
Chapter 1

A few motivating examples

Computational physics relies fundamentally on the mathematical framework of linear algebra to
solve complex physical systems. In this chapter, we explore how diverse physical problems can be
reformulated into two fundamental types of linear algebra problems: linear systems and eigenvalue
problems. Before examining specific applications, let us establish precise mathematical definitions
and notation.

1.1 Mathematical Foundations

1.1.1 Linear Systems

A linear system in n variables can be expressed as a matrix equation:

Ax = b (1.1.1)

where:

• A → Rm→n is the coe!cient matrix

• x → Rn is the column vector of unknowns

• b → Rm is the column vector of constants

More explicitly, Equation (1.1.1) represents the system:




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









x1

x2
...
xn




=





b1
b2
...
bm




(1.1.2)

A vector x↑ → Rn is a solution to the linear system (1.1.1) if and only if Ax↑ = b.

Theorem 1.1.1. For a square matrix A → Rn→n, the linear system (1.1.1) has a unique solution
if and only if A is nonsingular (i.e., det(A) ↑= 0).
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1.1.2 Eigenvalue Problems

The second fundamental problem type we encounter is the eigenvalue problem:

Axn = ωnxn (1.1.3)

where:

• A → Rn→n is a square matrix

• ωn → C is called an eigenvalue of A

• xn → Cn \ {0} is the corresponding eigenvector

A scalar ωn and a nonzero vector xn form an eigenvalue-eigenvector pair of matrix A if they
satisfy Equation (1.1.3). The eigenvalue problem can be rewritten as:

(A↓ ωnI)xn = 0 (1.1.4)

where I is the n↔ n identity matrix. This leads to the characteristic equation:

det(A↓ ωI) = 0 (1.1.5)

Theorem 1.1.2. Every square matrix A → Rn→n has at least one complex eigenvalue. If A is real
and symmetric, all its eigenvalues are real.

1.2 Linear Systems: Circuits

Electrical circuits are classic examples where linear algebra is applied to solve practical physical
problems. By applying Kirchho”’s laws (voltage and current laws), we can set up systems of linear
equations that describe the behavior of circuits.

Kirchho”’s Voltage Law (KVL) states that the directed sum of the electrical potential di”er-
ences (voltage) around any closed network is zero. For instance, in a loop containing a voltage
source and several resistors where di”erent currents may flow through di”erent parts of the circuit:

V = I1R1 + I2R2 + · · ·+ InRn (1.2.1)

where V is the voltage supplied by the source, Ik are the currents flowing through each part of the
circuit, and Rk are the corresponding resistances. The sign of each term depends on the chosen
direction of current flow relative to the direction in which we traverse the loop.

Kirchho”’s Current Law (KCL) states that the total current entering a junction must equal
the total current leaving the junction. This law is used to set up equations where the sum of
currents entering and exiting a node is zero:

n∑

k=1

Ik = 0 (1.2.2)



1.2. LINEAR SYSTEMS: CIRCUITS 13

where Ik represents the current through the k-th component connected to the junction, with
appropriate signs (+ for entering, - for leaving).

For complex circuits with multiple loops and junctions, we combine both KVL and KCL
equations into a single matrix equation:





a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
b11 b12 · · · b1n









I1
I2
...
In




=





V1

V2
...
0




(1.2.3)

or more compactly as:
AI = b (1.2.4)

where A is the coe!cient matrix containing terms from both resistance laws and current laws,
I is the vector of unknown currents, and b is the right-hand side vector containing both voltage
values (from KVL equations) and zeros (from KCL equations). The elements aij in the upper part
of matrix A come from voltage laws and contain resistance values with appropriate signs, while
the elements bij in the lower part come from current laws and contain only 1’s and -1’s depending
on current direction conventions.

1.2.1 Example: A Parallel-Series Circuit

Consider the following circuit with parallel resistors:

Figure 1.2.1: A simple circuit with parallel resistors

In this circuit:

• One voltage source V
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• Five resistors R1 through R5

• R2, R3, and R4 form a parallel network

• R1 and R5 are in series with the parallel network

• Five currents I1 through I5 to be determined

Applying Kirchho”’s voltage law to the three possible paths from voltage source to ground yields:

V ↓ I1R1 ↓ I2R2 ↓ I5R5 = 0 (1.2.5)

V ↓ I1R1 ↓ I3R3 ↓ I5R5 = 0 (1.2.6)

V ↓ I1R1 ↓ I4R4 ↓ I5R5 = 0 (1.2.7)

From the conservation of current, we know that all current that leaves the voltage source must
eventually flow into ground:

I5 = I1 (1.2.8)

Additionally, the current leaving the voltage source must split between the three parallel paths:

I1 = I2 + I3 + I4 (1.2.9)

Substituting I5 = I1 and rearranging the equations, we obtain:

I1(R1 +R5) + I2R2 = V (1.2.10)

I1(R1 +R5) + I3R3 = V (1.2.11)

I1(R1 +R5) + I4R4 = V (1.2.12)

I1 ↓ I2 ↓ I3 ↓ I4 = 0 (1.2.13)

This system can be written in matrix form Ax = b:





R1 +R5 R2 0 0
R1 +R5 0 R3 0
R1 +R5 0 0 R4

1 ↓1 ↓1 ↓1









I1
I2
I3
I4



 =





V
V
V
0



 (1.2.14)

1.3 Linear Systems: Data Fitting

Data fitting is an indispensable tool in both theoretical and experimental physics. It involves
modeling the relationship between variables in a dataset to extrapolate or interpolate information.
Consider a set of experimental data points (xi, yi) for i = 1, 2, ...,m. We want to model the
relationship using a linear combination of basis functions:
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y ↗
n∑

j=1

εjϑj(x) (1.3.1)

Here, ϑj(x) are the chosen basis functions, and εj are the coe!cients to be determined. The
choice of basis functions depends on the context, we will see some examples later.

The general fitting problem can be expressed in matrix form:

y = Xω + ε (1.3.2)

where y is the m↔ 1 vector of observed values, ω is the n↔ 1 vector of coe!cients, and ε is the
m↔ 1 vector of residuals.

The so-called “design matrix” X is constructed using our chosen basis functions evaluated on
the dataset:

X =





ϑ1(x1) ϑ2(x1) · · · ϑn(x1)
ϑ1(x2) ϑ2(x2) · · · ϑn(x2)

...
...

. . .
...

ϑ1(xm) ϑ2(xm) · · · ϑn(xm)




, (1.3.3)

thus

Xij = ϑj(xi)

1.3.1 Solving the Generalized Least Squares Problem

Our objective is to minimize the sum of squared residuals:

S = ↘ε↘2 = ↘y ↓Xω↘2 =
m∑

i=1

(
yi ↓

n∑

j=1

εjϑj(xi)

)2

(1.3.4)

By taking the partial derivatives of S with respect to each εj and setting them to zero:

ϖS

ϖεk
= ↓2

m∑

i=1

(
yi ↓

n∑

j=1

εjϑj(xi)

)
ϑk(xi) = 0, (1.3.5)

we arrive at the normal equations
∑

ij

εjϑj(xi)ϑk(xi) =
∑

i

yiϑk(xi) (1.3.6)

∑

ij

ϑk(xi)ϑj(xi)εj =
∑

i

ϑk(xi)yi (1.3.7)

∑

ij

XikXijεj =
∑

i

Xikyi, (1.3.8)
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which can be written in compact form as:

XTXω = XTy (1.3.9)

The solution, assumingXTX is non-singular, is given by the solution of the following linear system:

ω = (XTX)↓1XTy (1.3.10)

1.3.2 Common Basis Function Applications

Polynomial Fitting: For a quadratic model y = ε1 + ε2x+ ε3x2, the
basis functions are ϑ1(x) = 1, ϑ2(x) = x, and ϑ3(x) = x2.
The design matrix becomes:

X =





1 x1 x2
1

1 x2 x2
2

...
...

...
1 xm x2

m




. (1.3.11)

Fourier Series: For periodic data, we might use ϑ1(x) = 1,
ϑ2k(x) = sin(kx), and ϑ2k+1(x) = cos(kx) for k = 1, 2, ....
This is particularly useful for analyzing oscillatory phenomena in physics.

Damped Oscillation: For a damped oscillation, we might use a model:

y = ϱ0 + ϱ1e
↓ω2x sin(ϱ3x) (1.3.12)

This is non-linear in ϱ2 and ϱ3, but we can linearize it by choosing:

ϑ1(x) = 1, ϑ2(x) = e↓εx sin(ςx), ϑ3(x) = e↓εx cos(ςx) (1.3.13)

for fixed ω and ς. We can then solve the linear least squares problem for ε1, ε2,
and ε3, and iterate over di”erent values of ω and ς to find the best fit.
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1.4 Eigenvalue Problem: Harmonic Oscillations

Harmonic oscillations are crucial in understanding the dynamics of many physical systems. They
o”er a fundamental insight into how systems revert to equilibrium when displaced. Let’s explore
the dynamics of such systems in the context of springs and masses, commonly used as models in
physics to illustrate basic and complex concepts in mechanics.

Consider a simple system composed of several masses connected by springs in a one-dimensional
array. Each mass is connected to its neighbors by springs, and possibly to fixed points at the
boundary, depending on the system configuration (e.g., fixed-fixed, free-free, fixed-free).

The system can be described using Newton’s second law. For a mass mi connected to two
neighbors by springs with spring constant k, the equation of motion is given by Hooke’s law:

miẍi = k(xi+1 ↓ xi) + k(xi↓1 ↓ xi), (1.4.1)

where ẍi is the acceleration of mass i, and xi, xi+1, and xi↓1 are the displacements of mass i and
its immediate neighbors from their equilibrium positions.

These equations for an array of masses can be compactly represented in matrix form. For
simplicity, let us assume that all masses are identical, thus mi = m. Now, defining x =
(x1, x2, . . . , xN)T as the displacement vector, the system of equations can be written as:

mẍ = ↓Kx, (1.4.2)

where K is also called the sti”ness matrix.
For a system with N masses and fixed ends, the sti”ness matrix K takes the form:

K = k





2 ↓1 0 · · · 0
↓1 2 ↓1 · · · 0
0 ↓1 2 · · · 0
...

...
...

. . .
...

0 0 0 ↓1 2




(1.4.3)

This tridiagonal matrix encodes the coupling between adjacent masses. The diagonal elements
(2k) represent the restoring force on each mass due to its displacement, while the o”-diagonal
elements (-k) represent the coupling forces between neighboring masses.

m1 m2 m3

k k k k

x1 x2 x3

Figure 1.4.1: A system of three masses connected by springs with fixed ends. Each mass can move
horizontally, and its displacement is measured relative to its equilibrium position.
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The system shown in Figure 1.4.1 illustrates the physical setup of our mathematical model.
Each mass can move horizontally along the x-axis, and the springs provide restoring forces ac-
cording to Hooke’s law. The displacements x1, x2, and x3 are measured relative to the equilibrium
positions of the masses.

1.4.1 Natural Frequencies and Modes

The solution to the motion of this system involves finding the natural frequencies and mode shapes,
which are characterized by the eigenvalues and eigenvectors of the system matrix. Transforming
the system into a standard eigenvalue problem, we consider harmonic solutions of the form

xn(t) = vne
iϑnt, (1.4.4)

leading to:
(K↓ ς2

nm)vn = 0. (1.4.5)

We therefore see that all eigenvectors vn of the sti”ness matrix K are a valid solution, since the
equation above is completely equivalent to an eigenvalue problem with eigenvalues ωn = ς2

nm:

Kvn =
(
ς2
nm

)
vn. (1.4.6)

For the fixed-ends case, the eigenvalues and eigenvectors have analytical expressions:

ς2
n =

4k

m
sin2

(
nφ

2(N + 1)

)
, n = 1, 2, . . . , N (1.4.7)

vn(j) = sin

(
njφ

N + 1

)
, j = 1, 2, . . . , N (1.4.8)

These normal modes form a complete orthogonal basis for describing any motion of the system.
The general solution for the motion can be written as a superposition of these modes:

x(t) =
N∑

n=1

vn(an cos(ςnt) + bn sin(ςnt)) (1.4.9)

where An and ϑn are determined by the initial conditions. Each mode represents a particular
pattern of oscillation where all masses move with the same frequency but with di”erent amplitudes
given by the components of the eigenvector vn.

1.4.2 Proof of General Solution

Let’s derive the general solution of our system. We’ll see that while it naturally arises in terms of
both sines and cosines, it can be rewritten in a more compact form using just cosines with phase
shifts.
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x

y

First Mode (n = 1)

x

y

Second Mode (n = 2)

x

y

Third Mode (n = 3)

Figure 1.4.2: First three normal modes of the string with fixed ends. Black dots represent the
masses, and the continuous curves show the mode shapes.

First, let’s write the most general form of the solution:

x(t) =
N∑

n=1

vn(an cos(ςnt) + bn sin(ςnt)) (1.4.10)

This can be rewritten using the trigonometric identity for the cosine of a sum:

a cos(t) + b sin(t) = A cos(t+ ϑ) (1.4.11)

where
A =

≃
a2 + b2, ϑ = arctan(b/a) (1.4.12)

Therefore, our solution can be expressed as:

x(t) =
N∑

n=1

Anvn cos(ςnt+ ϑn) (1.4.13)

Let’s prove this is indeed the general solution. First, recall that for a system with N degrees
of freedom, the symmetric matrix K has N linearly independent eigenvectors {vn} that form a
complete basis. Due to this completeness property, any initial displacement x(0) and velocity ẋ(0)
can be expressed as linear combinations of these eigenvectors:

x(0) =
N∑

n=1

cnvn (1.4.14)
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ẋ(0) =
N∑

n=1

dnvn (1.4.15)

For each eigenvector vn, we have:
Kvn = ς2

nMvn (1.4.16)

Given these properties, we can propose a general solution of the form:

x(t) =
N∑

n=1

vn(an cos(ςnt) + bn sin(ςnt)) (1.4.17)

This solution satisfies the original di”erential equation because each term individually satisfies it:

Mẍ+Kx =
N∑

n=1

[↓ς2
nMvn(an cos(ςnt)+bn sin(ςnt))+Kvn(an cos(ςnt)+bn sin(ςnt))] = 0 (1.4.18)

The coe!cients an and bn can be determined from the initial conditions. For a given set of initial
conditions x(0) and ẋ(0), we have:

an =
vT
nMx(0)

vT
nMvn

, bn =
vT
nMẋ(0)

ςnvT
nMvn

(1.4.19)


