
Physique Statistique PHYS 338
2024-2025

Série 3: Loi uniforme, et gaz parfait

* Exercise 1 Le gaz parfait

Part I — Une particule quantique dans une boîte
Une particule de masse m est confinée dans une enceinte cubique de dimension linéaire L et de

volume V = L3.

Q1. Donner les états propres du Hamiltonien ainsi que les énergies correspondantes.

Q2. Calculer l’énergie des 15 premiers niveaux d’énergie et donner leur dégénérescence Ω(E, V ).
À quelle propriété du système cette dégénérescence est-elle attribuable ? Comment Ω(E, V )
varie-t-elle avec E ?

On cherche à évaluer sommairement la façon dont le nombre de microétats Ω(E, V ) varie avec E et V .
Pour cela, on se place dans l’approximation des grands nombres quantiques, de telle façon que l’énergie
varie quasi continûment avec les nombres quantiques associés. On suppose donc que la fonction Ω(E, V )
est alors elle-même une fonction continue de E.

Q3. On considère tout d’abord le cas d’une particule dans une boîte à une dimension de taille L.
À partir de l’expression des niveaux d’énergie de la particule évaluer le nombre d’états Φ(E,L)
d’énergie inférieure ou égale à E. En déduire l’expression de la densité ω(E,L) d’états compris
entre les énergies E et E + δE avec δE ≪ E, ainsi que Ω(E,L). Retrouver ce résultat par un
calcul classique.

Q4. Obtenir la densité d’états ω(E,L) en deux puis en trois dimensions quantiquement et classique-
ment.

Q5. Calculer le nombre de microétats accessibles pour un atome d’argon de masse molaire M = 40
g.mol−1 d’énergie comprise entre E et E + δE, où E = 6 10−21 J et δE = 10−31 J, dans un
volume d’un litre.

Part II — Le gaz parfait quantique
L’enceinte contient N particules sans interaction et supposées discernables. Malgré cette hy-

pothèse nous allons étudier ce système dans le cadre de la mécanique quantique.

Q1. Montrer que ce gaz parfait est équivalent à une particule évoluant dans un espace à 3N dimen-
sions. Calculer Φ(E, V,N) et ω(E, V,N) en vous inspirant de la question 2-4.

Part III — Le gaz parfait classique
Le gaz parfait de N particules de masse m est traité dans l’approximation classique.

Q1. Écrire le Hamiltonien du système.

Q2. Exprimer Φ(E, V,N) comme une intégrale dans l’espace des phases et interpréter géométrique-
ment l’intégrale sur les impulsions. En déduire Φ(E, V,N) et ω(E, V,N).
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* Exercise 2 Dynamique dans l’espace des phases

Une balle de masse m est lâchée sans vitesse initiale d’une hauteur h.

Q1. Donner le Hamiltonien de ce système. Écrire et intégrer les équations de Hamilton.

Q2. En supposant que la balle rebondit élastiquement sur le sol, dessiner le portrait de phase corre-
spondant (trajectoire dans l’espace des phases).

Des particules identiques, de masse m et sans interactions entre elles, se déplacent verticalement dans le
champ de pesanteur g. À t = 0 leurs points représentatifs dans l’espace des phases se trouvent dans un
rectangle dont les quatre sommets ont pour coordonnées A(qA, pA), B(qA+∆q, pA), C(qA+∆q, pA+∆p)
et D(qA, pA +∆p).

Q3. Calculer les coordonnées des points A′, B′ et C ′ et D′ représentant, à l’instant t, les particules
qui se trouvaient initialement aux points A, B, C et D. Calculer les aires des domaines ABCD
et A′B′C ′D′. Conclusion ?

* Exercise 3 Particules discernables et indiscernables

Considérons un système quantique de N particules. À chaque niveau d’énergie Ei est associé
un nombre d’états quantiques gi (dégénérescence). Un état macroscopique d’énergie E est défini par
l’ensemble des nombres Ni de particules dans chaque niveau d’énergie Ei pour i = 1, 2, . . . , r. On a
donc:

E =

r∑
i=1

NiEi , et N =

r∑
i=1

Ni . (41)

Q1. Montrer que le nombre Ω(E,N) de microetats associes a cette répartition {Ni}ri=1 peut se
décomposer sous la forme suivante

Ω(E,N) = Ω0

r∏
i=1

Ωi, (42)

ou Ω0 est le nombre de façons de repartir les N particules sur r niveaux d’énergies et Ωi le nombre
de facons de distribuer les Ni particules du niveau d’énergie Ei parmi les gi états quantiques.

Part I — Particules discernables
Supposons les N particules discernables (elles sont, par exemple, numérotées de 1 a N).

Q1. Calculer Ω0 et Ωi dans le cas ou un nombre quelconque de particules peut être dans un mémé
état quantique. En déduire Ω(E,N) en fonction des Ni et des gi pour i = 1, 2, ..., r.

Part II — Particules indiscernables
Supposons a présent les N particules indiscernables.

Q1. Quelle est maintenant la valeur de Ω0 ?

Q2. (Les bosons) Calculer Ωi dans le cas ou un nombre quelconque de particules peut etre dans
un meme etat quantique. En deduire Ω(E,N) et son expression dans la limite Ni ≪ gi (faible
densite de particules par niveau).

Q3. (Les fermions) Calculer Ωi dans le cas ou une particule au plus peut être dans un etat quantique
donne. On a alors la condition 0 ≤ Ni ≤ gi. En deduire Ω(E,N) et son expression dans la
limite des faibles densites de particules par niveau.
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