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Série 3: Loi uniforme, et gaz parfait

* Exercise 1 Le gaz parfait

Part I —  Une particule quantique dans une boite
Une particule de masse m est confinée dans une enceinte cubique de dimension linéaire L et de
volume V = L3,

Q1. Donner les états propres du Hamiltonien ainsi que les énergies correspondantes.

Q2. Calculer 'énergie des 15 premiers niveaux d’énergie et donner leur dégénérescence Q(E,V).
A quelle propriété du systéme cette dégénérescence est-elle attribuable ? Comment Q(FE, V)
varie-t-elle avec E 7

On cherche & évaluer sommairement la fagon dont le nombre de microétats Q(E, V') varie avec E et V.
Pour cela, on se place dans I’approximation des grands nombres quantiques, de telle fagon que I’énergie
varie quasi continiment avec les nombres quantiques associés. On suppose donc que la fonction Q(E, V)
est alors elle-méme une fonction continue de F.

Q3. On considére tout d’abord le cas d’une particule dans une boite & une dimension de taille L.
A partir de expression des niveaux d’énergie de la particule évaluer le nombre d’états ®(E,L)
d’énergie inférieure ou égale & E. En déduire I'expression de la densité w(F, L) d’états compris
entre les énergies F et E 4+ 0F avec 0E < FE, ainsi que Q(F, L). Retrouver ce résultat par un
calcul classique.

Q4. Obtenir la densité d’états w(F, L) en deux puis en trois dimensions quantiquement et classique-
ment.

Q5. Calculer le nombre de microétats accessibles pour un atome d’argon de masse molaire M = 40
g.mol~! d’énergie comprise entre E et £+ §E, ot E = 610721 J et 6E = 1073! J, dans un
volume d’un litre.

Part I —  Le gaz parfait quantique
L’enceinte contient N particules sans interaction et supposées discernables. Malgré cette hy-
pothése nous allons étudier ce systéme dans le cadre de la mécanique quantique.

Q1. Montrer que ce gaz parfait est équivalent & une particule évoluant dans un espace & 3N dimen-
sions. Calculer ®(E,V, N) et w(E,V, N) en vous inspirant de la question 2-4.

Part III —  Le gaz parfait classique
Le gaz parfait de IV particules de masse m est traité dans 'approximation classique.

Q1. Ecrire le Hamiltonien du systéme.

Q2. Exprimer ®(E,V, N) comme une intégrale dans l’espace des phases et interpréter géométrique-
ment l'intégrale sur les impulsions. En déduire ®(E,V, N) et w(E,V,N).



* Exercise 2 Dynamique dans ’espace des phases

Une balle de masse m est lachée sans vitesse initiale d’une hauteur h.
Q1. Donner le Hamiltonien de ce systéme. Ecrire et intégrer les équations de Hamilton.

Q2. En supposant que la balle rebondit élastiquement sur le sol, dessiner le portrait de phase corre-
spondant (trajectoire dans l'espace des phases).

Des particules identiques, de masse m et sans interactions entre elles, se déplacent verticalement dans le
champ de pesanteur g. A ¢t = 0 leurs points représentatifs dans I’espace des phases se trouvent dans un
rectangle dont les quatre sommets ont pour coordonnées A(qa,pa), B(qga+Aq,pa), C(qa+Aq, pa+Ap)
et D(qa, pa + Ap).

Q3. Calculer les coordonnées des points A’, B’ et C’ et D’ représentant, a I'instant ¢, les particules
qui se trouvaient initialement aux points A, B, C et D. Calculer les aires des domaines ABC D
et A’B'C'D’. Conclusion ?

* Exercise 3 Particules discernables et indiscernables

Considérons un systéme quantique de N particules. A chaque niveau d’énergie E; est associé
un nombre d’états quantiques g; (dégénérescence). Un état macroscopique d’énergie F est défini par

I’ensemble des nombres N; de particules dans chaque niveau d’énergie F; pour ¢ = 1,2,...,r. On a
donc:
T T
E=) N;Ej, et N=> N. (41)
i=1 i=1

Q1. Montrer que le nombre Q(E, N) de microetats associes a cette répartition {N;}I_, peut se
décomposer sous la forme suivante

QE,N) = Q H , (42)
=1

ou g est le nombre de fagons de repartir les N particules sur r niveaux d’énergies et {2; le nombre
de facons de distribuer les N; particules du niveau d’énergie F; parmi les g; états quantiques.

Part I —  Particules discernables
Supposons les N particules discernables (elles sont, par exemple, numérotées de 1 a N).

Q1. Calculer Qg et €; dans le cas ou un nombre quelconque de particules peut étre dans un mémé
état quantique. En déduire Q(E, N) en fonction des N; et des g; pour i = 1,2, ..., 7.

Part I —  Particules indiscernables
Supposons a présent les N particules indiscernables.

Q1. Quelle est maintenant la valeur de Qg 7

Q2. (Les bosons) Calculer Q; dans le cas ou un nombre quelconque de particules peut etre dans
un meme etat quantique. En deduire Q(FE, N) et son expression dans la limite N; < g; (faible
densite de particules par niveau).

Q3. (Les fermions) Calculer §2; dans le cas ou une particule au plus peut étre dans un etat quantique
donne. On a alors la condition 0 < N; < g;. En deduire Q(F, N) et son expression dans la
limite des faibles densites de particules par niveau.



