
Chapter 11

Monte Carlo Integration

High–dimensional integrals appear everywhere in theoretical physics. One clear example where
high-dimensional integrals are needed is the case of Statistical Mechanics. In that case, the classical
partition function

Z =

Z
e��H(p,q)dpdq

already sits in a 6N–dimensional phase space for N particles.
When the dimensionality of integrals d is large, deterministic quadrature collapses because,

as we show below, the number of function evaluations needed scales exponentially with d, soon
becoming impractical for computers. Monte Carlo (MC) methods instead replace the grid by N
random points; as we will show, the approximation error (the root–mean–square error) is O(N�1/2)
and—most importantly—independent of d. That dimensional immunity makes MC essential once
d & 5.

11.1 Reference Integral

For any of the applications mentioned above, we can—without loss of generality—focus on eval-
uating the integral

I =

Z

[0,1]d
f(x) dx, x = (x1, . . . , xd), (11.1.1)

because more complicated domains can be mapped onto the unit cube by elementary transforma-
tions. We give below a few specific examples of such transformations.

11.1.1 Finite but non-unit intervals

For a one dimensional integral, a general finite integration interval in [a, b] is reduced by the a�ne
map u = (x�a)/(b�a) 2 [0, 1] to belong in the unit region as defined above. With dx = (b�a) du
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98 CHAPTER 11. MONTE CARLO INTEGRATION

we obtain Z b

a

g(x) dx = (b� a)

Z 1

0

g
�
a+ (b� a)u

�
du.

For a box
Qd

k=1[ak, bk] apply the same map on each coordinate:

xk = ak + (bk � ak)uk, uk 2 [0, 1].

The Jacobian is
Q

k(bk � ak), so

Z

Q
[ak,bk]

f(x) dx =
h dY

k=1

(bk � ak)
i Z

[0,1]d
f
�
a+Bu

�
du,

with B = diag(b1 � a1, . . . , bd � ad). We have thus reduced a general integral with finite intervals
to the form presented in Eq. (11.1.1).

11.1.2 Unbounded domains

Consider a one-dimensional integral
R1
0 g(x) dx. The substitution u = x

1+x 2 [0, 1) gives x =
u/(1� u) and dx = du (1� u)�2:

Z 1

0

g(x) dx =

Z 1

0

g
⇣

u
1�u

⌘ du

(1� u)2
.

The multi-dimensional analogue applies the map independently on each infinite axis. Other
choices—tanh�1, arctan—are equally valid; all produce a finite-volume Jacobian.

11.2 Tensor–Product Grids

The simplest approach to numerical integration is to divide the integration interval into an equis-
paced grid. In higher dimension, this means that each axis is divided into n subintervals of length
h = 1/n. Each axis has n+1 nodes, thus the total number of grid points is Ngrid = (n+ 1)d ⇡ h�d.

Given the grid, one can apply any integration rule of choice. For example, it is possible to
apply a p-th order Newton–Cotes rule along every axis:

Ih =
X

j

wj f(xj), xj = (j1h, . . . , jdh). (11.2.1)

Deterministic error

If all mixed partials of order p are continuous, |I � Ih|  Chp. Choosing h ⇣ "1/p gives cost
Ngrid ⇣ "�d/p — exponential in d.

Given the exponential cost of this approach, we seek now an alternative way, based instead on
randomly choosing the grid points.
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11.3 Integral as Expectation

Select a probability density p(x) > 0 on the cube with
R
[0,1]d p(x) dx = 1. Writing 1 = p(x)/p(x)

under the integral converts the deterministic problem of integrating f into the statistical problem
of averaging a random variable:

I =

Z

[0,1]d

f(x)

p(x)
p(x) dx = EX⇠p[Y (X)], Y (X) =

f(X)

p(X)
. (11.3.1)

Here EX⇠p[Y (X)] denotes the expected value of the random variable Y over the probability dis-
tribution p(X). The freedom to choose p lets us steer sampling e↵ort toward regions where f is
most influential.

11.4 Monte Carlo Estimator

Draw N independent samples X1, . . . ,XN ⇠ p and define

ÎN =
1

N

NX

i=1

Yi , Yi =
f(Xi)

p(Xi)
. (11.4.1)

Unbiasedness. Because each Yi has mean

E[Yi] =

Z

[0,1]d

f(x)

p(x)
p(x) dx = I,

linearity of expectation gives

E[ÎN ] =
1

N

NX

i=1

E[Yi] = I.

Why averaging cuts noise. For independent, identically distributed (IID) variables, variances
add. Hence

Var(ÎN) = Var
⇣ 1

N

NX

i=1

Yi

⌘
=

1

N2

NX

i=1

Var(Yi) =
Var(Y )

N
.

The factor 1/N is the statistical reward for averaging N copies.

Variance formula & root-mean-square (RMS) error

Var(ÎN) =
1

N

⇣Z

[0,1]d

f(x)2

p(x)
dx� I2

⌘
=) RMS error =

�
p
N
, �2 = Var(Y ).
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The prefactor � measures the intrinsic roughness of the weighted integrand f/p; choosing a
better sampling density p means shrinking � before the N�1/2 law goes to work.

Central Limit Theorem (CLT) and error bars. If �2 < 1 then

p

N (ÎN � I)
D
�! N (0, �2),

i.e. the scaled error becomes Gaussian for largeN . The CLT therefore turns a qualitative statement
(“errors decay like N�1/2”) into a quantitative tool for stopping rules and uncertainty quantifica-
tion. A practical consequence is, for example, that if we can establish the result of the integral
with a 95 % confidence interval

I 2
⇥
ÎN ± 1.96 b�/

p

N
⇤
,

where b� is the sample standard deviation of the weights Yi. Other confidence intervals can be
chosen depending on the accuracy one seeks.

11.5 Choice of the distribution and Importance Sampling

The simplest choice is the uniform density

p(x) ⌘ 1, x 2 [0, 1]d.

Every Monte-Carlo sample is then a point X ⇠ U([0, 1]d) drawn with equal probability anywhere
in the cube, and each weight reduces to a bare function evaluation:

Y =
f(X)

p(X)
= f(X).

Explicit variance computation. With p = 1 the variance of a single weight is

�2 = VarU(f) = EU

⇥
f(X)2

⇤
�

⇣
EU

⇥
f(X)

⇤⌘2

(11.5.1)

=

Z

[0,1]d
f(x)2 dx �

�
I
�2
, (11.5.2)

so the Monte-Carlo estimator satisfies

Var
�
ÎN

�
=

�2

N
=

1

N

⇣Z

[0,1]d
f(x)2 dx� I2

⌘
.
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When is uniform sampling good?

• Smooth, slowly varying integrands. If f is nearly flat, the di↵erence
R
f 2

� I2 is small, so
uniform MC works fine.

• Diagnostics are easy. No need to evaluate p(x); each sample costs a single call to f .

When is uniform sampling bad?

• Sharp peaks or heavy tails. If f(x) is large only on a tiny fraction of the cube, most samples
contribute almost nothing, inflating �2.

• Oscillatory integrands. Alternating signs lead to severe cancellation, so the numerator in
(11.5.2) can be huge even though the integral I is modest.

These shortcomings motivate importance sampling, where a carefully chosen density p(x) places
samples precisely where f has the largest e↵ect—shrinking both �2 and the overall error bar.

Reducing the variance prefactor is the main leverage to speed up convergence, which brings
us to importance sampling. Goal: choose p to shrink the integral in the variance formula.
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Optimal density p⇤

We minimise

J [p] =

Z

[0,1]d

f(x)2

p(x)
dx

subject to the constraint
R
[0,1]d p(x) dx = 1. Introduce a Lagrange multiplier � and form

L[p] = J [p]� �
⇣Z

p� 1
⌘
.

Take the functional derivative and set it to zero:

�L

�p
= �

f(x)2

p(x)2
� � = 0 =) p(x) =

|f(x)|
p
�

.

Enforce normalisation to determine
p
�:

p

� =

Z

[0,1]d
|f(u)| du.

Hence the variance-minimising importance density is

p⇤(x) =
|f(x)|Z

[0,1]d
|f(u)| du

.

With p⇤ every weight Y has constant magnitude, and Var(ÎN) achieves its minimum.

In practice working with the optimal importance sampling distribution is not possible, and we
approximate p⇤ with a tractable family, sample, weight, average, and quote the CLT error bar.

11.6 Example: Estimating ⇡ via a Finite Integral

We can estimate ⇡ by evaluating the following integral, which has an analytical result:

Z 1

0

x4(1� x)4

1 + x2
dx =

22

7
� ⇡. (11.6.1)

Defining

I =

Z 1

0

x4(1� x)4

1 + x2
dx, (11.6.2)
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we can recover an estimate for ⇡ as:

⇡ =
22

7
� I. (11.6.3)

11.6.1 Simple Monte Carlo for the ⇡ Integral

The process for the Monte Carlo estimation is:

1. Generate N random samples xi ⇠ U(0, 1).

2. Compute:

I ⇡
1

N

NX

i=1

x4
i (1� xi)4

1 + x2
i

. (11.6.4)

3. Estimate ⇡ by:

⇡ ⇡
22

7
� I. (11.6.5)

11.6.2 Importance Sampling with a Gaussian Proposal

When the integrand is sharply peaked within the integration interval, importance sampling can
reduce the variance further. For instance, choosing a Gaussian sampling distribution centered at
µ = 0.5 with standard deviation � = 0.2:

p(x) =
1

�
p
2⇡

exp

✓
�
(x� 0.5)2

2�2

◆
, (11.6.6)

we modify our estimator as follows:

1. Generate N samples xi from the Gaussian distribution p(x).

2. Compute the estimate, including the indicator function 1[0,1](xi) to restrict samples to the
integration interval:

I ⇡
1

N

NX

i=1

x4
i (1� xi)4

1 + x2
i

·
1

p(xi)
1[0,1](xi). (11.6.7)

3. Then, estimate ⇡ by:

⇡ ⇡
22

7
� I. (11.6.8)
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Figure 11.6.1: Visualization of the integrand (blue solid line) along with the Gaussian sampling
distribution (red dashed line) used for importance sampling.



Chapter 12

Markov Chains

Markov chains, named after the mathematician Andrey Markov, provide a mathematical frame-
work for modelling systems that hop randomly between a collection of states. They will be instru-
mental later on when we devise general algorithms—such as Metropolis–Hastings—to draw rep-
resentative configurations from a high-dimensional probability distribution P (x). Markov chains
provide a general mathematical framework for modeling systems that transition between di↵erent
states over time, where the future state depends only on the current state and not on the past
history.

12.1 State space: labels and examples

We shall work with a (physical, or not) system described by some state variable X 2 S, where S
is a finite state space,

S = {1, 2, . . . ,m}. m 2 N, (12.1.1)

Each element is merely a label for a possible configuration of the system. In general, the choice
of labels is arbitrary: our notation favours integers because it makes matrix expressions compact.
Whenever helpful for intuition, we will write the corresponding verbal description in parentheses.

Besides the state of the system, we further introduce a collection (a sequence, in fact) of states.
We denote this sequence of states X0, X1, X2 . . . . We assume that the system has some intrinsic
probabilistic dynamics, meaning that it transits from a state Xn�1 to its subsequent state Xn via
a random process.

Example: Weather A canonical three-state model for daily weather would use

S = {1, 2, 3}, 1 = Sunny, 2 = Cloudy, 3 = Rainy.

Thus, in this notation, X = 1 means that the weather is sunny, and so on. The sequence of states
Xn here could specify, for example, the weather at a given day n. For instance, X5 = 3 indicates
that it is rainy on day 5.
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Example: Coin-toss Consider a biased coin that shows Heads (H) with probability p and Tails
(T) with probability 1� p. We label:

S = {1, 2}, 1 = H, 2 = T.

If the coin is tossed once per second, then in this case the sequence Xn is simply the outcome of
the nth toss.

12.2 Definition: the Markov property

A sequence of random variables {Xn}n�0 with values in S is called a time-homogeneous Markov

chain if, for every k � 0 and any states X0, . . . , X1, Xk+1 2 S,

Pr
�
Xk+1 | Xk, . . . , X0

�
= Pr

�
Xk+1 | Xk

�
. (12.2.1)

In words: once we know the current state, all information about previous states is irrelevant for

predicting the next one. This “memoryless” feature distinguishes Markov chains from general
stochastic processes.

Key consequences of (12.2.1):

• Discrete time. Evolution occurs at integer steps n = 0, 1, 2, . . . .

• Memorylessness. The future state Xn+1 depends probabilistically only on Xn, it is instead
independent of X0, . . . , Xn�1.

• Time-homogeneity. The transition mechanism does not depend explicitly on n; we use
the same rule at each step.

12.3 Transition probabilities and matrix

For any pair of states i, j 2 S, define the one-step transition probability

Tij = Pr
�
Xn+1 = j | Xn = i

�
, (12.3.1)

which by time-homogeneity is independent of n. Collecting these into an m⇥m array yields the
transition matrix

T̂ ⌘
�
Tij

�m
i,j=1

, (12.3.2)

where the ith row lists the probabilities of leaving state i.
The transition matrix T̂ is therefore an m ⇥m matrix where each element Tij represents the

probability of transitioning from state i to state j:
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T =

0

BBB@

T11 T12 · · · T1m

T21 T22 · · · T2m
...

...
. . .

...
Tm1 Tm2 · · · Tmm

1

CCCA
(12.3.3)

Properties of the transition matrix:

• All elements are non-negative: Tij � 0 for all i, j

• Each row sums to 1:
Pm

j=1 Tij = 1 for all i

• The (i, j)-th entry of T n gives the probability of going from state i to state j in exactly n
steps

12.4 Classification of States

States in a Markov chain can be classified based on their long-term behavior:

• Recurrent State: A state i is recurrent if, starting from i, the probability of eventually
returning to i is 1.

• Transient State: A state i is transient if, starting from i, there is a non-zero probability
that the chain will never return to i.

• Absorbing State: A state i is absorbing if, once entered, it is impossible to leave (i.e.,
Tii = 1).

• Periodic State: A state i has period d > 1 if d is the greatest common divisor of all n > 0
such that T n

ii > 0.

• Aperiodic State: A state is aperiodic if its period is 1.

12.5 Ergodicity and Limiting Behavior

A Markov chain is said to be ergodic if it is both irreducible (it is possible to get from any state to
any other state in a finite number of steps) and aperiodic. Ergodic Markov chains have a unique
stationary distribution, which we will discuss in more detail later.

The limiting behavior of a Markov chain as n ! 1 is of particular interest in many applica-
tions. For an ergodic Markov chain, the n-step transition probabilities converge to the stationary
distribution regardless of the initial state.
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12.6 Weather Model: A Simple Markov Chain Example

To illustrate the concepts of Markov chains, let’s consider a simple weather model. We’ll model
the weather as a Markov chain with three states: Sunny (S), Cloudy (C), and Rainy (R).

The transition probabilities are given as follows:

• If it’s sunny today:

– 70% chance of being sunny tomorrow

– 20% chance of being cloudy tomorrow

– 10% chance of being rainy tomorrow

• If it’s cloudy today:

– 30% chance of being sunny tomorrow

– 40% chance of being cloudy tomorrow

– 30% chance of being rainy tomorrow

• If it’s rainy today:

– 20% chance of being sunny tomorrow

– 30% chance of being cloudy tomorrow

– 50% chance of being rainy tomorrow

We can represent this Markov chain with the following transition matrix:

T =

0

@
0.7 0.2 0.1
0.3 0.4 0.3
0.2 0.3 0.5

1

A (12.6.1)

Where the rows represent the current state (S, C, R) and the columns represent the next state
(S, C, R).

Using this transition matrix, we can answer various questions about the weather model:

• What’s the probability of having three sunny days in a row?

P (SSS) = 0.7⇥ 0.7 = 0.49

• If it’s rainy today, what’s the probability of it being sunny two days from now?

P (S—R) = 0.2⇥ 0.7 + 0.3⇥ 0.3 + 0.5⇥ 0.2 = 0.31

• What’s the long-term probability of a sunny day? (This involves finding the stationary
distribution, which we’ll cover in the next Chapter)
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12.6.1 Graph Representation

A graph representation of this Markov chain can help visualize the states and transitions:

Sunny Cloudy

Rainy

0.7

0.2

0.1

0.3

0.4

0.30.2

0.3

0.5

Figure 12.6.1: Graph representation of the weather model Markov chain

In this graph:

• Each node represents a state (Sunny, Cloudy, or Rainy).

• Each edge represents a possible transition between states.

• The numbers on the edges represent the transition probabilities.

• Self-loops represent the probability of staying in the same state.

This visual representation makes it easy to see the possible state transitions and their associated
probabilities. For example, we can quickly see that the highest probability is to stay in the Sunny
state if it’s already sunny (0.7), while the lowest probability is transitioning from Sunny to Rainy
(0.1).
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Chapter 13

Stationary Distributions and Detailed
Balance

A cornerstone of Markov-chain theory is the stationary distribution, which captures the long-time
behavior of the chain irrespective of its initial state.

13.1 Definition

Let T 2 Rm⇥m be the transition matrix of a finite Markov chain with state space S = {1, 2, . . . ,m}.
We wish to characterize the probability distribution of finding, at long times, the system in a
given state i 2 S, namely the probability Pi = Pr

�
Xn!1 = i

�
. We arrange these probabilities in

a column-vector

P =

0

BB@

P1

P2

. . .
Pm

1

CCA Pi � 0,
mX

i=1

Pi = 1,

and we state that this is a stationary distribution (or equilibrium distribution) if and only if it
satisfies

TTP = P . (13.1.1)

In components,

Pi =
mX

j=1

Tji Pj, i = 1, . . . ,m, (13.1.2)

i.e. the probability flowing into state i balances the probability already present there.
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13.1.1 Properties of Stationary Distributions

1. Existence. Every finite Markov chain has at least one stationary distribution (Kakutani–
Markov–Kolmogorov theorem).

2. Uniqueness. If the chain is irreducible and aperiodic (ergodic), the stationary distribution
is unique and strictly positive.

3. Convergence. For an ergodic chain the distribution after k steps converges to P as k ! 1,
regardless of the initial distribution.

4. Spectral characterisation. P is a right eigenvector of TT (or a left eigenvector of T ) with
eigenvalue 1.

13.1.2 Computing a Stationary Distribution

Equation (13.1.1) is the homogeneous linear system

�
TT

� I
�
P = 0,

X

i

Pi = 1,

which can be solved analytically for very small m or numerically (power iteration, etc.) for larger
chains.

13.1.3 Example: Three-State Weather Model

For the weather transition matrix

T =

0

@
0.7 0.2 0.1
0.3 0.4 0.3
0.2 0.3 0.5

1

A , (Sunny, Cloudy, Rainy),

solve TTP = P and PS + PC + PR = 1 to obtain

P ⇡

0

@
0.4545

0.3182

0.2273

1

A ,

so in the long run roughly 45% of the days are Sunny, 32% Cloudy, and 23% Rainy.
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13.2 Detailed Balance

Directly solving (13.1.1) can be cumbersome for large or structured chains. A widely used su�-

cient
1 condition for stationarity is detailed balance (also called reversibility).

13.2.1 Definition

A distribution P and transition matrix T satisfy detailed balance if

Pi Tij = Pj Tji for all i, j 2 {1, . . . ,m}. (13.2.1)

Equation (13.2.1) states that, in equilibrium, the probability flow from state i to state j is exactly
cancelled by the reverse flow.

13.2.2 Detailed Balance Implies Stationarity

Theorem 13.2.1. If P satisfies (13.2.1) with T , then P is a stationary distribution; i.e. TTP =
P .

Proof. For a fixed state i,
�
TTP

�
i
=

mX

j=1

Tji Pj.

Apply (13.2.1) : TijPi = PjTji. Hence

mX

j=1

TjiPj =
mX

j=1

TijPi = Pi

mX

j=1

Tij.

Because T has the meaning of a transition probability, each row sums to unity,
Pm

j=1 Tij = 1, so
we obtain �

TTP
�
i
= Pi · 1 = Pi.

Since this holds for every i, we conclude TTP = P .

13.2.3 Example: Lazy Symmetric Random Walk on a Ring

Let m sites {0, 1, . . . ,m � 1} be arranged on a circle (indices modm). Define a “lazy” nearest-
neighbour walk by

Tij =

8
>><

>>:

1
2 , j = i,

1
4 , j ⌘ i± 1 (mod m),

0, otherwise.

1It is not necessary: there exist stationary, non-reversible chains.
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The idea of this transition probability is that at each step the walker can either stay where it is
(with probability 1/2) or go on its left or right, with probability 1/4, respectively. Since everything
is uniform (there is no privileged site in the ring) we will verify that the uniform distribution Pi =

1
m

for all i is stationary, i.e. TT P = P .

Verification. For each fixed i,

�
TTP

�
i
=

m�1X

j=0

Tji Pj =
1

m

⇥
Ti,i + Ti�1,i + Ti+1,i

⇤
=

1

m

⇣
1
2 +

1
4 +

1
4

⌘
=

1

m
= Pi.

Hence TTP = P , so P is indeed stationary.

Ergodicity. Irreducibility is immediate (every site can reach every other by steps of ±1), and
the “stay-put” probability 1/2 breaks the period to 1, making the chain aperiodic.
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Lazy symmetric random walk on a 12-site ring

Figure 13.2.1: Undirected edges denote T (i ! j) = T (j ! i) = 1/4; loops denote T (i ! i) = 1/2.



Chapter 14

The Metropolis-Hastings Algorithm

The key challenge that the Metropolis-Hastings algorithm addresses is sampling from complex
probability distributions, especially in high-dimensional spaces. This is particularly useful in
statistical mechanics, where we often need to sample from the Boltzmann distribution:

P (x) =
1

Z
e��E(x) (14.0.1)

where Z is the partition function, � = 1/(kBT ), and E(x) is the energy of state x. Here x
is typically a high dimensional variable collecting the degrees of freedom of our system. For
example, it can be a collection of positions for a system in continuous space, or a collection of spin
variables, for a discrete magnetic system. Because of this high dimensionality, direct sampling
from this distribution is often infeasible due to the unknown normalization constant Z. In fact,
the problem of computing Z is the central problem of Statistical Physics.

In the previous Chapter we saw how detailed balance guarantees that a distribution P is
stationary under a Markov transition. Here we develop the Metropolis–Hastings algorithm, which
constructs such a transition matrix explicitly so that one can sample from an arbitrary target
distribution. This is the heart of Markov Chain Monte Carlo (MCMC), bridging the gap between
pure Monte Carlo integration and Markov processes.

14.1 From Monte Carlo to Markov Chains

As discussed previously, Monte Carlo methods approximate integrals or expectations

EP [O] =
X

i2S

O(i)Pi

by drawing independent samples i(1), . . . , i(N)
⇠ P and computing

1

N

NX

k=1

O
�
i(k)

�
.
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However, when P is known only up to a normalization constant (as in statistical physics), direct
sampling is infeasible. The Metropolis–Hastings method cleverly uses a Markov chain whose
transitions depend only on ratios of Pi, thereby avoiding the unknown normalizing constant.
Once the chain equilibrates, its dependent samples can still be used for Monte Carlo estimates,
often far more e�ciently in high dimensions.

14.2 Notation and Goals

Let
S = {1, 2, . . . ,m}, P = (P1, . . . , Pm)

T, Pi � 0,
X

i

Pi = 1,

be the discrete target distribution. We choose any proposal matrix

Qij, Qij � 0,
X

j

Qij = 1,

that is easy to sample from (e.g. local moves on a lattice, flipping spins for the Ising model, etc.).
Our aim is to turn Q into a Markov transition matrix T satisfying detailed balance with respect
to P .

14.3 The Metropolis–Hastings Procedure

1. Initialize. Set X0 = i0 2 S arbitrarily.

2. For n = 0, 1, 2, . . . :

(a) Propose: draw j ⇠ Qi!j from the current state i = Xn.

(b) Compute acceptance:

↵ij = min
⇣
1,

Pj Qji

Pi Qij

⌘
.

This ratio involves only Pj/Pi, so any normalizing constant cancels.

(c) Accept or reject: draw u ⇠ Unif[0, 1] and set

Xn+1 =

(
j, u < ↵ij,

i, otherwise.

3. Repeat until the chain has mixed (“burn-in”) and thereafter collect samples {Xn}.

Thus each step consists of a cheap proposal plus an inexpensive accept/reject decision. Over time,
the chain concentrates on high-probability regions of P .



14.4. DETAILED BALANCE AND STATIONARITY 117

14.3.1 Resulting Transition Matrix and the Diagonal Entry

From the accept/reject rule in the algorithm one reads o↵ directly that, for j 6= i,

Tij = Pr{propose j | i} Pr{accept} = Qij ↵ij.

Thus Tij is simply the probability of proposing a jump i ! j and then accepting it.
The case j = i requires a bit more care: one can remain in state i either by proposing to stay

and accepting, or by proposing some other j 6= i and then rejecting. In full,

Tii = Qii ↵ii| {z }
proposal to stay

and accept

+
X

j 6=i

Qij (1� ↵ij)| {z }
proposal to j
and reject

.

By definition one has ↵ii = 1 (always accept a “proposal” to stay), so

Tii = Qii +
X

j 6=i

Qij (1� ↵ij) = 1 �

X

j 6=i

Qij ↵ij,

where in the last step we used
P

j Qij = 1.
Hence the compact definition for the transition matrix

Tij =

8
<

:
Qij ↵ij, j 6= i,

1�
P

k 6=i Qik ↵ik, j = i

automatically collects all ways to remain in i.

14.4 Detailed Balance and Stationarity

We verify that T satisfies detailed balance with respect to P , i.e.

Pi Tij = Pj Tji, 8 i, j 2 S.

Indeed, for i 6= j:

Pi Qij ↵ij = min
�
PiQij, PjQji

�
= Pj Qji ↵ji.

Hence T tP = P , making P the unique stationary distribution when the chain is irreducible and
aperiodic. This implies that the Metropolis-Hastings algorithm has as stationary distribution an
arbitrary distribution P , thus the resulting Markov Chain samples are distributed according to
P , which was our original goal.
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14.5 Choice of Proposal and Ergodicity

Symmetric proposals. If Qij = Qji (e.g. random walk proposals), then

↵ij = min
�
1, Pj

Pi

�

depends only on the ratio of target densities. This version of the algorithm is the one originally
published by Arianna Rosenbluth, Marshall Rosenbluth, Augusta Teller, and Edward Teller in
1953. It is historically known as the Metropolis algorithm. In 1970, Hastings extended the
original algorithm to the more general case of non-symmetric proposals.

Irreducibility and aperiodicity. To ensure that Xn converges in distribution to P , the chain
must be:

• Irreducible: every state reachable from every other in finitely many steps.

• Aperiodic: not confined to cycles (e.g. allow self-transitions by ensuring Tii > 0 or partial
rejection).

These conditions are typically met by common proposals (e.g. Gaussian or uniform jumps).

14.6 Averages and Estimating Error Bars

When using the Metropolis algorithm to sample from a probability distribution P (x), we often
want to estimate the expectation value of some observable O(x):

hOi =
X

x2S

O(x)P (x). (14.6.1)

The Metropolis algorithm allows us to estimate this expectation value by generating a Markov
chain of states {Xt} that converges to the desired distribution P (x). We then estimate hOi as:

Ō =
1

T

TX

t=1

O(Xt), (14.6.2)

where T is the total number of steps in the Markov chain (after discarding the burn-in period,
namely a few initial steps in which the Markov Chain has not reached a stationary state yet).

To estimate the error bars on Ō, we can use the method of independent Markov chains. This
approach is straightforward and avoids the complications of dealing with autocorrelations within
a single chain. Here’s how to proceed:

• Run Multiple Independent Chains:
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– Perform M independent Metropolis simulations, each starting from a di↵erent initial
state and using completely independent random numbers for the transition probabilities
and for the acceptance probabilities.

– For each chain i, calculate the average Ōi =
1
T

PT
t=1 O(X(i)

t ), where X(i)
t is the state at

step t in chain i.

• Calculate the Overall Average:

Ō =
1

M

MX

i=1

Ōi (14.6.3)

• Estimate the Standard Error of the Mean:

�Ō =

vuut 1

M(M � 1)

MX

i=1

(Ōi � Ō)2 (14.6.4)

• Report the Result:
hOi ⇡ Ō ± �Ō (14.6.5)

This method treats each chain’s average as an independent estimate of hOi, which is valid if the
chains are truly independent and have been run for a su�ciently long time to converge to the target
distribution ⇡(x). In this respect, one has to pay attention to the fact that the initial samples of
each chain may not be representative of the target distribution, especially if the starting point is
in a low-probability region. It’s common to discard an initial set of samples, known as the burn-in
period. The averages above are then compute on the subset of samples that exclude the burn-in
period.
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