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9.1 Les limites du Champ Moyen

En reprenant le modele d’Ising, on a,
H=—> JSS; (9.1)
(4,4)

(1,7) signifie qu’on somme sur les 4, j voisins d’un réseau.

En dimension d = 1, le réseau est une ligne composée de spins. Cela peut également étre représenté par
une chaine, ce qui permet d’avoir des conditions périodiques aux limites et de simplifier les calculs.

En dimension d = 2, c’est un réseau en deux dimension que 'on peut également représenter par un tore
pour simplifier les calculs.

En dimension d = 3, c’est un réseau cubique qui devient plus dur a représenter en reliant les bords.

Pour les dimensions d supérieures, le réseau est un hyper-cube de dimension d.

Les conditions aux bords périodiques permettent de représenter les réseaux différemment permet
de simplifier les calculs en ne tenant pas compte des conditions aux limites. C’est tres utile si les
comportements aux bords ne nous intéressent pas.

Figure 9.1: Représentation torique d’un réseau d = 2 [1]
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En utilisant 'approximation champ moyen, on obtient une équation proche de la théorie de Curie-Weiss
pour la valeur moyenne de S;,

m = tanh (8(2Jmd + h)) (9.2)

Cette équation est utile, par exemple, pour représenter la magnétisation en fonction de la température

et trouver la température critique. Avec . = 21W et T, = Qk—‘;fi
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Figure 9.2: Magnétisation en fonction de la température [2]

9.1.1 Second ordre : Phénomenes critiques
En observant ce qu’il se passe proche du point critique, on remarque un probleme de la théorie du champ
moyen.

Prenons ’équation dans un champ nul (h = 0), on a,

= () o3

13

Proche du point critique, m est petit. On peut donc développer la tangente hyperbolique avec tanhz ~ x — %-,
3
m = ﬁm — <6) m3 (9.4)
Be Be

En simplifiant, on obtient,

()3

Le terme au cube est négligeable, ce sont des corrections de I’ordre T. Par contre, le premier terme est
intéressant, c’est lui qui est responsable de la pente proche du point critique car il est proche de 0. Il nous
permet de dire que,
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mtxwgc—lz\/i;c—lz\/Tc;T (9.6)

On a finalement que m o< v/T. — T'. Proche du point critique, m grandit avec une racine de la différence
de température.

9.1.1.1 Exposants critiques

Pour connaitre l'ordre d’évolution des phénomenes critique, on introduit les exposant critiques («, 3, v et

8).
Definition 9.1 (Ezposant critique [3)

Il représente le comportement de m proche du point critique dans un champ nul (h =0).

mx (T, — T)ﬁ (9.7)

En champ moyen, on a = 1/2.
Definition 9.2 (Ezposant critique )

Il représente le comportement de la susceptibilité x proche du point critique (T 2 T.).

X x(T—-T.)™" (9.8)
ot la susceptibilité est définie comme,
om
= 9.9
=, (9.9)

11 est possible de trouver y & partir de I’équation (9.2). On a,

m = tanh (gm + Bh) (9.10)

On ne peut pas dériver m par rapport a h directement de cette équation car elle est auto-consistante. Il
faut dériver par rapport a h chaque coté de I’équation et trouver I’égalité. On a,

x—(lmm<gyzuﬁf><éx+ﬂ) 0.11)

x=(1-m) (Sx+0) (9.12)

On se place a T > T, et h =0, on a donc m ~ 0.

x=bv+p (9.13)

(&)
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B 1 1 1
X = = = T = (9.14)
1-5 Ti1-% T-T.
On obtient donc qu’en champ moyen, x oc (T — T,)~! et I'exposant v = —1, ce qui correspond & la "Loi
de Curie’. Proche du point critique, la susceptibilité diverge.
En se rappelant que,
0 S? S
a%l x (37) = (5)? = Var(m) (9.15)

Ce qui voudrait dire que proche du point critique, la variance de la magnétisation est tres grande, ce
qui n’est pas cohérent. Proche du point critique, la théorie de champ moyen ne fonctionne donc pas car les
fluctuations sont trop grandes.

Definition 9.3 (Exposant critique 4)

1l représente le comportement de m au point critique en fonction de h ~ 0.

m o h# (9.16)

A partir de I’équation (9.2) et avec 8 = f3., on a,

h 3
m = tanh (m + 8h) = m + Bh — (7”*%) (9.17)
En ne gardant que les termes d’ordre 1 en h, on a,
m3
On trouve m o< h'/3 et 'exposant § = 3.
Definition 9.4 (Ezposant critique o)
Cet exposant critique est li€ a la chaleur spécifique par la relation suivante:
Cy x(T-T.)" ¢ (9.19)
Par définition de la chaleur spécifique:
Oe
Cy =— 9.20
= (9:20)
Or en champ moyen, pour h = 0, ’énergie est simplement donnée par: e = —%mQ. La Fig.9.3 présente cet

énergie libre en fonction de la magnétisation ainsi que sa dérivée.
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Figure 9.3: Energie et chaleur spécifique en fonction de la magnétisation m

On constate que la dérivée de I'énergie, i.e. la chaleur spécifique, fait un saut. Ce qui nous permet de
déterminer que a = 0 en champ moyen.

Nous avons calculé tous nos exposants critiques, mais quelles sont leur valeurs en réalité? Et pourquoi
ces exposants sont-ils si intéressants? A priori, ces exposants semblent étre spécifiques au modele, plutot
simple, étudié, et sans lien avec le monde physique. Cependant, il a été constaté que tous les systemes
de type transition de phases du second ordre sont toujours caractérisés par les mémes exposants. Et cela
indépendamment du systéme, de sa composition et de la forme du réseau (hexagonal, carré, ...). De plus, ces
exposants critiques ne dépendent que de deux choses: la dimension du probleme et la symétrie du probleme.

d=2 d=3 d=4
0 0.11009 0

1/8 | 0.326419 | 1/2

7/4 | 1.237075 1
15 4.78984 3

SOIESR Rev jo)

Table 9.1: Exposants critiques pour le modele d’Ising en différentes dimensions

En dimension d=1, contrairement & ce qu’il a été calculé en champ moyen (T, = 25—‘]), aucune transition
de phase n’a lieu. En dimension d = 2 et d = 3, d’apres le Tab.9.1, on trouve bien des exposants. Pour le
modele en 2D, la solution analytique a été établie par Lars Onsager. Pour le modele d’'Ising en 3D, bien qu’on
ne sache pas le résoudre, ni calculer la fonction de partition, plusieurs simulations peuvent étre effectuées,
permettant de mesurer ces exposants. On constate que les exposants du champ moyen ne sont pas du tout
correct en 2D ni en 3D, mais qu’on les retrouve en dimension 4. En réalité, pour toute dimension d > 4, les
exposants du champ moyen sont corrects. Cette dimension est appelée dimension critique supérieure.

Pour résumer, le probleme fondamental de la théorie du champ moyen est qu’en s’intéressant aux
phénomenes critiques, i.e proche du point critique, les exposants critiques sont faux.
Ces exposants ne dépendent que de (n,d) et sont universels, i.e. ils ne dépendent pas du matériau. Ils ne
sont donnés par le champ moyen qu’en dimension d > 4. On définit d comme la dimension du réseau et n
comme la dimension du spin. Pour le modele d’Ising, n = 1 avec spin s = £1; pour s = cos#, on est dans
un plan et n = 2. Et n = 3 avec le modele d’Heisenberg.

La généralisation du modele d'Ising, avec des spins de dimension n, est appelé le modele O(n).
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9.1.2 Transitions de premier ordre

Il a précédemment été établi, en section 8.4, que:

P(S =m) = e NAm) (9.21)

avec f(m) 1'énergie libre. Pour rappel, la transition de premier ordre est décrite par un changement de

minima, tel que:
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Figure 9.4: Transition de premier ordre et variation de 1’énergie libre en fonction de la magnétisation

Nous avons des phénomenes dits ”méta-stables” ou ”stables” avec un temps 7 o< eV?2S pour passer la
barriere d’énergie (cf 8.4.1 Métastabilité). En réalité, on observe 7 = €™ méme si ce temps est grand, mais
pas 7 = elVfini Les spinodales au sens strict n’existent pas en dimension finie: aucune barriere exponentielle

en N, ne peut coincer le systéme dans un état métastable.

Claim 1: Les "barrieres” d’énergie libre extensives n’existent pas en dimension finie.

Figure 9.5: Energie libre en dimension finie

Example 1 Reprenons le modéle d’Ising, pour T < T., on a vu que m(h) se comporte comme :
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Figure 9.6: Magnétisation m en fonction du champ h selon le modele d’Ising

La courbe bleue illustre le comportement du systéme lorsqu’un champ élevé h est initialement appliqué,
puis diminué progressivement, tandis que la courbe Touge représente le comportement observé lorsqu’un petit
champ h est appliqué et ensuite augmenté. Cependant, lors des manipulations expérimentales, on constate
que plus la durée de la manipulation est longue, plus le saut de magnétisation se produit prés de h = 0. Cela
met en évidence une dépendance compléte de la magnétisation m au temps t. Ces observations peuwvent étre
représentées schématiquement comme suit:

m(h)
m(h)

h ‘ h
((2)) ((b))

Figure 9.7: Illustration de la magnétisation m observée expérimentalement en fonction du champ h pour
différents temps de manipulation ¢; et pour (a) un champ croissant, (b) un champ décroissant
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Theorem 9.5 Théorie de la nucléation (”Correction au Champ Moyen”)

Considérons un systéeme dont l’énergie libre f(m) posséde deux minimas locaux séparés par une barriére
d’énergie libre. Définissons Af comme la différence d’énergie libre par spin entre ’état 1 et ’état 2.
Supposons que le systéme se trouve initialement dans 'état 1 et qu’une "goutte” (ou un noyau) de taille
L dans U’état 2 apparait au sein de ce systeme.

| -
‘ [ JEtat2

f(m)

¥ Minimum 2 |

je—>af |

((2)) ((b))

Figure 9.8: (a) Energie libre f en fonction de la magnétisation m, (b) ”goutte” ou noyau d’état 2 apparu
dans I'état 1.

La différence d’énergie libre une fois qu’un tel noyau a apparu est donnée par :

AF = -V L3 F +~S,L% 71, (9.22)
Gain Perte

ou Vy est le volume de la goutte en dimension d, et Sq sa surface.

Il est important de souligner que le modele de Curie-Weiss ne permet pas d’incorporer ce raisonnement
car il ne prend pas en compte les notions telles que le volume et la surface. En effet, ce modele repose
sur 'hypothese selon laquelle toutes les particules sont interconnectées, ce qui élimine la notion de bord.
Ce point illustre 'une des limitations fondamentales de I’approximation du champ moyen: la géométrie du
systeéme n’est pas prise en compte.

Lorsque le rayon de la goutte, L, est grand, le terme de grain prédomine sur le terme de perte.. Plus
précisément, la variation de 1’énergie libre, AF, suit le comportement suivant:



Lecture 9: Systémes en interaction en dimension finie 9-9

AF

Domaine ot la perte domine le gain
Domaine ot le gain domine la perte
———_ I* = argmaa{AF}
X max {AF}

Figure 9.9: Différence d’énergie libre AF en fonction du rayon de la goutte L

Ainsi, pour passer de ’état 1 a ’état 2, il suffit qu'une sous-partie suffisamment grande du systéme se
transforme en ’état 2 par fluctuation, ce qui permet & cette région de se développer et de finalement englober
tout le systeme. En dimension finie, les transitions de premier ordre sont toujours initiées par un phénomene
de nucléation.

Déterminons L*, défini comme le rayon ot AF est maximal. Alors L* annule la dérivée premiere :

OLAF(Ly) =0 = —VydLEV6F +4S4(d —1)LI2 =0 (9.23)
= VydLEV6F = ySy(d — 1)L97? <= V4dLSF = vS4(d — 1) (9.24)
% ’}/Sd d—1
L = —_— .2
— SEV, d (9.25)
La barriére d’énergie maximale a franchir est donnée par :
d d—1
AF} = AF(L*) = —V4F — — 2
max{AF) = AF(L") = Vi ( 2 4 ) + 754 ( 25 (9.26)
___0S)t (d-1\T (st A1\ 0.97
- d—1 d d—1 d (9.27)
(6FVa) (6FVa)
_ o SE (d-1\T d-1 (9.28)
5Fd71 Vddfl d d .
_ ’7d S(Uil (d — 1)d71 (9 29)
— d— .
6Fd 1 Vd 1 dd
d
o~
- A (9.30)
Et donc la Loi d’Arrhenius devient :
d
T x exp (BAF(L*)) = exp (5(51;111‘401)' (9.31)

On remarque qu’effectivement en grande dimension 7 peut étre tres grand, mais il n’a pas de dépendance en
N. On peut donc en conclure qu’il n’y a pas de ”saut” et donc qu’en dimension finie les ”barrieres” d’énergie
libre extensives n’existent pas.
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On en conclue qu'un systéeme peut étre métastable, mais pas stable. De plus, ce raisonnement permet de
résoudre un autre probleme associé a I’approximation du champ moyen, a savoir ’absence de transition de
phase en une dimension. En effet, on observe que non seulement les barrieres d’énergie ne sont pas extensives,
mais qu’en une dimension, il ne peut exister de barriere séparant deux états de méme énergie. Pour passer
d’une phase & une autre, en suivant la loi d’Arrhenius, le temps caractéristique nécessaire est donné par:

T oc P (9.32)

Sl 1—1 1-1 OO
(;Fll—l ( 11) = SlT =51, (9.33)

Ay =

qui est indépendant de 1’énergie libre. Par conséquent, en une dimension, une brisure d’ergodicité est
impossible. Néanmoins, dans des dimensions d > 1, une brisure d’ergodicité peut se produire si §F = 0.

Claim 2: Le temps caractéristique 7 est toujours fini en une dimension.

Dans la réalité, les transitions de premier ordre sont toujours inhomogenes et se déclenchent lorsqu’un
noyau suffisamment grand de la phase alternative émerge.

Example 2 FEtudions quelques exemples du phénomeéne de nucléation

1. Fau:

En refroidissant trés rapidement de l'eau, on obtient un liquide
surfondu, c’est-a-dire un systeme similaire a celui illustré en Fig-
ure 8(a). Dans ce cas, le systéme reste dans l’état 1, bien que [x &)
le véritable minimum de l’énergie libre corresponde a l’état 2.

1l est important de souligner que le systéme reste dans l’état 1
\g

en raison de la présence il d’une barriéere d’énergie, méme si
celle-ci n’est pas extensive, comme le montre Figure 9.10. Ces = \
barriéres étant trés petites, il est relativement facile d’exciter

le systéme de maniére a ce qu’il se transforme en solide. Ce \
phénomene est illustré dans la video suivante [3]. Lorsqu’on

frappe la bouteille, une petite quantité d’énergie est injectée locale-
ment dans le systéeme, permettant ainsi de franchir cette barriere

m

d’énergie a un endroit spécifique. Cela initie une nucléation, et Figure 9.10: Energie libre f en
une fois qu’un solide suffisamment grand s’est formé, il envahit fonction de la magnétisation m
le reste du liquide, transformant progressivement tout le systéme

en solide.

2. Chaufferette: La vidéo suivante présente un autre exemple de nucléation [/]. La chaufferette est un
systeme métastable, ou le liquide se trouve dans une phase instable. En pincant la plaquette de métal
a Uintérieur, de ’énergie est injectée dans le systeme, ce qui permet de franchir la barriere d’énergie.
Le noyau se développe alors, initiant une nucléation, et une fois qu’il atteint une taille suffisante, il
envahit ’ensemble du systéme, provoquant la transition compléte.

3. The Ice Finger of Death: La vidéo suivante illustre un phénoméne naturel de nucléation [5]. En
Arctique, l'eau est o des températures négatives et est gelée en surface. A certains endroits, le gel
progresse et, localement, se propage, gelant tout ce qui se trouve sur son passage.


https://www.youtube.com/watch?v=_9N-Y2CyYhM
https://www.youtube.com/watch?v=9lcyyZSTpPE
https://www.youtube.com/watch?v=BtQhb8sWJNw
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4. Peste de ’étain: Un dernier exemple historique intéressant est la Peste de l’étain. A température et
pression ambiantes, l’étain existe sous une forme dite étain blanc. Cependant, lorsque la température
descend en dessous de 13.2°C, cette forme devient instable et se transforme en étain gris. Cette
transformation est connue sous le nom de peste de ’étain. Elle se produit relativement lentement a
température modérée, mais devient beaucoup plus rapide & environ —40° C, accompagnée d’une diminu-
tion de la masse volumique de l'étain et d’une fragilisation du métal, qui tend alors a se réduire en
poudre [06]. Lors de la retraite de Russie de ’Empereur Napoléon Bonaparte, traversant la riviére
Bérézina, les hivers russes pouvant atteindre des températures aussi basses que —40° C, ’étain, large-
ment utilisé dans les uniformes de l’armée francaise, se décomposait au contact du froid, ce qui en-
trainait la perte des uniformes de nombreuz soldats[7].

9.2 Modeles d’Ising : Théorie de perturbation

e Historiquement, le modele d’Ising était un modele en une dimension, c’est a dire une chaine de spins
valant s = +1. Ce modele prédit qu’il n’y a pas de transitions de phase en une dimension, autrement
dit que la température critique T =0 (8 = 0).

e Un autre modele, également appelé modele d’Ising, en deux dimensions cette fois, possede lui une
solution exacte pour la température critique (kg = J = 1): Te = 3log(1 + 1/(2)) (déterminée par
Lars Onsager). Cela a permis de montrer pour la premiere fois I'existence des transitions de phase en
dimension finie.

e En 3D, il n’existe pas de solution exacte au modele d’Ising. Les solutions sont donc trouvées avec des
techniques d’approximations (comme la théorie des perturbations) ou en utilisant des simulations (par
exemple avec Monte-Carlo).

Deux de ces théories de perturbation seront abordées dans ce chapitre : la série en basse température
(8 — 00, T — 0) qui va permettre de faire des corrections en puissances de T', et celle en haute température
(8 — 0,T — c0) qui consistera a faire des corrections en puissances de [3.

9.2.1 Série en basse température (d =2, s = +1)

On considere un réseau de N spins en 2D, valant s = +£1, avec des conditions aux limites périodiques.
On peut donc représenter le réseau par un tore comme sur la Fig.9.1 ou les spins sont situés aux nceuds.
L’Hamiltonien d’un tel systéme est donné par :

H=-T> SiS, (9.34)
(i-4)

En basse température (T ~ 0), le systéme doit forcément étre dans un état d’énergie minimale, cela veut
dire qu’il peut étre dans deux configurations différentes : soit tous les spins valent s = 1, soit ils valent tous
s = —1. L’énergie pour ces configurations (& température proche de zéro) vaut donc:

E(T =0) = —J2N (9.35)
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Ou le facteur 2 provient du nombre de liens total entre les spins, donné par la moitié du nombre de voisins
pour ne pas compter deux fois chaque lien. On obtient une fonction de partition qui devrait étre dominée
par ces deux configurations, qu’on calcule en factorisant ces dernieres :

N(N = 5)

Z() = 223N 1+N(e‘25J)4—|—2N(e_25J)6+( :

1 2

+7N> (2P 10 (e72#7)'° | (9.36)

3

Voyons comment chacun des termes est obtenu :

e Le terme 1 est obtenu en prenant une configuration ou il n’y a que des spins s = 1, et en retournant
I'un d’entre eux (sf;;, = —1). Comme on le voit sur la Fig.9.11(a), cela affecte les 4 liens autour du
spin, leur énergie devient négative. On voit qu’il y a N configurations donnant le méme résultat et le
facteur de correction devient donc : NV (6_2’8‘] )4.

e L’ordre suivant (terme 2) est obtenu en retournant deux spins l'un & c6té de 'autre. Il y a 2N telles
configurations équivalentes, et cela change le signe de ’énergie pour 6 liens différents, comme le montre
la figure Fig.9.11(b). Le facteur & ajouter est donc : 2N (6’2”)6.

((2)) ((b))

Figure 9.11: Réseaux de spins pour les termes 1(a) et 2(b)

e Pour avoir 8 liens d’énergie opposée (terme 3), il y a quatre types de configurations pour les N spins:
soit on retourne deux d’entre eux qui sont & plus de deux noeuds d’écart I'un de l'autre (Fig.9.12(a)),
soit on en retourne trois qui forment un angle comme sur la Fig.9.11(b), puis on peut en retourner
quatre qui forment un carré (Fig.9.12(c)), ou enfin on peut en retourner 3 qui forment une chaine
(Fig.9.12(d)).Le nombre de configurations équivalentes pour la premiére option est de w, car

pour placer le premier spin il y a N choix, mais ce placement restreint celui du second spin (excluant

5 positions), puis on divise par deux car on place une paire. Pour la seconde configuration, il y en a

4N, pour la troisieme N, et enfin pour la derniere il y en a 2N, ce qui fait 7N au total.
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Figure 9.12: Réseaux de spins pour le terme 3

Si nous prenons le logarithme de la fonction de partition, nous obtenons 1’équation suivante.

log(Z) =log(2) + 2N BJ +log[l + ...] (9.37)
A

N? 1
= A+ N(e ) 12N (e7?7)0 4 (2N + 7)(e—W)8 - §N2(e_2'8‘])8 +0(e72P710 (9.38)

On note que les termes o< N2 se simplifient. Ce n’est pas une coincidence, en effet, c’est 14 une conséquence
du Link-Cluster theorem, qui, de fagon informelle, peut se résumer au fait que, dans le développement de
log(Z), seuls les diagrammes connectés comptent, impliquant l'extensivité de log(Z).
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Number of Configuration Count Boltzmann
flipped spins weight
1 - N 4
2 - 2N x5
- N(N - 5)/2 5
3 i 2N z®
4N 8
= 2N(N - 8) 210
eo N(N2-15N +62)/6 12
1 a N 28
I______‘ N £10
e 2N Il'ﬂ
-—I - 4N zi0
'_I_’ AN Z10

(terms up to %)

8N ‘.CIU

(terms up to %)

H F

2N =t

(terms up to %)

Figure 9.13: Diagrammes représentant les contributions combinatoires & basses températures.(Wyart, Pac-
colat 2017)

9.2.2 Hautes Températures

Stricto sensu, le développement en hautes températures reviendrait a faire :
BJS;S;?
2

Ce n’est pas ce qui nous intéresse ici. On cherche plutét & développer en fonction de tanh(/3). Dans ce but,
on se rappelle que :

e?79:5i = cosh(B.J) + S;5; sinh(3.J) (9.40)

On obtient donc, comme fonction de partition :
Z=>" ][ cosh(8J)+ S;S;sinh(8.J]) (9.41)

{5} <ig>
= cosh®™(8.7) | > [] 1+ SiS, tanh(s.) (9.42)

{5} <i>
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=cosh®™(B1)Y " |1+ Y SiSjtanh(BI)+ > SiS;SkSitanh®(BJ) + ... (9.43)

{s} <ipj> <i,j>,<k,I>

Le calcul semble, de prime abord, complexe ; cependant, en appliquant la somme sur toutes les configurations,
on obtient :

Z = cosh®™ (B.) {2N + Z Z S;S; | tanh(8J)
) \ {9}

+ Y D SiS;SkS) | tanh®(8)
(i) (k) \ {3}

+ Y > 8i8;SkS1SmSn | tanh®(B.7)
(@)l fmon) \ {8

+ > > 5i8iSkS1SmSnSeS, | tanh* (B]) + ... (9.44)
(@), ) (mn), (op) \ {8}

Cependant, il apparait que les sommes sur les configurations sont toutes nulles avant l'ordre 4, car, pour
toutes les configurations possibles ayant une valeur multiplicative de spin —1, il en existe une autre ayant une
valeur multiplicative de leurs spins de 1. Cependant, a partir de I'ordre 4, cette configuration est possible
S5:5;5;515k5151S; et n’est pas compensée. Notre fonction de partition devient donc :

Z = cosh?Y (8J)2V [1 + 3 tanh! (ﬁJ)} (9.45)
boucles
Avec | = "taille de la boucle”. On peut ensuite développer cette série en comptant le nombre de boucles

possibles en fonction de leur taille, comme visible sur fig.9.14

Figure 9.14: Boucles possible de taille 4, 6 et 8

Ainsi, on obtient :

N(N2_5)> tanh®(8.J) + o (tanh'*(8.])) }

(9.46)

Z = cosh®™ (3.J)2N [1 + N tanh®(8J) + 2N tanh®(8J) + (7N +



9-16 Lecture 9: Systémes en interaction en dimension finie

A nouveau, on s’intéresse & log(Z), dont le développement en série de Taylor nous donne :
5 NZ2
log(Z) = N [log (2cosh?(8J))] + N tanh*(8J) + 2N tanh®(8.J) + {(7 - 5)N n 2] tanh®(8J)  (9.47)
N? 8 10

- tanh®(3.J) + o (tanh™’(8.J)) (9.48)
On constate qu’a nouveau les termes o< N? s’annulent, comme prédit par le théoréme de Link-Cluster.
Remarque :Nous avons maintenant une bonne description du comportement de 1’énergie libre f et de
I’énergie e a haute et basse température, schématisé en Fig.9.15. Cependant, leurs comportements pour

des températures intermédiaires ne sont pas forcément bien décrits par ces équations. Notamment, car en
passant de basse a haute température, ou inversement, il peut y avoir un changement de phase.

NE J\{L

/'

((2)) ((b))

Figure 9.15: Développement de basse et de haute température (basse température en jaune et haute
température en rouge) de I’énergie (a) et de I’énergie libre (b).

9.2.3 Dualité Krammers-Wannier

En comparant les développements en série en haute (9.46) et en basse température (9.36), on remarque que
les coefficients associés aux puissances de e~ et tanh(B3.J) (respectivement pour les séries en haute et en
basse température) sont égaux, au moins jusqu’a ’ordre 8. Par exemple, dans la série en basse température, le

coefficient associé a (6_25 d )4 est N, et dans la série en haute température, le coefficient associé a (tanh(G8.J ))4
est également N. Dans les développements présentés, nous vérifions cette égalité jusqu’au huitieme ordre.
Cependant, cette équivalence est vraie a tout ordre : les deux séries sont équivalentes a une constante et a
une évaluation pres.

On définit la série :

Sy(B,J)) =1+ Ny*+2Ny8 + (TN + N(N —5)/2)y% + - -- (9.49)

et on peut donc écrire les deux fonctions de partition en fonction de cette série :

Zss1(B) = 2eNI/BS(e728) (9.50)

Zs<1(8) = (cosh BJ)*N 2N S(tanh 8.7) (9.51)
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Cette équivalence est appelée la dualité de Krammers- Wannier. Elle est valide uniquement pour le modele
d’Ising a deux dimensions.

On rappelle qu’un coefficient d’ordre a de la série en basse température correspond au nombre de configu-
rations dans lesquelles « liaisons sont affectées. Les coeflicients de la série en haute température représentent
le nombre de configurations permettant de former des boucles & « arétes. La dualité de Krammers-Wannier
affirme que le comptage des configurations pour les hautes et basses températures est équivalent !

On peut représenter cela graphiquement :

On trace un réseau carré (réseau 2) identique au réseau de spin initial (réseau 1) et on les superpose.

On décale légerement le réseau 2 de telle sorte que tous les liens du réseau 1 croisent les liens du réseau
2 (voir Fig. 9.16).

e On impose que les intersections entre chaque lien affecté du réseau 1 et le réseau 2 définissent les arétes
d’une boucle (voir Fig. 9.16).

e Le nombre de liaisons affectées est identique au nombre d’arétes de la boucle : le comptage est donc
équivalent !
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Figure 9.16: Représentation de la dualité Krammers-Wannier pour un réseau carré

Dans la théorie de Krammers-Wannier, d’autres dualités existent selon le réseau considéré. Dans notre
cas, le réseau dual d’'un réseau carré est également un réseau carré (et comme le comptage est réalisé deux
fois sur des réseaux carrés, les coefficients obtenus sont identiques), on appelle cela un réseau auto-dual.
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La plupart des réseaux ne sont pas auto-duals. Par exemple, le réseau dual d’un réseau triangulaire est un
réseau hexagonal (voir Fig. 9.17).

Figure 9.17: Réseau dual du réseau triangulaire [8]

Dans le modele d’Ising en deux dimensions, il existe une transition de phase et donc une non analycité
de I'énergie libre a une température critique 7. En écrivant le logarithme des fonctions de partition sous la
forme de série, on obtient

log(Zp1)(8) = log(2)N T/ + log(S(e =) (9-52)

log(Zs«1)(8) = 2N log(cosh 8J) + N log(2) + log(S(tanh 5.J)) (9.53)

On voit alors que la non-analycité de 1’énergie libre dans les deux cas provient de la non-analycité de
la série S (cosh et 1/3 sont analytiques). Il existe donc un 3, tel que S(e=2#7) et S(tanh 3..J) sont non
analytiques simultanément (la température critique est la méme pour les deux approximations). En prenant
la série a l'infini (i.e. en sommant & 'infini), les deux évaluations de la série doivent étre égales et la condition
de non analycité devient

e~ 2Pt — tanh B,J (9.54)

Cette expression est appelée relation d’auto-dualité.

En résolvant cette relation pour f., on obtient que

B. = % log(1 +V2) (9.55)

J 2

c= gm (9.56)
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9.3 Matrice de transfert

On considére un réseau de N spins en une dimension avec des conditions aux bords périodiques (chaine de
spins). Le réseau de spin est soumis & un champ non nul h.

La fonction de partition en une dimension s’écrit :

Z(B)=> exp (BT Y SiS;+Bh> S (9.57)

{g‘} <i,j> [

Et comme les conditions aux bords sont périodiques, la somme ) | _; > sur tous les voisinages peut s’écrire
explicitement et on a

N N
Z(8) = > exp (stism + ﬂhZ&-) (9.58)

Sp=+1,,Sy==+1

N
h
= Z H exp <[3S¢Si+1 + B§ (Sl + Si+1)) (9.59)
S1=41, Sy=+1i=1

On définit ensuite la matrice de transfert T par

h
Top = exp (ﬂJa + ﬂi(a + 6)) (9.60)
eBUI+h)  —BJ
éT: |: 6_6‘] eﬂ(‘]_h):| (961)

ou « et [ prennent les valeurs +1. En utilisant cette matrice de transfert, on peut simplifier le calcul
de Z(8), car Pargument de I’exponentielle dans la fonction de partition ne peut prendre que quatre valeurs
possibles, qui correspondent aux éléments de la matrice de transfert T'. La fonction de partition s’écrit alors
comme suit :

N
Z(/B) = Z HTSi7Si+17 (962)
Si=1, Sn=t1i=1

ou 'on impose la condition périodique Syy+; = S1 (modulo N).

Cela permet de réécrire la fonction de partition de maniére compacte. Prenons le cas particulier ou
N = 3. Dans ce cas, on obtient :

Z(,B) = Z Ts,,5,Ts,5,55Ts5,5, - (963)
51,852,853

On remarque que cette expression peut étre interprétée comme une trace de la matrice 73, c’est-a-dire :

Z(B) = Te(T?). (9.64)
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Justification de cette réécriture :

Pour démontrer cela, développons I'expression de Tr(T3) :

Te(T?) = Te(T - T - T). (9.65)

Par définition de la trace, cela revient a sommer les éléments diagonaux du produit matriciel, donc :

To(T%) = (T-T-T)aa- (9.66)

[0}

Développons ’élément diagonal (T-T - T )4« :

(T-T Tawa =Y TosTsrTya (9.67)
By

En sommant sur tous les indices «, 3,7y, on obtient :

To(T?) = > TosTpyTya (9.68)
a,B,y

C’est exactement la méme expression que celle obtenue en écrivant directement Z() comme une somme
sur toutes les configurations S, .55, S3.

Ainsi, par récurrence, on a :

Z(B) = Te(TV), (9.69)

Attention ! Cela n’est valable qu’en une dimension.

Il semblerait que nous ayons fait tout ceci pour calculer tout de méme une quantité complexe, a savoir la
puissance N-iéme d’une matrice arbitraire. Cependant, ici, nous utilisons un résultat important de la trace :

Tr(A) = Tr(B~'AB). (9.70)
Cela signifie que, sous un changement de base approprié, nous pouvons calculer cette quantité de maniere
plus simple. En utilisant les outils d’algebre linéaire, nous diagonaliserons 7.

Tout se simplifie, car la puissance N-iéme d’une matrice diagonale est simplement donnée par la puissance
N-ieéme de ses valeurs propres.

Preuve formelle :

Soit B la matrice de changement de base qui rend T diagonale, et soit A la matrice diagonale cor-
respondante. 7T est toujours diagonalisable car elle est symétrique (cf. Théoréme spectral). On a alors

Te(TV) = Te((B~'TB)N). (9.71)

En utilisant la propriété des puissances, on peut écrire :
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(B'TB)N =(B™'TB)- (B™'TB)---(B~'TB) = B~'AVB. (9.72)
Ainsi :
Tr(TV) = Tr(B~' AV B). (9.73)
Puisque la trace est invariante par changement de base, on a :

Tr(TV) = Tr(AY). (9.74)

Or, A étant une matrice diagonale, elle s’écrit sous la forme :

A= (Aol AOQ) . (9.75)

La N-ieme puissance de A est donnée par :
AV
N _ [M
wo (8, 610
Ainsi, la trace de AV est simplement la somme des éléments diagonaux de cette matrice :

Tr(AN) =AY + ALY, (9.77)

Cela nous permet d’écrire directement :

Z(B) = Te(TN) =AY + \Y. (9.78)

Lorsque N — oo (cas de la limite thermodynamique), seule la valeur propre la plus grande contribue de
manieére significative. En supposant sans perte de généralité que A; > Az, on peut écrire :

Z(B) =\ (1 + (ij)N> . (9.79)

Pour les quantités moyennes physiques, on utilise :

log}‘ifz) =log(A\1) + %log (1 + (i\j) ) . (9.80)

Lorsque N — oo, le second terme tend vers zéro, et il reste :

log(2)

N log(A1). (9.81)
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Une question naturelle qui pourrait se poser maintenant est : comment déterminer cette valeur propre,
que l'on sait étre la plus grande entre les deux, sans avoir a calculer la seconde 7 Il existe des méthodes
numériques (par exemple, en Python) et analytiques qui permettent de le faire sans grande difficulté.

D’ailleurs, analytiquement, il est souvent beaucoup plus simple de calculer uniquement la plus grande
valeur propre plutot que toutes les valeurs propres.

Dans notre cas la matrice T est 2x2 donc simple, il suffit de donc de la diagonaliser pour obtenir ses deux
valeurs propres.

Pour trouver les valeurs propres Ay et Ay de T, on résout I’équation caractéristique :

exp(B(J +h)) — A exp(—23) _
e (el " el m-a) =° 952
Cela donne les valeurs propres :
At = exp(BJ) {cosh(ﬂh) + \/cosh?(Bh) — eXp(45J)] : (9.83)

Dans le cas particulier ou le champ h = 0, ces expressions se simplifient :

Ay =cosh(BJ), A_ =sinh(8J). (9.84)

Ainsi, on trouve que :

%bg(Z) = — log(A4), (9.85)

F
NkgT
qui tend vers log(cosh(8J)). Cela est extrémement régulier et il n’y a rien d’intéressant qui se produit,
sauf & T' = 0. Cependant, cette température est quasiment impossible a atteindre et sans intérét pratique
dans notre monde. Il n’y a donc pas de transition de phase pour aucun 7.

On aurait pu prédire ce résultat en remarquant que le modele d’Ising en 1D, notamment les interactions
entre spins voisins (5;S5;11), est dual & un modele de spins indépendants. Cela explique ’absence de transition
de phase.

Si l'on refait le méme calcul qu’auparavant en considérant h # 0, on obtient :

%(ﬁ,h) =—J —kpTlog [cosh <ﬁh + 1/ cosh?(Bh) — 2e—287 sinh(26J)>] . (9.86)

Cela implique que ’aimantation par site est donnée par :
M 1 0log(2)

N BN 0oh

(9.87)

soit :
sinh(8h)

\/COShQ(ﬁh) — 2e~287 sinh(24J) .

m =

(9.88)

Quand h — 0% ou h — 07, m tend des deux cotés vers 0. Il n'y a donc pas de transition de phase, car il
n’existe aucune singularité intéressante pour tout S fini.
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9.4 Argument de Peierls:

L’argument de Peierls en dimension 1

L’argument de Peierls est une adaptation de I'argument de nucléation, mais appliqué spécifiquement a un
systéme unidimensionnel (d = 1). Il se base sur 'idée de considérer deux sous-systémes ayant la méme
énergie libre initiale. Cet argument apporte une explication plus spécifique sur la raison pour laquelle il
n’y a pas de transition de phase en dimension 1.

On suppose donc deux états macroscopiques ayant la méme énergie libre F' au départ. Cela implique que
0f =0, ou df est la différence d’énergie libre volumique entre les deux états.

Lorsqu’une transition locale (comme la formation d’une gouttelette de I'état 2 dans I’état 1) se produit,
la variation d’énergie libre totale est donnée par :

AF =Y . 0371, (9.89)

e / est la taille (ou longueur) de la gouttelette,
e Y est la tension superficielle de I'interface entre les deux phases,

e d est la dimension du systeme.

Pour d > 1, la variation d’énergie libre AF croit avec £4~1, car I’énergie d’interface dépend de la surface

de la gouttelette. Cela signifie qu'une grande gouttelette (¢ — 0o) coiitera une énergie AF tres élevée. Cette
croissance rapide rend les transitions entre phases rares.

Pour qu’une transition de phase se produise, il faut une gouttelette de tres grande taille, ce qui rend le
passage entre phases pratiquement impossible.

En conséquence, le temps moyen 7 pour passer d'une phase a ’autre est donné par :
7 o exp(B471), (9.90)

ou f = kBLT Lorsque d > 1, 7 devient exponentiellement grand avec la taille ¢, rendant le systeme piégé

dans une phase stable.
Pour d = 1, la variation d’énergie libre devient indépendante de la taille ¢, car :
AF =Y - (" =Y, (9.91)
c’est-a-dire une constante finie.

Cette valeur constante signifie que la formation d’une gouttelette ne cotite pas plus d’énergie, quelle que
soit sa taille.

Le temps moyen 7 pour passer d'une phase a 'autre devient alors :
T o exp(f constante), (9.92)

Cela reste raisonnable (contrairement au cas d > 1) et permet au systéme de fluctuer librement entre les
deux états sans étre emprisonné dans une phase particuliere. Ainsi, le systeme peut osciller naturellement
entre les deux états macroscopiques, ce qui empéche I’apparition d’une transition de phase clairement définie.
Par conséquent, il n’y a pas de transition de phase en d = 1.
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9.5 Développement du viriel / de Mayer / Diagramme pour les
systemes de particules

Nous avons vu comment effectuer des approximations pour des modeles de spins, mais il serait intéressant
de se demander s’il est possible d’appliquer une approche similaire a des systemes plus physiques et concrets,
comme un systeme de particules. Par exemple, il serait pertinent de calculer des corrections au modele du
gaz parfait. C’est précisément ce que nous allons aborder dans cette section.

Tout d’abord, plagons-nous dans un espace tridimensionnel (3D) et considérons un systéme contenant N
particules, confiné dans un volume V a une température 7. Nous avons déja calculé plusieurs fois la fonction
de partition correspondante, donnée par :
3N

2

2rmkpT\
”mB) Zq(T,V,N), (9.93)

Z(T,V,N) = ( s

ot le premier terme représente l'intégrale sur les impulsions p, et le second terme, Zg, est 'intégrale sur les
positions.
Plus précisément, Zg s’écrit comme :
1 . L 7 i
A / di, ... dEy e P Zen V@), (9.94)
N! Jy
oll la somme Z(i) ;) parcourt tous les couples de particules (i,7). En général, on suppose que le potentiel
v(x;, ;) dépend uniquement de la distance entre les deux particules, soit :
v(zi, zj) = v(|la; — xj]) = v(d). (9.95)

Quelques exemples de tels potentiels sont donnés en Fig.9.18.

v(d) ©0 @ v(d) ©0

~1/g%2

a ~1d®

Figure 9.18: (a) Potentiel simplifié pour des spheres dures de rayon a/2 (b) Potentiel de Lennard-Jones
(" potentiel 12-6”) (c) Potentiel simplifié avec attraction

Regardons intuitivement ce que représentent ces les potentiels de Fig.9.18.
Le potentiel présenté en Fig.9.18(a) modélise le fait que les particules ne peuvent pas se chevaucher mais ne
prend en compte aucune aucune attraction entre les particules.
Le potentiel de Lennard-Jones(Fig.9.18(b)) montre un comportement répulsif quand les particules sont trop
proches I'une de I'autre (zone en ~ 1/d'?) et une attraction quand les particules ne sont pas trop proches
I'une de I'autre (zone en ~ 1/dS). A grande distance le potentiel est simplement 0.
Cependant, un tel potentiel n’est pas toujours trivial & manipuler. Ainsi, on peut aussi le simplifier. Ceci
est présenté en Fig.9.18(c) qui ne possede que trois différentes valeurs. Le potentiel vaut : infini quand
les particules sont trop proches, une valeur négative (attraction) quand les particules sont proches 1'une de
lautre et 0 quand les particules sont éloignées.
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Revenons a l'intégrale Zg. En développant 'exponentielle de (9.94) on obtient :

Zg = %/Vdfl .dTNn He Buig — ﬁ/ d#y ...dTyN H (1 - efﬁv”)) (9.96)

i<j 1<j T
Ou l'on a introduit la fonction f;; = e~Pvis — 1 (qui dépend toujours de z; et x;; formellement on a

flai, x) = e Av(@iri) 1. Cette fonction satisfait 0 < fij <1let fi; =0 pour B =0.
On peut maintenant développer le produit dans l'intégrale de maniére similaire & ce qui a été fait pour le
modele d’'Ising (??) pour obtenir :

H(1+fij):1+2fij+ Z fijfer 4+ (9.97)

i<j 1< (4,5) (k,1)

® C’est cela qui est appelé développement de Mayer.

En insérant le résultat précédent dans I'intégrale, il est maintenant possible de séparer l'intégrale par linéarité
entre les différents termes du développement.
Pour le premier terme (qui est simplement 1), on obtient donc :

1 1 . . VN
7y = ]W/clgcl...ctgc]v-lzm (9.98)

Ainsi, au premier ordre on obtient la fonction de partition d’un gaz parfait. En effet, la supposition pour le
gaz parfait est que les particules n’intéragissent pas entre elles. Dans le cas présent, cela signifie simplement
que fi; =0, Vi, j.

Au second ordre, on obtient :

1 . . VN N(N-1 _ oo
Zg) = ﬁ/‘,dxl"'dch. (1+Zfij> = W‘F%VN 1/d$1d$2f12 (9.99)
! = !
N NN N  N(N-1
:%+ ( VN 1/ Q—O—V— NNV -1 5 )VN*H (9.100)

Dans le dernier passage, on a simplement utilisé le fait que les intégrales pour chacun des différents f;; prend
la méme valeur. On a donc choisi de garder le cas i = 1,j = 2. Le nombre de fois que cette valeur apparait
dans la somme correspond aux nombres de facons de choisir 2 éléments parmi N, i.e (g ) =N(N-1)/2. On
peut donc intégrer sur toutes les autres variables (23, ...,7%) et on obtient le coefficient VN1,

Les notations avec (O—) et @—@ servent a simplifier ’écriture de I'intégrale de fio qui est ennuyante.
Elles rappellent également qu’il ne s’agit pour l'instant que de l'interaction entre deux particules. Pour

des ordres supérieurs (Zg)7 Z((;), etc.) on trouvera des sommes du type Z(i,j)(k,l) fij fri. Pour les termes

ol i # k et j # | on aura donc un terme en ( @—@ )% Mais il y aura aussi les termes en f;;fjx
qui correspondront donc cette fois & (O————) o il faut prendre en compte que la particule du milieu
interagit avec deux particules et non pas une seule. Ainsi & chaque nouvelle ordre on ajoute le nombre
d’interactions que peut avoir une seule particule avec les autres.

Il est évident que la complexité de ces intégrales augmente avec le nombre de particules. En effet, on
peut calculer analytiquement 'intégrale de la série (9.97) jusqu’a 4 particules. Ensuite il faut résoudre les
intégrales avec des méthodes numériques (de type Monte-Carlo par exemple).
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On peut donc faire cela a tous les ordres et on obtient a la fin

k—1
pV > N
=1 B (= 101
NinT +kZ:2 k(v> (9.101)

que 'on appelle le développement du viriel qui est donc une correction au modele du gaz parfait en terme de
puissances de la densité (N/V'). Les coefficients By, (ou B,(CT) pour indiquer qu’ils dépendent dans la plupart
des cas de la température) sont appelés les coefficients du viriel ou coefficients viriaux. Ces coefficients sont
rapidement (quand on change d’ordre) trés compliqués & calculer.

Dans le cas des spheéres dures, By (i.e. @—#@ dans notre notation diagrammatique) est le seul coeflicient

qui est encore relativement facile a calculer.

Example 3 Calculons donc Bs pour un gaz de sphéres dures en 3D.
On rappelle tout d’abord que le potentiel (Fig.9.18(a)) est donné par

U(T):{oo sir<a

0 swnon

Et donc la fonction fi5 sera donnée par

1 si
fralr) =77~ 1 = { o (9.102)
0 sinon
On a donc finalement
B- @@= /dfldfgflg - —277/ (e*ﬂv“) - 1) r2dr (9.103)
0
¢ 2 151° 2 4
=27 [ (—Dridr=2n|zr°| =c7a (9.104)
0 3 ], 3

ou dans la troisieme égalité on est simplement passé en coordonnées sphériques et dans la quatriéme on a
utilisé que la fonction fi1o est non nulle uniquement dans Uintervalle [0, al. [

Pour les coefficients supérieurs a 2, on peut trouver des tables qui recensent ces valeurs.



Lecture 9: Systémes en interaction en dimension finie 9-27
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