N) )
27 f o r i in range (N) :
28 f o r j in range (N) :
29 H[ i , j ] = hami l ton ian e lement ( i , j , lambda param )
30

31 # Solve e i g enva lue problem
32 ene rg i e s , s t a t e s = e igh (H)
33

34 pr in t ( f ”Ground s t a t e energy : { e n e r g i e s [ 0 ] } ” )
35 pr in t ( f ” F i r s t ex c i t ed s t a t e energy : { e n e r g i e s [ 1 ] } ” )
36

37 # Compare with unperturbed en e r g i e s
38 pr in t ( f ”Unperturbed ground s t a t e energy : {hbar ∗ omega ∗ 0 .5} ” )
39 pr in t ( f ”Unperturbed f i r s t ex c i t ed s t a t e energy : {hbar ∗ omega ∗ 1 .5} ” )

This script constructs the Hamiltonian matrix for the anharmonic oscillator and solves for its
eigenvalues and eigenvectors.

8.4.3 Results and Analysis

Let’s visualize how the ground state energy changes with the strength of the anharmonic term
over a wider range, comparing it with perturbation theory:

Figure 8.4.1 shows how the ground state energy increases with the strength of the anharmonic
term over a range of ε from 0 to 1. We can observe that for larger ε, the energy increase becomes
non-linear, significantly deviating from the prediction of first-order perturbation theory.

8.4.4 Convergence Analysis

To assess the accuracy of our Ritz method approximation for a strong perturbation, we study how
the ground state energy converges as we increase the number of basis functions:

Figure 8.4.2 demonstrates the convergence of the ground state energy as we increase the number
of basis functions for ε = 1. We observe that significantly more basis functions are required to
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Figure 8.4.1: Ground state energy of the anharmonic oscillator vs. perturbation strength (0 →
ε → 1)
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Figure 8.4.2: Convergence of ground state energy with increasing basis size for ε = 1
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achieve convergence compared to the case with smaller ε, reflecting the strong perturbation to
the harmonic oscillator.

8.4.5 Discussion

These results illustrate several important aspects of the Ritz method applied to the anharmonic
oscillator:

1. Non-linear response: As seen in Figure 8.4.1, the ground state energy increases non-linearly
with ε, significantly deviating from first-order perturbation theory for larger ε values. This
highlights the limitations of perturbation theory and the advantage of the Ritz method in handling
stronger perturbations.

2. Perturbation theory comparison: The first-order perturbation theory provides a good ap-
proximation for small ε but quickly becomes inaccurate as ε increases. The Ritz method, on the
other hand, can provide accurate results even for large ε, provided we use enough basis functions.

3. Convergence behavior: Figure 8.4.2 shows that for a strong perturbation (ε = 1), many
more basis functions are needed to achieve convergence compared to weaker perturbations. This
demonstrates the Ritz method’s ability to handle regimes far beyond the applicability of pertur-
bation theory.

4. Basis choice: The harmonic oscillator eigenfunctions remain a viable choice of basis even
for strong perturbations, as evidenced by the eventual convergence. However, the number of basis
functions required increases significantly with the strength of the perturbation.

5. Computational considerations: As we increase the number of basis functions, the compu-
tational cost grows substantially. For very strong perturbations or higher precision requirements,
one might consider alternative basis choices, such as a basis that incorporates some of the anhar-
monic character, or other computational techniques like the Numerov method or Rayleigh-Ritz
with a di#erent basis.

6. Excited states: While we focused on the ground state, the method simultaneously provides
approximations to excited state energies, which would show similar convergence behavior but
likely require even more basis functions for accurate results.

This anharmonic oscillator example demonstrates the power and versatility of the Ritz method
in handling perturbations of various strengths. It provides a smooth transition between the regimes
of validity for perturbation theory and numerical techniques for strongly perturbed systems, mak-
ing it a valuable tool in computational quantum mechanics.

8.5 Conclusion

The Ritz method is a powerful variational technique in quantum mechanics that allows for sys-
tematic improvement of approximate solutions. By choosing an appropriate basis set and solving
a generalized eigenvalue problem, we can obtain accurate estimates of energy levels and wavefunc-
tions for a wide range of quantum systems.
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The method’s flexibility in choice of basis functions, its ability to provide upper bounds to the
true ground state energy, and its straightforward numerical implementation make it a valuable
tool in computational quantum mechanics. As we’ve seen in the harmonic oscillator example,
even with a relatively small number of basis functions, the Ritz method can provide excellent
approximations to exact solutions.

Understanding and applying the Ritz method not only provides practical computational tools
but also deepens our insight into the nature of quantum mechanical systems and the power of
variational approaches in physics.
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Chapter 9

Galerkin Method for Time-Dependent
Problems

In this chapter we present a comprehensive and rigorous derivation of the Galerkin method as
applied to the time-dependent Schrödinger equation. Our approach begins with an ansatz for
the wavefunction, followed by a derivation of the Galerkin conditions via the minimization of the
L2 norm of the residual. We then derive the resulting matrix system for the time evolution of
the expansion coe”cients and describe how to solve the time-dependent problem in the case of a
non-orthogonal basis.

9.1 The Time-Dependent Schrödinger Equation and the
Ansatz

We consider the time-dependent Schrödinger equation in one spatial dimension:

i⊋ ωϖ(x, t)

ωt
= Ĥ ϖ(x, t), (9.1.1)

with the Hamiltonian operator given by

Ĥ = ↔ ⊋2
2m

ω2

ωx2
+ V (x), (9.1.2)

where ϖ(x, t) is the wavefunction, ⊋ is the reduced Planck constant, m is the particle mass, and
V (x) is a prescribed potential.

In the Galerkin method we approximate the true solution ϖ(x, t) by a finite-dimensional ex-
pansion (ansatz):

ϖK(x, t) =
K∑

k=1

ck(t)φk(x), (9.1.3)
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where {φk(x)}Kk=1 is a set of (not necessarily orthonormal) basis functions spanning a subspace of
the Hilbert space, and the coe”cients ck(t) (complex in general) encode the time dependence.

9.2 Derivation of the Galerkin Conditions

To approximate solutions to the time-dependent Schrödinger equation (9.1.1), we begin with the
finite-dimensional ansatz (9.1.3) for the wavefunction, written in bra–ket notation:

|ϖK(t)↓ =
K∑

k=1

ck(t)|φk↓.

Since this ansatz generally does not satisfy (9.1.1) exactly, we define the residual

|R(t)↓ =
(
i⊋ ω

ωt
↔ Ĥ

)
|ϖK(t)↓, (9.2.1)

which quantifies the discrepancy between our approximate and the true solution. For an exact
solution, the residual vanishes, i.e., ↑R(t)|R(t)↓ = 0; for an approximate solution, it is nonzero.

We now seek the best possible evolution for the ansatz by minimizing the squared norm of the
residual,

↘R(t)↘2 = ↑R(t)|R(t)↓, (9.2.2)

with respect to the time derivatives ċk(t) of the coe”cients, while holding the values ck(t) fixed
at time t. The idea is that if at time t our ansatz is exact, then the only source of error at time
t+ ↼ comes from the choice of the time derivatives ċk(t).

Substituting the ansatz into (9.2.1) yields

|R(t)↓ =
K∑

k=1

(
i⊋ ċk(t)|φk↓ ↔ ck(t)Ĥ|φk↓

)
. (9.2.3)

We now compute the partial derivative of the squared norm ↑R(t)|R(t)↓ with respect to the
complex conjugate of the time derivative, ċ→j(t). A straightforward calculation shows that

ω↑R(t)|R(t)↓
ωċ→j(t)

= i⊋↑φj|R(t)↓. (9.2.4)

To ensure that the evolution of the ansatz minimizes the instantaneous growth of the residual,
we require that the above derivative vanishes for each j = 1, . . . , K, i.e.,

↑φj|R(t)↓ = 0, j = 1, . . . , K.
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This immediately implies the so-called Galerkin condition
〈
φj

∣∣∣
(
i⊋ ω

ωt
↔ Ĥ

)
ϖK(t)

〉
= 0, j = 1, . . . , K, (9.2.5)

which can be equivalently stated saying that we are imposing that the residual (error) vector must
be orthogonal to the directions that span the sub-space included in our ansatz. This is rather
intuitive, in the sense that we are imposing that within the chosen subspace the error is vanishing,
whereas in general it will be finite along directions that are outside the chosen subspace.

9.3 Matrix Formulation

Let us define the overlap and Hamiltonian matrices as follows:

Sjk = ↑φj | φk↓, Hjk = ↑φj | Ĥ | φk↓. (9.3.1)

Note that when the basis {φk} is non-orthogonal, the matrix S is not the identity but is Hermitian
and positive definite.

Substitute the ansatz (9.1.3) into the Galerkin condition:

↑φj | (i⊋ωt ↔ Ĥ)ϖK↓ = i⊋
K∑

k=1

ċk(t)↑φj | φk↓ ↔
K∑

k=1

ck(t)↑φj | Ĥ | φk↓

= i⊋
K∑

k=1

Sjkċk(t)↔
K∑

k=1

Hjkck(t) = 0, j = 1, . . . , K. (9.3.2)

In compact matrix notation, letting

|c(t)↓ .
=





c1(t)
c2(t)
...

cK(t)




,

we obtain the system

i⊋S d|c(t)↓
dt

= H|c(t)↓. (9.3.3)

9.4 Time Evolution in a Non-Orthogonal Basis

The time evolution of the coe”cients is governed by the di#erential equation (9.3.3). In order to
solve it, we use a method similar to what discussed in the previous lecture. First of all, since the
overlap matrix S is Hermitian positive definite, it admits an eigendecomposition:

S = U!U†, (9.4.1)
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where U is unitary and ! is a diagonal matrix with positive entries. We define the square root
and its inverse by

S1/2 = U!1/2 U†, S↓1/2 = U!↓1/2 U†. (9.4.2)

Introduce the transformed Hamiltonian

H↑ = S↓1/2 HS↓1/2, (9.4.3)

and define the transformed coe”cient vector

|c↑↓ = S1/2|c↓. (9.4.4)

Substituting |c↓ = S↓1/2|c↑↓ into (9.3.3) gives

i⊋ d|c↑(t)↓
dt

= H↑|c↑(t)↓,

thus we are left with a standard Schroedinger equation, for the modified Hamiltonian H↑.

9.4.1 Time Propagation

The solution of this equation is then found as usual, for example diagonalizing the modified
hamiltonian, and then expressing the initial state in terms of its eigenvectors. Specifically, consider
the eigenbasis of H↑, namely the states H↑|dl↓ = E ↑

l|dl↓, then

|c↑(t)↓ = e↓
i
⊋H

→t|c↑(0)↓
=

∑

l

e↓
i
⊋E

→
lt|dl↓↑dl|c↑(0)↓.

Thus, in terms of the original coe”cients we have:

S1/2|c(t)↓ =
∑

l

e↓
i
⊋E

→
lt|dl↓↑dl|S1/2|c(0)↓

|c(t)↓ =
∑

l

e↓
i
⊋E

→
ltS↓1/2|dl↓↑dl|S1/2|c(0)↓.

9.5 Example: Particle in a Double-Well Potential

Consider a particle in a one-dimensional double-well potential:

V (x) = V0(x
2 ↔ a2)2 (9.5.1)

where V0 determines the height of the barrier between wells, and ±a are the locations of the
minima.
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Figure 9.5.1: Sketch of the double-well potential

We use the eigenbasis of the harmonic oscillator centered at the midpoint between the two
wells:

φn(x) =
(↽
ϱ

)1/4 1↗
2nn!

Hn(
↗
↽x)e↓ωx2/2 (9.5.2)

where Hn(x) are the Hermite polynomials and ↽ is a parameter that can be optimized. The
Hamiltonian matrix elements can be calculated analytically:

(HK)nm = ⊋↽(n+
1

2
)ςnm + V0


3a4ςnm +

2n+ 1

2↽
ςnm

+

√
(n+ 1)(n+ 2)

2↽
ςm,n+2 +

√
n(n↔ 1)

2↽
ςm,n↓2



+ V0


3

4↽2
(2n2 + 2n+ 1)ςnm +

√
(n+ 1)(n+ 2)

2↽2
(2n+ 3)ςm,n+2

+

√
n(n↔ 1)

2↽2
(2n↔ 1)ςm,n↓2 +

√
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

4↽2
ςm,n+4

+

√
n(n↔ 1)(n↔ 2)(n↔ 3)

4↽2
ςm,n↓4



(9.5.3)
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Figure 9.6.1: Sketch of localized Gaussian basis functions

9.6 Example: Localized Gaussian Basis Set

Another powerful choice for the basis functions in the Galerkin method is a set of localized Gaus-
sian functions. These functions are particularly useful for problems where the wavefunction is
expected to be localized in certain regions of space.

9.6.0.1 Gaussian Basis Functions

We define our Gaussian basis functions as:

φn(x) =

(
2↽

ϱ

)1/4

exp

↔↽(x↔ xn)

2


(9.6.1)

where ↽ is a parameter controlling the width of the Gaussians, and xn are the centers of the
Gaussians.

9.6.1 Matrix Elements for Harmonic Oscillator

Let’s consider a harmonic oscillator potential V (x) = 1
2mϑ2x2. We’ll calculate the matrix elements

of the Hamiltonian analytically using our Gaussian basis.

The kinetic energy matrix elements are:
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Tmn = ↔ ⊋2
2m

 ↔

↓↔
φm(x)

d2

dx2
φn(x)dx

=
⊋2↽
2m

Smn


1↔ ↽(xm ↔ xn)

2


(9.6.2)

where Smn is the overlap matrix element:

Smn = exp
(
↔↽

2
(xm ↔ xn)

2
)

(9.6.3)

The potential energy matrix elements for the harmonic oscillator are:

Vmn =
1

2
mϑ2

 ↔

↓↔
φm(x)x

2φn(x)dx

=
mϑ2

4↽
Smn


1 + 2↽(x2

m + x2
n)↔ 4↽2(xm ↔ xn)

2
 (9.6.4)

The total Hamiltonian matrix elements are then Hmn = Tmn + Vmn.
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Chapter 10

Variational Formulation for Classical
Trajectories

In classical mechanics, the trajectory of a system between two fixed times can be determined by
requiring that the action be stationary. In the continuous setting, the action is defined by

S[u] =

 T

0

L

u(t), u̇(t)


dt, (10.0.1)

where u(t) is the generalized coordinate and L is the Lagrangian. Imposing ςS = 0 under variations
ςu(t) that vanish at the endpoints u(0) and u(T ) leads to the Euler–Lagrange equation

d

dt

(
ωL

ωu̇

)
↔ ωL

ωu
= 0. (10.0.2)

This di#erential equation is the continuous condition for a trajectory to be physically admissible.
The stationary action principle of classical mechanics is a variational principle that is extremely
useful in cases when one seeks a solution to the equations of motion with constrained end points.
In this Chapter we will see how we can solve this constrained problem numerically.

10.1 Discrete Action with Fixed Endpoints

To proceed further, we discretize the time interval [0, T ]. Suppose we split the interval into (n+1)
subintervals by the nodes

t0, t1, . . . , tn, tn+1,

with uniform spacing $t = T/(n + 1). Let xk denote the approximation of u(tk). The endpoints
x0 and xn+1 are fixed by the boundary conditions, and the unknowns are the internal values

x = (x1, x2, . . . , xn).

91
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A simple finite-di#erence discretization of the kinetic energy and the potential energy leads to the
discrete action

Sn(x) =
n∑

k=0

$t


m

2

(
xk+1 ↔ xk

$t

)2

↔ V (xk)


, (10.1.1)

where m is the mass and V (x) is the potential energy. The goal is to determine the internal points
x such that the discrete action is stationary.

10.2 Gradient and Hessian

The discretized action we have written above has now become a function (rather than a functional,
as in the initial formulation) of the discrete trajectory points x = (x1, x2, . . . , xn). In order to
make the action stationary, we will need to use some numerical method to find a solution such
that

ωSn

ωxi
= 0, i = 1, 2, . . . , n. (10.2.1)

In the following we will use Newton’s method, for which it is essential to compute both the gradient
of Sn and its Hessian (the Jacobian of the gradient). The Hessian tells us how the gradient changes
with the variables and is crucial for constructing a quadratic approximation of the action in the
neighborhood of a trial solution.

10.2.1 Gradient

We now derive the gradient of Sn(x). We have seen above that the contribution of each interval
to the discretized action is

m

2$t
(xk+1 ↔ xk)

2 ↔$t V (xk).

When we di#erentiate with respect to xi, we notice that xi appears in two consecutive terms,
namely for k = i↔1 and k = i. A compact way to express this is to use Kronecker delta functions.
In particular, one can write

ωSn

ωxi
=

n∑

k=0


m

$t2
(xk+1 ↔ xk)(ςi,k+1 ↔ ςi,k)↔

ωV (xk)

ωxk
ςi,k


$t.

Since the only nonzero contributions occur when k = i or k = i± 1, the gradient simplifies to

ωSn

ωxi
=

m

$t

(
2xi ↔ xi↓1 ↔ xi+1

)
↔$t

ωV (xi)

ωxi
. (10.2.2)

Here x0 and xn+1 are known, so the derivatives are computed only for the free variables x1, . . . , xn.
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10.2.2 Hessian

Next, we di#erentiate the gradient with respect to xj to obtain the Hessian. In Kronecker-delta
notation, this reads

ω2Sn

ωxiωxj
=

m

$t

(
2ςj,i ↔ ςj,i↓1 ↔ ςj,i+1

)
↔$t

ω2V (xi)

ωx2
i

ςj,i. (10.2.3)

This shows that the Hessian is tridiagonal: the diagonal entries are given by

2m

$t
↔$t

ω2V (xi)

ωx2
i

,

and the entries immediately above and below the diagonal are

↔ m

$t
.

This analytical expression for the Hessian is essential for the e”cient application of Newton’s
method.

Derivation of the Newton Update

Derivation of Newton’s Method Update:
For a nonlinear function g(x) in Rn, Newton’s method aims to find a zero of g. Given a
current approximation x(m), we linearize g about x(m) using its Jacobian J(x(m)):

g(x) ≃ g

x(m)


+ J


x(m)


(x↔ x(m)).

Setting g(x) = 0 and letting ςx = x↔ x(m), we obtain the linear system

J

x(m)


ςx = ↔g


x(m)


.

The updated solution is then given by

x(m+1) = x(m) + ςx.

Often a damping factor ↽ (with 0 < ↽ → 1) is introduced to control the step size:

x(m+1) = x(m) + ↽ ςx.

In our case, g(x) is the gradient ⇐Sn(x) and J(x) is the Hessian of Sn as given in (10.2.3).
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10.3 Newton’s Method for Stationarizing the Discrete Ac-
tion

To find the stationary point of Sn(x), we seek x such that ⇐Sn(x) = 0. Newton’s method
iteratively solves

J

x(m)


ςx = ↔⇐Sn


x(m)


, (10.3.1)

and updates
x(m+1) = x(m) + ↽ ςx, (10.3.2)

with 0 < ↽ → 1 chosen to damp the step and avoid overshooting. The process is repeated until
↘⇐Sn(x(m))↘ is below a prescribed tolerance.

10.4 Specializing to a Given Potential

For example, if we specialize to the potential

V (x) =
1

2
kx2 +

1

4
εx4,

then
ωV (x)

ωx
= kx+ εx3 and

ω2V (x)

ωx2
= k + 3εx2.

Substituting these expressions into (10.2.2) and (10.2.3) yields explicit formulas for the gradient
and Hessian. These can then be used in the Newton solver to compute the stationary trajectory
that satisfies the fixed endpoints x0 and xn+1.


