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9.1 Les limites du Champ Moyen

En reprenant le modèle d’Ising, on a,

H = −
∑
⟨i,j⟩

JSiSj (9.1)

⟨i, j⟩ signifie qu’on somme sur les i, j voisins d’un réseau.

En dimension d = 1, le réseau est une ligne composée de spins. Cela peut également être représenté par
une châıne, ce qui permet d’avoir des conditions périodiques aux limites et de simplifier les calculs.

En dimension d = 2, c’est un réseau en deux dimension que l’on peut également représenter par un tore
pour simplifier les calculs.

En dimension d = 3, c’est un réseau cubique qui devient plus dur à représenter en reliant les bords.

Pour les dimensions d supérieures, le réseau est un hyper-cube de dimension d.

R Les conditions aux bords périodiques permettent de représenter les réseaux différemment permet
de simplifier les calculs en ne tenant pas compte des conditions aux limites. C’est très utile si les
comportements aux bords ne nous intéressent pas.

Figure 9.1: Représentation torique d’un réseau d = 2 [1]
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En utilisant l’approximation champ moyen, on obtient une équation proche de la théorie de Curie-Weiss
pour la valeur moyenne de Si,

m = tanh (β(2Jmd+ h)) (9.2)

Cette équation est utile, par exemple, pour représenter la magnétisation en fonction de la température
et trouver la température critique. Avec βc =

1
2Jd et Tc =

2Jd
kB

.

Figure 9.2: Magnétisation en fonction de la température [2]

9.1.1 Second ordre : Phénomènes critiques

En observant ce qu’il se passe proche du point critique, on remarque un problème de la théorie du champ
moyen.

Prenons l’équation dans un champ nul (h = 0), on a,

m = tanh

(
β

βc
m

)
(9.3)

Proche du point critique,m est petit. On peut donc développer la tangente hyperbolique avec tanhx ≈ x− x3

3 ,

m ≈ β

βc
m−

(
β

βc

)3

m3 (9.4)

En simplifiant, on obtient,

m2 =

(
β

βc
− 1

)(
βc

β

)3

(9.5)

Le terme au cube est négligeable, ce sont des corrections de l’ordre T 3. Par contre, le premier terme est
intéressant, c’est lui qui est responsable de la pente proche du point critique car il est proche de 0. Il nous
permet de dire que,
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m ∝

√
β

βc
− 1 =

√
Tc

T
− 1 =

√
Tc − T

T
(9.6)

On a finalement que m ∝
√
Tc − T . Proche du point critique, m grandit avec une racine de la différence

de température.

9.1.1.1 Exposants critiques

Pour connâıtre l’ordre d’évolution des phénomènes critique, on introduit les exposant critiques (α, β, γ et
δ).

Definition 9.1 (Exposant critique β)

Il représente le comportement de m proche du point critique dans un champ nul (h = 0).

m ∝ (Tc − T )β (9.7)

En champ moyen, on a β = 1/2.

Definition 9.2 (Exposant critique γ)

Il représente le comportement de la susceptibilité χ proche du point critique (T ≳ Tc).

χ ∝ (T − Tc)
−γ (9.8)

où la susceptibilité est définie comme,

χ =
∂m

∂h

∣∣∣∣
h=0

(9.9)

Il est possible de trouver χ à partir de l’équation (9.2). On a,

m = tanh

(
β

βc
m+ βh

)
(9.10)

On ne peut pas dériver m par rapport à h directement de cette équation car elle est auto-consistante. Il
faut dériver par rapport à h chaque coté de l’équation et trouver l’égalité. On a,

χ =

(
1− tanh

(
β

βc
m+ βh

)2
)(

β

βc
χ+ β

)
(9.11)

χ = (1−m2)

(
β

βc
χ+ β

)
(9.12)

On se place à T ≥ Tc et h = 0, on a donc m ≈ 0.

χ =
β

βc
χ+ β (9.13)
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χ =
β

1− β
βc

=
1

T

1

1− Tc

T

=
1

T − Tc
(9.14)

On obtient donc qu’en champ moyen, χ ∝ (T − Tc)
−1 et l’exposant γ = −1, ce qui correspond à la ’Loi

de Curie’. Proche du point critique, la susceptibilité diverge.

En se rappelant que,

∂m

∂h
∝ ⟨S

2

N
⟩ − ⟨ S

N
⟩2 = V ar(m) (9.15)

Ce qui voudrait dire que proche du point critique, la variance de la magnétisation est très grande, ce
qui n’est pas cohérent. Proche du point critique, la théorie de champ moyen ne fonctionne donc pas car les
fluctuations sont trop grandes.

Definition 9.3 (Exposant critique δ)

Il représente le comportement de m au point critique en fonction de h ≈ 0.

m ∝ h
1
δ (9.16)

A partir de l’équation (9.2) et avec β = βc, on a,

m = tanh (m+ βh) = m+ βh− (m+ βh)3

3
(9.17)

En ne gardant que les termes d’ordre 1 en h, on a,

0 = βh− m3

3
(9.18)

On trouve m ∝ h1/3 et l’exposant δ = 3.

Definition 9.4 (Exposant critique α)

Cet exposant critique est lié à la chaleur spécifique par la relation suivante:

CV ∝ (T − Tc)
−α (9.19)

Par définition de la chaleur spécifique:

CV =
∂e

∂t
(9.20)

Or en champ moyen, pour h = 0, l’énergie est simplement donnée par: e = − 1
2m

2. La Fig.9.3 présente cet
énergie libre en fonction de la magnétisation ainsi que sa dérivée.
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Figure 9.3: Energie et chaleur spécifique en fonction de la magnétisation m

On constate que la dérivée de l’énergie, i.e. la chaleur spécifique, fait un saut. Ce qui nous permet de
déterminer que α = 0 en champ moyen.

Nous avons calculé tous nos exposants critiques, mais quelles sont leur valeurs en réalité? Et pourquoi
ces exposants sont-ils si intéressants? A priori, ces exposants semblent être spécifiques au modèle, plutôt
simple, étudié, et sans lien avec le monde physique. Cependant, il a été constaté que tous les systèmes
de type transition de phases du second ordre sont toujours caractérisés par les mêmes exposants. Et cela
indépendamment du système, de sa composition et de la forme du réseau (hexagonal, carré, ...). De plus, ces
exposants critiques ne dépendent que de deux choses: la dimension du problème et la symétrie du problème.

d=2 d=3 d=4
α 0 0.11009 0
β 1/8 0.326419 1/2
γ 7/4 1.237075 1
δ 15 4.78984 3

Table 9.1: Exposants critiques pour le modèle d’Ising en différentes dimensions

En dimension d=1, contrairement à ce qu’il a été calculé en champ moyen (Tc =
2J
βc
), aucune transition

de phase n’a lieu. En dimension d = 2 et d = 3, d’après le Tab.9.1, on trouve bien des exposants. Pour le
modèle en 2D, la solution analytique a été établie par Lars Onsager. Pour le modèle d’Ising en 3D, bien qu’on
ne sache pas le résoudre, ni calculer la fonction de partition, plusieurs simulations peuvent être effectuées,
permettant de mesurer ces exposants. On constate que les exposants du champ moyen ne sont pas du tout
correct en 2D ni en 3D, mais qu’on les retrouve en dimension 4. En réalité, pour toute dimension d ≥ 4, les
exposants du champ moyen sont corrects. Cette dimension est appelée dimension critique supérieure.

Pour résumer, le problème fondamental de la théorie du champ moyen est qu’en s’intéressant aux
phénomènes critiques, i.e proche du point critique, les exposants critiques sont faux.
Ces exposants ne dépendent que de (n, d) et sont universels, i.e. ils ne dépendent pas du matériau. Ils ne
sont donnés par le champ moyen qu’en dimension d ≥ 4. On définit d comme la dimension du réseau et n
comme la dimension du spin. Pour le modèle d’Ising, n = 1 avec spin s = ±1; pour s = cos θ, on est dans
un plan et n = 2. Et n = 3 avec le modèle d’Heisenberg.

La généralisation du modèle d’Ising, avec des spins de dimension n, est appelé le modèle O(n).
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9.1.2 Transitions de premier ordre

Il a précédemment été établi, en section 8.4, que:

P(S̄ = m) ≍ e−Nβf(m) (9.21)

avec f(m) l’énergie libre. Pour rappel, la transition de premier ordre est décrite par un changement de
minima, tel que:

Figure 9.4: Transition de premier ordre et variation de l’énergie libre en fonction de la magnétisation

Nous avons des phénomènes dits ”méta-stables” ou ”stables” avec un temps τ ∝ eNβ∆f pour passer la
barrière d’énergie (cf 8.4.1 Métastabilité). En réalité, on observe τ = efini, même si ce temps est grand, mais
pas τ = eN ·fini. Les spinodales au sens strict n’existent pas en dimension finie: aucune barrière exponentielle
en N, ne peut coincer le système dans un état métastable.

Claim 1: Les ”barrières” d’énergie libre extensives n’existent pas en dimension finie.

Figure 9.5: Energie libre en dimension finie

Example 1 Reprenons le modèle d’Ising, pour T < Tc, on a vu que m(h) se comporte comme :
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Figure 9.6: Magnétisation m en fonction du champ h selon le modèle d’Ising

La courbe bleue illustre le comportement du système lorsqu’un champ élevé h est initialement appliqué,
puis diminué progressivement, tandis que la courbe rouge représente le comportement observé lorsqu’un petit
champ h est appliqué et ensuite augmenté. Cependant, lors des manipulations expérimentales, on constate
que plus la durée de la manipulation est longue, plus le saut de magnétisation se produit près de h = 0. Cela
met en évidence une dépendance complète de la magnétisation m au temps t. Ces observations peuvent être
représentées schématiquement comme suit:

((a)) ((b))

Figure 9.7: Illustration de la magnétisation m observée expérimentalement en fonction du champ h pour
différents temps de manipulation ti et pour (a) un champ croissant, (b) un champ décroissant

■
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Theorem 9.5 Théorie de la nucléation (”Correction au Champ Moyen”)

Considérons un système dont l’énergie libre f(m) possède deux minimas locaux séparés par une barrière
d’énergie libre. Définissons ∆f comme la différence d’énergie libre par spin entre l’état 1 et l’état 2.
Supposons que le système se trouve initialement dans l’état 1 et qu’une ”goutte” (ou un noyau) de taille
L dans l’état 2 apparâıt au sein de ce système.

((a)) ((b))

Figure 9.8: (a) Energie libre f en fonction de la magnétisation m, (b) ”goutte” ou noyau d’état 2 apparu
dans l’état 1.

La différence d’énergie libre une fois qu’un tel noyau a apparu est donnée par :

∆F = −VdL
dδF︸ ︷︷ ︸

Gain

+ γSdL
d−1︸ ︷︷ ︸

Perte

, (9.22)

où Vd est le volume de la goutte en dimension d, et Sd sa surface.

Il est important de souligner que le modèle de Curie-Weiss ne permet pas d’incorporer ce raisonnement
car il ne prend pas en compte les notions telles que le volume et la surface. En effet, ce modèle repose
sur l’hypothèse selon laquelle toutes les particules sont interconnectées, ce qui élimine la notion de bord.
Ce point illustre l’une des limitations fondamentales de l’approximation du champ moyen: la géométrie du
système n’est pas prise en compte.

Lorsque le rayon de la goutte, L, est grand, le terme de grain prédomine sur le terme de perte.. Plus
précisément, la variation de l’énergie libre, ∆F , suit le comportement suivant:
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Figure 9.9: Différence d’énergie libre ∆F en fonction du rayon de la goutte L

Ainsi, pour passer de l’état 1 à l’état 2, il suffit qu’une sous-partie suffisamment grande du système se
transforme en l’état 2 par fluctuation, ce qui permet à cette région de se développer et de finalement englober
tout le système. En dimension finie, les transitions de premier ordre sont toujours initiées par un phénomène
de nucléation.

Déterminons L∗, défini comme le rayon où ∆F est maximal. Alors L∗ annule la dérivée première :

∂L∆F (L∗) = 0 ⇒ −VddL
d−1
∗ δF + γSd(d− 1)Ld−2

∗ = 0 (9.23)

⇐⇒ VddL
d−1
∗ δF = γSd(d− 1)Ld−2

∗ ⇐⇒ VddLδF = γSd(d− 1) (9.24)

⇐⇒ L∗ =
γSd

δFVd

d− 1

d
. (9.25)

La barrière d’énergie maximale à franchir est donnée par :

max
L

{∆F} = ∆F (L∗) = −VdδF

(
γSd

δFVd

d− 1

d

)d

+ γSd

(
γSd

δFVd

d− 1

d

)d−1

(9.26)

= − (γSd)
d

(δFVd)
d−1

(
d− 1

d

)d

+
(γSd)

d

(δFVd)
d−1

(
d− 1

d

)d−1

(9.27)

=
γd

δF d−1

Sd
d

V d−1
d

(
d− 1

d

)d−1 [
1− d− 1

d

]
(9.28)

=
γd

δF d−1

Sd
d

V d−1
d

(d− 1)d−1

dd
(9.29)

=
γd

δF d−1
Ad. (9.30)

Et donc la Loi d’Arrhenius devient :

τ ∝ exp (β∆F (L∗)) = exp

(
β

γd

δF d−1
Ad

)
. (9.31)

On remarque qu’effectivement en grande dimension τ peut être très grand, mais il n’a pas de dépendance en
N. On peut donc en conclure qu’il n’y a pas de ”saut” et donc qu’en dimension finie les ”barrières” d’énergie
libre extensives n’existent pas.
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On en conclue qu’un système peut être métastable, mais pas stable. De plus, ce raisonnement permet de
résoudre un autre problème associé à l’approximation du champ moyen, à savoir l’absence de transition de
phase en une dimension. En effet, on observe que non seulement les barrières d’énergie ne sont pas extensives,
mais qu’en une dimension, il ne peut exister de barrière séparant deux états de même énergie. Pour passer
d’une phase à une autre, en suivant la loi d’Arrhenius, le temps caractéristique nécessaire est donné par:

τ ∝ eβA1 , (9.32)

où :

A1 =
S1
1

δF 1−1

(1− 1)1−1

11
= S1

00

1
= S1, (9.33)

qui est indépendant de l’énergie libre. Par conséquent, en une dimension, une brisure d’ergodicité est
impossible. Néanmoins, dans des dimensions d > 1, une brisure d’ergodicité peut se produire si δF = 0.

Claim 2: Le temps caractéristique τ est toujours fini en une dimension.

Dans la réalité, les transitions de premier ordre sont toujours inhomogènes et se déclenchent lorsqu’un
noyau suffisamment grand de la phase alternative émerge.

Example 2 Etudions quelques exemples du phénomène de nucléation

1. Eau:

En refroidissant très rapidement de l’eau, on obtient un liquide
surfondu, c’est-à-dire un système similaire à celui illustré en Fig-
ure 8(a). Dans ce cas, le système reste dans l’état 1, bien que
le véritable minimum de l’énergie libre corresponde à l’état 2.
Il est important de souligner que le système reste dans l’état 1
en raison de la présence il d’une barrière d’énergie, même si
celle-ci n’est pas extensive, comme le montre Figure 9.10. Ces
barrières étant très petites, il est relativement facile d’exciter
le système de manière à ce qu’il se transforme en solide. Ce
phénomène est illustré dans la video suivante [3]. Lorsqu’on
frappe la bouteille, une petite quantité d’énergie est injectée locale-
ment dans le système, permettant ainsi de franchir cette barrière
d’énergie à un endroit spécifique. Cela initie une nucléation, et
une fois qu’un solide suffisamment grand s’est formé, il envahit
le reste du liquide, transformant progressivement tout le système
en solide.

Figure 9.10: Énergie libre f en
fonction de la magnétisation m

2. Chaufferette: La vidéo suivante présente un autre exemple de nucléation [4]. La chaufferette est un
système métastable, où le liquide se trouve dans une phase instable. En pinçant la plaquette de métal
à l’intérieur, de l’énergie est injectée dans le système, ce qui permet de franchir la barrière d’énergie.
Le noyau se développe alors, initiant une nucléation, et une fois qu’il atteint une taille suffisante, il
envahit l’ensemble du système, provoquant la transition complète.

3. The Ice Finger of Death: La vidéo suivante illustre un phénomène naturel de nucléation [5]. En
Arctique, l’eau est à des températures négatives et est gelée en surface. A certains endroits, le gel
progresse et, localement, se propage, gelant tout ce qui se trouve sur son passage.

https://www.youtube.com/watch?v=_9N-Y2CyYhM
https://www.youtube.com/watch?v=9lcyyZSTpPE
https://www.youtube.com/watch?v=BtQhb8sWJNw
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4. Peste de l’étain: Un dernier exemple historique intéressant est la Peste de l’étain. A température et
pression ambiantes, l’étain existe sous une forme dite étain blanc. Cependant, lorsque la température
descend en dessous de 13.2◦C, cette forme devient instable et se transforme en étain gris. Cette
transformation est connue sous le nom de peste de l’étain. Elle se produit relativement lentement à
température modérée, mais devient beaucoup plus rapide à environ −40◦C, accompagnée d’une diminu-
tion de la masse volumique de l’étain et d’une fragilisation du métal, qui tend alors à se réduire en
poudre [6]. Lors de la retraite de Russie de l’Empereur Napoléon Bonaparte, traversant la rivière
Bérézina, les hivers russes pouvant atteindre des températures aussi basses que −40◦C, l’étain, large-
ment utilisé dans les uniformes de l’armée française, se décomposait au contact du froid, ce qui en-
trâınait la perte des uniformes de nombreux soldats[7].

■

9.2 Modèles d’Ising : Théorie de perturbation

• Historiquement, le modèle d’Ising était un modèle en une dimension, c’est à dire une châıne de spins
valant s = ±1. Ce modèle prédit qu’il n’y a pas de transitions de phase en une dimension, autrement
dit que la température critique TC = 0 (β = 0).

• Un autre modèle, également appelé modèle d’Ising, en deux dimensions cette fois, possède lui une
solution exacte pour la température critique (kB = J = 1): TC = 1

2 log(1 +
√
(2)) (déterminée par

Lars Onsager). Cela a permis de montrer pour la première fois l’existence des transitions de phase en
dimension finie.

• En 3D, il n’existe pas de solution exacte au modèle d’Ising. Les solutions sont donc trouvées avec des
techniques d’approximations (comme la théorie des perturbations) ou en utilisant des simulations (par
exemple avec Monte-Carlo).

Deux de ces théories de perturbation seront abordées dans ce chapitre : la série en basse température
(β → ∞, T → 0) qui va permettre de faire des corrections en puissances de T , et celle en haute température
(β → 0, T → ∞) qui consistera à faire des corrections en puissances de β.

9.2.1 Série en basse température (d = 2, s = ±1)

On considère un réseau de N spins en 2D, valant s = ±1, avec des conditions aux limites périodiques.
On peut donc représenter le réseau par un tore comme sur la Fig.9.1 où les spins sont situés aux nœuds.
L’Hamiltonien d’un tel système est donné par :

H = −J
∑
⟨i,j⟩

SiSj (9.34)

En basse température (T ≈ 0), le système doit forcément être dans un état d’énergie minimale, cela veut
dire qu’il peut être dans deux configurations différentes : soit tous les spins valent s = 1, soit ils valent tous
s = −1. L’énergie pour ces configurations (à température proche de zéro) vaut donc:

E(T = 0) = −J2N (9.35)
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Où le facteur 2 provient du nombre de liens total entre les spins, donné par la moitié du nombre de voisins
pour ne pas compter deux fois chaque lien. On obtient une fonction de partition qui devrait être dominée
par ces deux configurations, qu’on calcule en factorisant ces dernières :

Z(β) = 2e2βJN

1 +N
(
e−2βJ

)4︸ ︷︷ ︸
1

+2N
(
e−2βJ

)6︸ ︷︷ ︸
2

+

(
N(N − 5)

2
+ 7N

)(
e−2βJ

)8
︸ ︷︷ ︸

3

+O
(
e−2βJ

)10
 (9.36)

Voyons comment chacun des termes est obtenu :

• Le terme 1 est obtenu en prenant une configuration où il n’y a que des spins s = 1, et en retournant
l’un d’entre eux (sflip = −1). Comme on le voit sur la Fig.9.11(a), cela affecte les 4 liens autour du
spin, leur énergie devient négative. On voit qu’il y a N configurations donnant le même résultat et le

facteur de correction devient donc : N
(
e−2βJ

)4
.

• L’ordre suivant (terme 2) est obtenu en retournant deux spins l’un à côté de l’autre. Il y a 2N telles
configurations équivalentes, et cela change le signe de l’énergie pour 6 liens différents, comme le montre

la figure Fig.9.11(b). Le facteur à ajouter est donc : 2N
(
e−2βJ

)6
.

((a)) ((b))

Figure 9.11: Réseaux de spins pour les termes 1(a) et 2(b)

• Pour avoir 8 liens d’énergie opposée (terme 3), il y a quatre types de configurations pour les N spins:
soit on retourne deux d’entre eux qui sont à plus de deux nœuds d’écart l’un de l’autre (Fig.9.12(a)),
soit on en retourne trois qui forment un angle comme sur la Fig.9.11(b), puis on peut en retourner
quatre qui forment un carré (Fig.9.12(c)), ou enfin on peut en retourner 3 qui forment une châıne

(Fig.9.12(d)).Le nombre de configurations équivalentes pour la première option est de N(N−5)
2 , car

pour placer le premier spin il y a N choix, mais ce placement restreint celui du second spin (excluant
5 positions), puis on divise par deux car on place une paire. Pour la seconde configuration, il y en a
4N , pour la troisième N , et enfin pour la dernière il y en a 2N , ce qui fait 7N au total.
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((a)) ((b))

((c)) ((d))

Figure 9.12: Réseaux de spins pour le terme 3

Si nous prenons le logarithme de la fonction de partition, nous obtenons l’équation suivante.

log(Z) = log(2) + 2NβJ︸ ︷︷ ︸
A

+log[1 + ...] (9.37)

= A+N(e−2βJ)4 + 2N(e−2βJ)6 + (2N +
N2

2
)(e−2βJ)8 − 1

2
N2(e−2βJ)8 +O(e−2βJ)10 (9.38)

On note que les termes ∝ N2 se simplifient. Ce n’est pas une cöıncidence, en effet, c’est là une conséquence
du Link-Cluster theorem, qui, de façon informelle, peut se résumer au fait que, dans le développement de
log(Z), seuls les diagrammes connectés comptent, impliquant l’extensivité de log(Z).
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Figure 9.13: Diagrammes représentant les contributions combinatoires à basses températures.(Wyart, Pac-
colat 2017)

9.2.2 Hautes Températures

Stricto sensu, le développement en hautes températures reviendrait à faire :

eβJSiSj = 1 + βJSiSj +
βJSiSj

2

2

+ ... (9.39)

Ce n’est pas ce qui nous intéresse ici. On cherche plutôt à développer en fonction de tanh(β). Dans ce but,
on se rappelle que :

eβJSiSj = cosh(βJ) + SiSj sinh(βJ) (9.40)

On obtient donc, comme fonction de partition :

Z =
∑
{S⃗}

∏
<i,j>

cosh(βJ) + SiSj sinh(βJ) (9.41)

= cosh2N (βJ)

∑
{S⃗}

∏
<i,j>

1 + SiSj tanh(βJ)

 (9.42)



Lecture 9: Systèmes en interaction en dimension finie 9-15

= cosh2N (βJ)
∑
{S⃗}

1 + ∑
<i,j>

SiSj tanh(βJ) +
∑

<i,j>,<k,l>

SiSjSkSl tanh
2(βJ) + ...

 (9.43)

Le calcul semble, de prime abord, complexe ; cependant, en appliquant la somme sur toutes les configurations,
on obtient :

Z = cosh2N (βJ)
[
2N +

∑
⟨i,j⟩

∑
{S⃗}

SiSj

 tanh(βJ)

+
∑

⟨i,j⟩,⟨k,l⟩

∑
{S⃗}

SiSjSkSl

 tanh2(βJ)

+
∑

⟨i,j⟩,⟨k,l⟩,⟨m,n⟩

∑
{S⃗}

SiSjSkSlSmSn

 tanh3(βJ)

+
∑

⟨i,j⟩,⟨k,l⟩,⟨m,n⟩,⟨o,p⟩

∑
{S⃗}

SiSjSkSlSmSnSoSp

 tanh4(βJ) + ...
]

(9.44)

Cependant, il apparâıt que les sommes sur les configurations sont toutes nulles avant l’ordre 4, car, pour
toutes les configurations possibles ayant une valeur multiplicative de spin −1, il en existe une autre ayant une
valeur multiplicative de leurs spins de 1. Cependant, à partir de l’ordre 4, cette configuration est possible
SiSjSjSkSkSlSlSi et n’est pas compensée. Notre fonction de partition devient donc :

Z = cosh2N (βJ)2N
[
1 +

∑
boucles

tanhl(βJ)
]

(9.45)

Avec l = ”taille de la boucle”. On peut ensuite développer cette série en comptant le nombre de boucles
possibles en fonction de leur taille, comme visible sur fig.9.14

Figure 9.14: Boucles possible de taille 4, 6 et 8

Ainsi, on obtient :

Z = cosh2N (βJ)2N
[
1 +N tanh4(βJ) + 2N tanh6(βJ) +

(
7N +

N(N − 5)

2

)
tanh8(βJ) + o

(
tanh10(βJ)

) ]
(9.46)
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À nouveau, on s’intéresse à log(Z), dont le développement en série de Taylor nous donne :

log(Z) = N
[
log (2 cosh2(βJ))

]
+N tanh4(βJ) + 2N tanh6(βJ) +

[(
7− 5

2

)
N +

N2

2

]
tanh8(βJ) (9.47)

− N2

2
tanh8(βJ) + o

(
tanh10(βJ)

)
(9.48)

On constate qu’à nouveau les termes ∝ N2 s’annulent, comme prédit par le théorème de Link-Cluster.
Remarque :Nous avons maintenant une bonne description du comportement de l’énergie libre f et de
l’énergie e à haute et basse température, schématisé en Fig.9.15. Cependant, leurs comportements pour
des températures intermédiaires ne sont pas forcément bien décrits par ces équations. Notamment, car en
passant de basse à haute température, ou inversement, il peut y avoir un changement de phase.

((a)) ((b))

Figure 9.15: Développement de basse et de haute température (basse température en jaune et haute
température en rouge) de l’énergie (a) et de l’énergie libre (b).

9.2.3 Dualité Krammers-Wannier

En comparant les développements en série en haute (9.46) et en basse température (9.36), on remarque que
les coefficients associés aux puissances de e−2βJ et tanh(βJ) (respectivement pour les séries en haute et en
basse température) sont égaux, au moins jusqu’à l’ordre 8. Par exemple, dans la série en basse température, le

coefficient associé à
(
e−2βJ

)4
est N , et dans la série en haute température, le coefficient associé à (tanh(βJ))

4

est également N . Dans les développements présentés, nous vérifions cette égalité jusqu’au huitième ordre.
Cependant, cette équivalence est vraie à tout ordre : les deux séries sont équivalentes à une constante et à
une évaluation près.

On définit la série :

S(y(β, J)) = 1 +Ny4 + 2Ny8 + (7N +N(N − 5)/2)y8 + · · · (9.49)

et on peut donc écrire les deux fonctions de partition en fonction de cette série :

Zβ≫1(β) = 2eNJ/βS(e−2βJ) (9.50)

Zβ≪1(β) = (coshβJ)2N2NS(tanhβJ) (9.51)
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Cette équivalence est appelée la dualité de Krammers-Wannier. Elle est valide uniquement pour le modèle
d’Ising à deux dimensions.

On rappelle qu’un coefficient d’ordre α de la série en basse température correspond au nombre de configu-
rations dans lesquelles α liaisons sont affectées. Les coefficients de la série en haute température représentent
le nombre de configurations permettant de former des boucles à α arêtes. La dualité de Krammers-Wannier
affirme que le comptage des configurations pour les hautes et basses températures est équivalent !

On peut représenter cela graphiquement :

• On trace un réseau carré (réseau 2) identique au réseau de spin initial (réseau 1) et on les superpose.

• On décale légèrement le réseau 2 de telle sorte que tous les liens du réseau 1 croisent les liens du réseau
2 (voir Fig. 9.16).

• On impose que les intersections entre chaque lien affecté du réseau 1 et le réseau 2 définissent les arêtes
d’une boucle (voir Fig. 9.16).

• Le nombre de liaisons affectées est identique au nombre d’arêtes de la boucle : le comptage est donc
équivalent !

Figure 9.16: Représentation de la dualité Krammers-Wannier pour un réseau carré

Dans la théorie de Krammers-Wannier, d’autres dualités existent selon le réseau considéré. Dans notre
cas, le réseau dual d’un réseau carré est également un réseau carré (et comme le comptage est réalisé deux
fois sur des réseaux carrés, les coefficients obtenus sont identiques), on appelle cela un réseau auto-dual.
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La plupart des réseaux ne sont pas auto-duals. Par exemple, le réseau dual d’un réseau triangulaire est un
réseau hexagonal (voir Fig. 9.17).

Figure 9.17: Réseau dual du réseau triangulaire [8]

Dans le modèle d’Ising en deux dimensions, il existe une transition de phase et donc une non analycité
de l’énergie libre à une température critique Tc. En écrivant le logarithme des fonctions de partition sous la
forme de série, on obtient

log(Zβ≫1)(β) = log(2)NJ/β + log(S(e−2βJ)) (9.52)

log(Zβ≪1)(β) = 2N log(coshβJ) +N log(2) + log(S(tanhβJ)) (9.53)

On voit alors que la non-analycité de l’énergie libre dans les deux cas provient de la non-analycité de
la série S (cosh et 1/β sont analytiques). Il existe donc un βc tel que S(e−2βcJ) et S(tanhβcJ) sont non
analytiques simultanément (la température critique est la même pour les deux approximations). En prenant
la série à l’infini (i.e. en sommant à l’infini), les deux évaluations de la série doivent être égales et la condition
de non analycité devient

e−2βcJ = tanhβcJ (9.54)

Cette expression est appelée relation d’auto-dualité.

En résolvant cette relation pour βc, on obtient que

βc =
1

2J
log(1 +

√
2) (9.55)

Tc =
J

kB

2

log(1 +
√
2)

(9.56)
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9.3 Matrice de transfert

On considère un réseau de N spins en une dimension avec des conditions aux bords périodiques (châıne de
spins). Le réseau de spin est soumis à un champ non nul h.

La fonction de partition en une dimension s’écrit :

Z(β) =
∑
{S⃗}

exp

βJ
∑
<i,j>

SiSj + βh
∑
i

Si

 (9.57)

Et comme les conditions aux bords sont périodiques, la somme
∑

<i,j> sur tous les voisinages peut s’écrire
explicitement et on a

Z(β) =
∑

S1=±1,···,SN=±1

exp

(
β

N∑
i=1

SiSi+1 + βh

N∑
i=1

Si

)
(9.58)

=
∑

S1=±1,···,SN=±1

N∏
i=1

exp

(
βSiSi+1 + β

h

2
(Si + Si+1)

)
(9.59)

On définit ensuite la matrice de transfert T par

Tαβ = exp

(
βJα+ β

h

2
(α+ β)

)
(9.60)

⇒ T =

[
eβ(J+h) e−βJ

e−βJ eβ(J−h)

]
(9.61)

ou α et β prennent les valeurs ±1. En utilisant cette matrice de transfert, on peut simplifier le calcul
de Z(β), car l’argument de l’exponentielle dans la fonction de partition ne peut prendre que quatre valeurs
possibles, qui correspondent aux éléments de la matrice de transfert T . La fonction de partition s’écrit alors
comme suit :

Z(β) =
∑

S1=±1,···,SN=±1

N∏
i=1

TSi,Si+1
, (9.62)

où l’on impose la condition périodique SN+1 = S1 (modulo N).

Cela permet de réécrire la fonction de partition de manière compacte. Prenons le cas particulier où
N = 3. Dans ce cas, on obtient :

Z(β) =
∑

S1,S2,S3

TS1,S2
TS2,S3

TS3,S1
. (9.63)

On remarque que cette expression peut être interprétée comme une trace de la matrice T 3, c’est-à-dire :

Z(β) = Tr(T 3). (9.64)
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Justification de cette réécriture :

Pour démontrer cela, développons l’expression de Tr(T 3) :

Tr(T 3) = Tr(T · T · T ). (9.65)

Par définition de la trace, cela revient à sommer les éléments diagonaux du produit matriciel, donc :

Tr(T 3) =
∑
α

(T · T · T )α,α. (9.66)

Développons l’élément diagonal (T · T · T )α,α :

(T · T · T )α,α =
∑
β,γ

Tα,βTβ,γTγ,α. (9.67)

En sommant sur tous les indices α, β, γ, on obtient :

Tr(T 3) =
∑
α,β,γ

Tα,βTβ,γTγ,α. (9.68)

C’est exactement la même expression que celle obtenue en écrivant directement Z(β) comme une somme
sur toutes les configurations S1, S2, S3.

Ainsi, par récurrence, on a :

Z(β) = Tr(TN ), (9.69)

Attention ! Cela n’est valable qu’en une dimension.

Il semblerait que nous ayons fait tout ceci pour calculer tout de même une quantité complexe, à savoir la
puissance N -ième d’une matrice arbitraire. Cependant, ici, nous utilisons un résultat important de la trace :

Tr(A) = Tr(B−1AB). (9.70)

Cela signifie que, sous un changement de base approprié, nous pouvons calculer cette quantité de manière
plus simple. En utilisant les outils d’algèbre linéaire, nous diagonaliserons T .

Tout se simplifie, car la puissance N -ième d’une matrice diagonale est simplement donnée par la puissance
N -ième de ses valeurs propres.

Preuve formelle :

Soit B la matrice de changement de base qui rend T diagonale, et soit A la matrice diagonale cor-
respondante. T est toujours diagonalisable car elle est symétrique (cf. Théorème spectral). On a alors
:

Tr(TN ) = Tr((B−1TB)N ). (9.71)

En utilisant la propriété des puissances, on peut écrire :
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(B−1TB)N = (B−1TB) · (B−1TB) · · · (B−1TB) = B−1ANB. (9.72)

Ainsi :

Tr(TN ) = Tr(B−1ANB). (9.73)

Puisque la trace est invariante par changement de base, on a :

Tr(TN ) = Tr(AN ). (9.74)

Or, A étant une matrice diagonale, elle s’écrit sous la forme :

A =

(
λ1 0
0 λ2

)
. (9.75)

La N -ième puissance de A est donnée par :

AN =

(
λN
1 0
0 λN

2

)
. (9.76)

Ainsi, la trace de AN est simplement la somme des éléments diagonaux de cette matrice :

Tr(AN ) = λN
1 + λN

2 . (9.77)

Cela nous permet d’écrire directement :

Z(β) = Tr(TN ) = λN
1 + λN

2 . (9.78)

Lorsque N → ∞ (cas de la limite thermodynamique), seule la valeur propre la plus grande contribue de
manière significative. En supposant sans perte de généralité que λ1 > λ2, on peut écrire :

Z(β) = λN
1

(
1 +

(
λ2

λ1

)N
)
. (9.79)

Pour les quantités moyennes physiques, on utilise :

log(Z)

N
= log(λ1) +

1

N
log

(
1 +

(
λ2

λ1

)N
)
. (9.80)

Lorsque N → ∞, le second terme tend vers zéro, et il reste :

log(Z)

N
→ log(λ1). (9.81)
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Une question naturelle qui pourrait se poser maintenant est : comment déterminer cette valeur propre,
que l’on sait être la plus grande entre les deux, sans avoir à calculer la seconde ? Il existe des méthodes
numériques (par exemple, en Python) et analytiques qui permettent de le faire sans grande difficulté.

D’ailleurs, analytiquement, il est souvent beaucoup plus simple de calculer uniquement la plus grande
valeur propre plutôt que toutes les valeurs propres.

Dans notre cas la matrice T est 2x2 donc simple, il suffit de donc de la diagonaliser pour obtenir ses deux
valeurs propres.

Pour trouver les valeurs propres λ1 et λ2 de T , on résout l’équation caractéristique :

det

(
exp(β(J + h))− λ exp(−2β)

exp(−2β) exp(β(J − h))− λ

)
= 0. (9.82)

Cela donne les valeurs propres :

λ± = exp(βJ)

[
cosh(βh)±

√
cosh2(βh)− exp(−4βJ)

]
. (9.83)

Dans le cas particulier où le champ h = 0, ces expressions se simplifient :

λ+ = cosh(βJ), λ− = sinh(βJ). (9.84)

Ainsi, on trouve que :

1

N
log(Z) = − F

NkBT
→ log(λ+), (9.85)

qui tend vers log(cosh(βJ)). Cela est extrêmement régulier et il n’y a rien d’intéressant qui se produit,
sauf à T = 0. Cependant, cette température est quasiment impossible à atteindre et sans intérêt pratique
dans notre monde. Il n’y a donc pas de transition de phase pour aucun T .

On aurait pu prédire ce résultat en remarquant que le modèle d’Ising en 1D, notamment les interactions
entre spins voisins (SiSi+1), est dual à un modèle de spins indépendants. Cela explique l’absence de transition
de phase.

Si l’on refait le même calcul qu’auparavant en considérant h ̸= 0, on obtient :

F

N
(β, h) = −J − kBT log

[
cosh

(
βh+

√
cosh2(βh)− 2e−2βJ sinh(2βJ)

)]
. (9.86)

Cela implique que l’aimantation par site est donnée par :

m =
M

N
=

1

βN

∂ log(Z)

∂h
, (9.87)

soit :

m =
sinh(βh)√

cosh2(βh)− 2e−2βJ sinh(2βJ)
. (9.88)

Quand h → 0+ ou h → 0−, m tend des deux côtés vers 0. Il n’y a donc pas de transition de phase, car il
n’existe aucune singularité intéressante pour tout β fini.
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9.4 Argument de Peierls:

L’argument de Peierls en dimension 1

L’argument de Peierls est une adaptation de l’argument de nucléation, mais appliqué spécifiquement à un
système unidimensionnel (d = 1). Il se base sur l’idée de considérer deux sous-systèmes ayant la même
énergie libre initiale. Cet argument apporte une explication plus spécifique sur la raison pour laquelle il
n’y a pas de transition de phase en dimension 1.

On suppose donc deux états macroscopiques ayant la même énergie libre F au départ. Cela implique que
δf = 0, où δf est la différence d’énergie libre volumique entre les deux états.

Lorsqu’une transition locale (comme la formation d’une gouttelette de l’état 2 dans l’état 1) se produit,
la variation d’énergie libre totale est donnée par :

∆F = Y · ℓd−1, (9.89)

où :

• ℓ est la taille (ou longueur) de la gouttelette,

• Y est la tension superficielle de l’interface entre les deux phases,

• d est la dimension du système.

Pour d > 1, la variation d’énergie libre ∆F crôıt avec ℓd−1, car l’énergie d’interface dépend de la surface
de la gouttelette. Cela signifie qu’une grande gouttelette (ℓ → ∞) coûtera une énergie ∆F très élevée. Cette
croissance rapide rend les transitions entre phases rares.

Pour qu’une transition de phase se produise, il faut une gouttelette de très grande taille, ce qui rend le
passage entre phases pratiquement impossible.

En conséquence, le temps moyen τ pour passer d’une phase à l’autre est donné par :

τ ∝ exp(βℓd−1), (9.90)

où β = 1
kBT . Lorsque d > 1, τ devient exponentiellement grand avec la taille ℓ, rendant le système piégé

dans une phase stable.

Pour d = 1, la variation d’énergie libre devient indépendante de la taille ℓ, car :

∆F = Y · ℓ0 = Y, (9.91)

c’est-à-dire une constante finie.

Cette valeur constante signifie que la formation d’une gouttelette ne coûte pas plus d’énergie, quelle que
soit sa taille.

Le temps moyen τ pour passer d’une phase à l’autre devient alors :

τ ∝ exp(β constante), (9.92)

Cela reste raisonnable (contrairement au cas d > 1) et permet au système de fluctuer librement entre les
deux états sans être emprisonné dans une phase particulière. Ainsi, le système peut osciller naturellement
entre les deux états macroscopiques, ce qui empêche l’apparition d’une transition de phase clairement définie.
Par conséquent, il n’y a pas de transition de phase en d = 1.
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9.5 Développement du viriel / de Mayer / Diagramme pour les
systèmes de particules

Nous avons vu comment effectuer des approximations pour des modèles de spins, mais il serait intéressant
de se demander s’il est possible d’appliquer une approche similaire à des systèmes plus physiques et concrets,
comme un système de particules. Par exemple, il serait pertinent de calculer des corrections au modèle du
gaz parfait. C’est précisément ce que nous allons aborder dans cette section.

Tout d’abord, plaçons-nous dans un espace tridimensionnel (3D) et considérons un système contenant N
particules, confiné dans un volume V à une température T . Nous avons déjà calculé plusieurs fois la fonction
de partition correspondante, donnée par :

Z(T, V,N) =

(
2πmkBT

h2

)− 3N
2

ZQ(T, V,N), (9.93)

où le premier terme représente l’intégrale sur les impulsions p, et le second terme, ZQ, est l’intégrale sur les
positions.

Plus précisément, ZQ s’écrit comme :

ZQ =
1

N !

∫
V

dx⃗1 . . . dx⃗N e−β
∑

(i,j) v(x⃗i,x⃗j), (9.94)

où la somme
∑

(i,j) parcourt tous les couples de particules (i, j). En général, on suppose que le potentiel

v(xi, xj) dépend uniquement de la distance entre les deux particules, soit :

v(xi, xj) = v(|xi − xj |) = v(d). (9.95)

Quelques exemples de tels potentiels sont donnés en Fig.9.18.

Figure 9.18: (a) Potentiel simplifié pour des sphères dures de rayon a/2 (b) Potentiel de Lennard-Jones
(”potentiel 12-6”) (c) Potentiel simplifié avec attraction

Regardons intuitivement ce que représentent ces les potentiels de Fig.9.18.
Le potentiel présenté en Fig.9.18(a) modélise le fait que les particules ne peuvent pas se chevaucher mais ne
prend en compte aucune aucune attraction entre les particules.
Le potentiel de Lennard-Jones(Fig.9.18(b)) montre un comportement répulsif quand les particules sont trop
proches l’une de l’autre (zone en ∼ 1/d12) et une attraction quand les particules ne sont pas trop proches
l’une de l’autre (zone en ∼ 1/d6). À grande distance le potentiel est simplement 0.
Cependant, un tel potentiel n’est pas toujours trivial à manipuler. Ainsi, on peut aussi le simplifier. Ceci
est présenté en Fig.9.18(c) qui ne possède que trois différentes valeurs. Le potentiel vaut : infini quand
les particules sont trop proches, une valeur négative (attraction) quand les particules sont proches l’une de
l’autre et 0 quand les particules sont éloignées.
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Revenons à l’intégrale ZQ. En développant l’exponentielle de (9.94) on obtient :

ZQ =
1

N !

∫
V

dx⃗1 . . . dx⃗N

∏
i<j

e−βvij =
1

N !

∫
V

dx⃗1 . . . dx⃗N

∏
i<j

(
1−

(
1− e−βvij

)︸ ︷︷ ︸
−fij

)
(9.96)

Où l’on a introduit la fonction fij = e−βvij − 1 (qui dépend toujours de xi et xj ; formellement on a
f(xi, xj) = e−βv(xi,xj) − 1. Cette fonction satisfait 0 ≤ fij ≤ 1 et fij = 0 pour β = 0.
On peut maintenant développer le produit dans l’intégrale de manière similaire à ce qui a été fait pour le
modèle d’Ising (??) pour obtenir :∏

i<j

(1 + fij) = 1 +
∑
i<j

fij +
∑

(i,j)(k,l)

fijfkl + · · · (9.97)

R C’est cela qui est appelé développement de Mayer.

En insérant le résultat précédent dans l’intégrale, il est maintenant possible de séparer l’intégrale par linéarité
entre les différents termes du développement.
Pour le premier terme (qui est simplement 1), on obtient donc :

Z
(1)
Q =

1

N !

∫
V

dx⃗1 . . . dx⃗N · 1 =
V N

N !
(9.98)

Ainsi, au premier ordre on obtient la fonction de partition d’un gaz parfait. En effet, la supposition pour le
gaz parfait est que les particules n’intéragissent pas entre elles. Dans le cas présent, cela signifie simplement
que fij = 0, ∀i, j.
Au second ordre, on obtient :

Z
(2)
Q =

1

N !

∫
V

dx⃗1 . . . dx⃗N ·
(
1 +

∑
i<j

fij

)
=

V N

N !
+

N(N − 1)

2
V N−1

∫
dx⃗1dx⃗2f12 (9.99)

=
V N

N !
+

N(N − 1)

2
V N−1

∫
=

V N

N !
+

N(N − 1)

2
V N−1 (9.100)

Dans le dernier passage, on a simplement utilisé le fait que les intégrales pour chacun des différents fij prend
la même valeur. On a donc choisi de garder le cas i = 1, j = 2. Le nombre de fois que cette valeur apparait
dans la somme correspond aux nombres de façons de choisir 2 éléments parmi N , i.e

(
N
2

)
= N(N − 1)/2. On

peut donc intégrer sur toutes les autres variables (x⃗3, . . . , x⃗N ) et on obtient le coefficient V N−1.
Les notations avec et servent à simplifier l’écriture de l’intégrale de f12 qui est ennuyante.
Elles rappellent également qu’il ne s’agit pour l’instant que de l’interaction entre deux particules. Pour

des ordres supérieurs (Z
(3)
Q , Z

(4)
Q , etc.) on trouvera des sommes du type

∑
(i,j)(k,l) fijfkl. Pour les termes

où, i ̸= k et j ̸= l on aura donc un terme en ( )2. Mais il y aura aussi les termes en fijfjk
qui correspondront donc cette fois à où il faut prendre en compte que la particule du milieu
interagit avec deux particules et non pas une seule. Ainsi à chaque nouvelle ordre on ajoute le nombre
d’interactions que peut avoir une seule particule avec les autres.
Il est évident que la complexité de ces intégrales augmente avec le nombre de particules. En effet, on
peut calculer analytiquement l’intégrale de la série (9.97) jusqu’à 4 particules. Ensuite il faut résoudre les
intégrales avec des méthodes numériques (de type Monte-Carlo par exemple).
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On peut donc faire cela à tous les ordres et on obtient à la fin

pV

NkBT
= 1 +

∞∑
k=2

Bk

(
N

V

)k−1

(9.101)

que l’on appelle le développement du viriel qui est donc une correction au modèle du gaz parfait en terme de

puissances de la densité (N/V ). Les coefficients Bk (ou B
(T )
k pour indiquer qu’ils dépendent dans la plupart

des cas de la température) sont appelés les coefficients du viriel ou coefficients viriaux. Ces coefficients sont
rapidement (quand on change d’ordre) très compliqués à calculer.
Dans le cas des sphères dures, B2 (i.e. dans notre notation diagrammatique) est le seul coefficient
qui est encore relativement facile à calculer.

Example 3 Calculons donc B2 pour un gaz de sphères dures en 3D.
On rappelle tout d’abord que le potentiel (Fig.9.18(a)) est donné par

v(r) =

{
∞ si r < a

0 sinon

Et donc la fonction f12 sera donnée par

f12(r) = e−βv − 1 =

{
−1 si r < a

0 sinon
(9.102)

On a donc finalement

B2 = =

∫
dx⃗1dx⃗2f12 = −2π

∫ ∞

0

(
e−βv(r) − 1

)
r2dr (9.103)

= −2π

∫ a

0

(−1)r2dr = 2π

[
1

3
r3
]a
0

=
2

3
πa3 (9.104)

ou dans la troisième égalité on est simplement passé en coordonnées sphériques et dans la quatrième on a
utilisé que la fonction f12 est non nulle uniquement dans l’intervalle [0, a]. ■

Pour les coefficients supérieurs à 2, on peut trouver des tables qui recensent ces valeurs.
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