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8.1 Transitions de phases

Une transition de phase correspond à une subite modification des propriétés macroscopiques d’un système
thermodynamique, liée à une réorganisation microscopique du système, lorsqu’un paramètre extérieur fran-
chit une valeur critique.

Il existe deux types de transitions de phases. Le premier type regroupe des phénomènes bien connus, tels
que la fusion ou l’évaporation. Il est possible de visualiser ce phénomène sur le diagramme P-V de la fig.8.1.
Ainsi, lorsque la température est suffisamment faible, tel que T < TC , où TC est appelée température critique,
(courbe bleue sur la fig.8.1), les phases entrent en zone de coexistence. Dans cette zone, le volume V change
drastiquement. Ce genre de discontinuité au temps critique indique qu’il existe une non-analyticité dans la
fonction d’état. Si une telle singularité est observée, la transition de phase est dite du premier ordre, ou
encore discontinue. Ce nom vient du fait que c’est l’une des dérivées premières qui présente une discontinuité.

Figure 8.1: Diagramme P, V pour plusieurs isothermes T > TC , T = TC et T < TC []

Un autre type de transition est celui observé dans des systèmes ferromagnétiques. Les matériaux comme le
fer ou le nickel possèdent certaines propriétés magnétiques. Cela est par exemple visible chez les aimants, qui,
au contact d’un objet en fer, restent collés dessus. En chauffant un matériau ferromagnétique, par exemple
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en mettant un clou en fer dans un champ magnétique B, et en le mettant en contact avec un briquet, le
matériau perd ses propriétés magnétiques, et peut alors se décoller de l’aimant. Cela est le cas pour tous les
matériaux ferromagnétiques en présence de hautes températures.

Pierre Curie, après plusieurs manipulations a montré la tendance de la magnétisation m en fonction de la
température T , visible sur la fig.8.2a. Il est alors observé qu’au-delà d’une certaine température TC , dite
température critique, ou de Curie, les propriétés magnétiques du matériau sont perdues.

Ici, la discontinuité est de second ordre. En effet, la dérivée ∂m
∂T en fonction de T n’est pas continûment

dérivable en Tc = 1 comme montre la fig.8.2a. Dans ce cas, on parle de transitions de second ordre, transitions
continues, ou encore de phénomènes critiques.

Dans les phénomènes ferromagnétiques, on observe aussi des transitions de premier ordre. En se plaçant à
température constante, tel que T < TC , et dans un champ extérieur h ̸= 0, le comportement de l’aimantation
en fonction du champ h, visible sur la fig.8.2b, présente un saut.

(a) (b)

Figure 8.2: (a) Transition de 2nd ordre, m en fonction de T (b) Transition De 1er Ordre, m en fonction de
h pour T < Tc fixe (T=0.8).

Pourquoi cette non-analycité devrait-elle étonner? Rappelons tout d’abord ce qu’est une fonction
d’état. L’énergie libre par exemple, est donnée, pour un système à N particules, par:

FN = − 1

β
logZN = − 1

β
log

∑
conf,2N

e−βEconf (8.1)

Mais alors, l’exponentielle est une fonction parfaitement analytique, une somme d’exponentielles aussi, et le
logarithme d’une telle somme reste analytique. Sauf que ce qui nous intéresse en Physique Statistique est la
limite thermodynamique, définie comme:

f = lim
N→∞

FN

N
(8.2)

Or, FN peut être analytique en tout N , rien ne dit que la limite ne reste analytique! Ce qui amène à une
première remarque: Une transition de phase ne peut arriver que dans la limite thermodynamique.
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On pourrait remarquer que dans une situation physique réelle nous ne sommes jamais VRAIMENT dans
la limite thermodynamique: un système contient toujours un nombre fini d’éléments (particules, spins...).
On ne devrait donc pas s’attendre à des discontinuités. En effet, avec des instruments de mesure ou calculs
numériques suffisamment précis nous pourrions toujours en réalité identifier que les transitions ne sont pas
discontinues: il y a un minuscule domaine de transition. Ceci dit, dans toutes les situations pratiques ces
détails échappent à l’observation et se placer dans la limite thermodynamique reste justifiable et utile.

8.2 Le modèle d’Ising/Curie-Weiss

Modèle d’Ising Curie-Weiss

Le modèle d’Ising est un modèle simplifié de la réalité où le magnétisme d’un seul atome est réduit à ±1 et
l’on note

Si = ±1 (“Spin d’Ising”) (8.3)

Le modèle d’Ising est pertinent pour les systèmes ayant deux dimensions, quand l’une des deux est très
anisotrope et que le moment s’organise dans une seule des dimensions. Pour le ferromagnétisme, on considère
qu’il y a probablement une interaction entre les voisins, faisant que les spins voisins veulent être alignés dans
la même direction. Le modèle de Curie-Weiss suppose que l’on a une force à très longue portée et que les
spins interagissent tous entre eux :

∀i, j = 1, ..., N, Eij = −JSiSj , Curie-Weiss (8.4)

Ainsi à température nulle les deux spins sont de même signe et à température infinie l’énergie ne compte
pas donc les quatre configurations sont équiprobables. Le modèle est facile à résoudre mais une mauvaise
représentation de la réalité car l’interaction est en vérité très locale. C’est un modèle de type “Champ
moyen”, ce qui veut dire que sur un réseau, l’approximation de champ moyen donne le même genre de
résultat.

Ainsi les spins Si = ±1, ∀i, j = 1, ..., N, donnent 2N états qui sont les positions des spins. L’Hamiltonien
est alors

H =

− 1

2N

∑
ij

SiSj

− h
∑
i

Si (8.5)

Le terme 1/N permet d’avoir une énergie extensive. Si tous les spins sont 1, l’énergie est d’ordre N. Dans le
cas où il y a un champ magnétique on rajoute le terme −h

∑
i Si. Comme nous sommes dans un formalisme

canonique :

ZN (β, h) =
∑

2Nconfigurations

e−βH[conf ] =
∑
Si

e
β

2N

∑
i,j SiSj+βh

∑
i Si (8.6)

Grâce au modèle utilisé, chaque élément interagit avec chaque autre, il est donc possible d’introduire

S̄ =
1

N

∑
i

Si, S̄2 =
1

N2

∑
ij

SiSj ,
∑
{S}

=
∑
S̄

∑
{S|S̄}

(8.7)

Il vient alors que :

ZN (β, h) =
∑
{S̄}

e
βN
2 S̄2+βhS̄N (8.8)
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Le Hamiltonien ne dépend que de la valeur moyenne de S et plus des Si. C’est donc la somme sur toutes les
configurations, donc les valeurs possibles de S̄ du nombre de façons de réaliser S̄ que l’on définit Ω(S̄) :

Ω(S̄) = nombre de façons d’avoir en moyenne S̄ avec N spins (8.9)

ZN (β, h) =
∑
S̄

Ω(S̄)eβ
N
2 S̄2+βhS̄N =

∑
S̄

(
N

N+

)
eβ

N
2 S̄2+βhS̄N (8.10)

Où N+ est le nombre de spins positifs qui donne S̄ et S̄ est le spin moyen. Notons que cette formule, qui
est encore exacte, n’est pas si compliquée et peut être évaluée numériquement (beaucoup de fois) par un
ordinateur. On sait aussi que le nombre de façons d’obtenir S̄ défini comme Ω(S̄) =

(
N
N+

)
est borné :

eNH(S̄)

N + 1
≤ Ω(S̄) ≤ eNH(S̄)

N
(8.11)

Avec la fonction entropie H(x) définie comme :

H(x) = −1 + x

2
log

(
1 + x

2

)
− 1− x

2
log

(
1− x

2

)
(8.12)

Alors ZN (β, h) est également borné par

1

N + 1

1∑
S̄=−1,δS̄=2/N

eN(βS̄2/2+βhS̄+H(S̄)) ≤ ZN (β, h) ≤ 1

N

1∑
S̄=−1

eN(βS̄2/2+βhS̄+H(S̄)) (8.13)

Ainsi en prenant le logarithme

1

N
log

1∑
S̄=−1

eN(βS̄/2+βh+H(S̄)) +O

(
logN

N

)
≤ logZN (β, h)

N
≤ 1

N
log

1∑
S̄=−1

eN(βS̄/2+βh+H(S̄)) +O

(
logN

N

)
(8.14)

Donc il est possible de trouver la limite de logZN (β, h)/N en l’infini en utilisant l’intégrale de Laplace

1

N
log
∑
S̄

eNϕ(S̄) avec ϕ(S̄) =
β

2
S̄2 + βhS̄ +H(S̄) (8.15)

Ainsi vient le résultat

lim
N→∞

logZN (β, h)

N
= max

m∈[−1,1]

[
βm2

2
+ βhm+H(m)

]
(8.16)

Remarque 1: En calculant

1

Nβ
∂hlog(Z) =

1

NβZ

∑
{c}

β(
∑
i

Si)e
−βH =

1

N
⟨
∑
i

Si⟩ = magnétisation moyenne (8.17)

Nous obtenons exactement ce que l’on cherchait, une description du comportement moyen de la magnétisation
du système, qui nous est donné par une dérivée de l’énergie libre.
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Remarque 2: Les termes de la somme dans l’Eq.(8.10), qui donnent les ”poids” pour un S̄ donné,
peuvent également être bornés:

P (S̄ = m) =
1

Z
Ω(m)eβNm2/2+βNhm (8.18)

=⇒ 1

N + 1

1

Z
eβNm2/2+βNhm+βNH(m) ≤ P (S̄ = m) ≤ 1

N

1

Z
eβNm2/2+βNhm+βNH(m) (8.19)

=⇒ lim
N→∞

(
1

N
logP (S̄ = m)

)
= ϕ(m)− ϕ(m∗) (8.20)

=⇒ P (S̄ = m) ≍ eN [ϕ(m)−ϕ(m∗)] (8.21)

donc la probabilité de trouver une magnétisation m différente de m∗ se comporte asymptotiquement comme
une fonction de grande déviation.

Figure 8.3: Fonction de grande déviation pour T > TC , T = TC et T < TC en fonction de m pour un
champ h = 0[]
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Figure 8.4: [ref: cour]

8.3 Analyse des états stables du système

Pour trouver les états stables il nous faut identifier les maximas de la fonction ϕ(m) car à cause de
l’exponentielle, dans la limite, ils dominent.

∂ϕ(m)

∂m
= βm+ βh+

∂H(m)

∂m
= 0 (8.22)

=⇒ β(m+ h) = atanh(m) (8.23)

On voit donc que dans ce modèle, la magnétisation m∗ à l’équilibre dans un champ magnétique externe h
et à température T est fixée par l’équation de Curie-Weiss (dite aussi auto-consistante):

m∗ = tanh

(
m∗ + h

T

)
(8.24)

Cette équation ne peut pas être inversée pour isoler une variable sans perdre de solutions, il est plus
commode de résoudre graphiquement en relevant les points auxquels les courbes f1(m) = m et f2(m) =
tanh

(
m+h
T

)
se croisent. La figure 8.5 montre ces solutions, nous y remarquons que pour T < 1 il y a

3 solutions, pour T ≥ 1 la seule solution est m∗ = 0. La présence de plusieurs minimums implique que
l’énergie libre n’est pas un fonction convexe, ce qui va faire apparâıtre une non-équivalence des ensembles
thermodynamiques. Reprenons l’expression de l’énergie libre donnée par l’équation 8.16, nous définissons de
plus la fonction fm(m) = − 1

2m
2 −H(m)T qui est l’énergie libre du système si h = 0. L’énergie libre peut

alors se réécrire :

f(h, β) = min
m∈[−1,1]

(fm(m,β)−mh)

Nous reconnaissons que f(h, β) est la transformée de Legendre de fm(m).

Remarque 1

−∂f

∂h
= m⋆
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On peut prouver cette relation avec des dérivées en chaines en faisant attention au fait que dans la formule
de l’énergie libre f(h, β) on a fm(m(h, β), β)

−∂f(h, β)

∂h
=

∂fm
∂h

∂m

∂h
−m⋆ − h

∂m

∂h
=

∂m

∂h

[
∂fm(m)

∂m
− h

]
−m⋆ = −m⋆

Pour la dernière partie du calcul il faut se rappeler que nous avons effectué une transformée de Legendre,
défini par le minimum d’une fonction. Donc la dérivée de celle-ci est bien nulle.

∂

∂m
[
fm(m)

∂m
− h] =

∂fm(m)

∂m
− h = 0

Remarque 2 On pourrait croire que

fm(m,β) = minh[fh(h, β) +mh]

Attention : on ne peut pas dire ça ici parce que la fonction f(h, β) n’est pas convexe comme vu précédemment.
La double transformée de Legendre de f(h, β) donne son enveloppe convexe. Puisqu’il n’y a pas de bijection
entre les ensembles, ces derniers ne sont pas équivalents.

Remarque 3
∂fm(m)

∂m
= h

On peut le prouver avec le même raisonnement que précédemment.

-1 -0.5 0 0.5 1
m

-1

-0.5

0

0.5

1

f
(m

)

f1(m) = m
f2(m;h = 0; T = 0)
f2(m;h = 0; T = 0:5)
f2(m;h = 0; T = 1)
f2(m;h = 0; T = 1:5)
f2(m;h = 0; T = 2)
f2(m;h = 0; T = 3)

Figure 8.5: Les croisement avec f1(m) sont les solutionsm∗ pour différentes valeurs de T à champ magnétique
externe h = 0

Si on revient sur ce que l’on a vu précédemment. Lorsque nous étudions m⋆ en fonction de T , nous
observons une fonction continue avec une transition de deuxième ordre (8.2a). et en regardant m⋆ en
fonction de T , nous observons une fonction avec une transition de premier ordre (8.2b).

Rappel : nous obtenons une transition de premier ordre, car la fonction étudié a deux minimums locaux.
et quand h augmente la position du maximum réel passe d’un coup d’une valeur négative à une valeur
positive. Cela explique la discontinuité de la transition de second ordre.
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Or nous sommes dans une situation où il y a des maximums locaux. Lorsque h augmente la fonction
passe par différents états. Au départ (h croissant) la fonction a un seul maximum. la phase de transition
de 1 à 2 maximums s’appelle la spinodale , après cela la fonction a 2 maximums locaux. Ensuite, le pseudo-
maximums devient le vrai maximums (après le saut) puis on a de nouveau le passage de la spinodale. Dans
la région centrale, entre les deux spinodales il y a 3 solutions potentielles, je cherche la bonne solution.

Classification de Landau Voir les transitions de phase comme étant les maximisations d’un certain
potentiel donne lieu à une classification valable tout le temps (avec l’image ”champ moyen”, presque tout
le temps sinon). C’est ce qu’on appelle la classification de Landau. Si l’état initial du système maximise le
potentiel et soudainement n’est plus un maximum et change donc spontanément, il s’agit d’une transition
continue. Si une nouvelle solution (maximum local) apparâıt et les deux solutions se croisent, il s’agit d’une
transition discontinue. Cette classification est due à Lev Landau, qui a développé une théorie générale des
transitions de phase.

Théorème : Loi des aires ou Construction de Maxwell Nous sommes dans le cas où il y a 3 solutions,
ainsi nous avons une fonction h(m) qui coupe 3 fois l’axe m. On dénote les 3 solutions m−, m0 et m+. L’aire
sous la courbe entre m− et m0 est A1, entre m0 et m+ est A2.

Alors,

A1 = A2

Preuve

A1 =

∫ m0

m−

h(m)dm (8.25)

=

∫ m0

m−

∂fm(m)

∂m
dm = [fm(m)]m0

m−
(8.26)

= fm(m0)− fm(m+) (8.27)

de la même manière

A2 = fm(m0)− fm(m+) (8.28)

Les deux aires sont égales lorsque fm(m−) = fm(m+) le moment où les deux maximums se croisent.

Exemple : modèle de Van der Waals Le cas du modèle de Van der Waals est une application de cette
loi des aires.
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Figure 8.6: Isothermes du gaz de Van der Waals

8.4 Brisure Spontanée de symétrie

Le modèle de Curie-Weiss illustre bien le phénomène de brisure spontanée de symétrie. Dans ce cas, le
système a tendance à rester sur un état qui minimise localement l’énergie libre malgré la présence d’autres
minimums d’énergie libre. Pour le champ magnétique externe h = 0 et une température T < TC , on a
deux minimums m+ et m− de l’énergie libre avec f(m∗) = f(m+) = f(m−). Les deux états sont alors
équiprobables puisque P(S̄ = m) ≍ e−(N(f(m)−f(m∗))), pourtant la probabilité qu’un système mesuré dans
l’état s+ passe dans l’état s− (ou vice-versa) est très faible. Ceci arrive parce que le système doit, pour
passer d’un état à un autre, passer par des états intermédiaires qui sont eux exponentiellement rares. Si
pour passer m+ à m−, le minimum d’énergie libre par lequel il faut passer est donné par f(mmax), en notant
∆f = f(mmax)− f(m∗), il suit que:

Pm+→m− ∝ e−N∆f (8.29)

et le temps nécessaire au passage d’une barrière d’énergie libre ∆f est τ donné par:

τ ∝ eN∆f (8.30)

Ce dernier point est l’énoncé de la loi d’Arrhenius.

Ici encore nous voyons une limitation du modèle, car en réalité nous observons des temps de transitions
d’échelle raisonnable, qui ne sont pas exponentiels en N . L’hypothèse suspicieuse est celle de l’interaction
entre toutes deux particules du réseau.

8.4.1 Métastabilité

Dans le modèle de Curie-Weiss, la métastabilité se manifeste comme une conséquence directe de la structure
de l’énergie libre f(m). Si depuis un minimum local le système doit passer une barrière d’énergie libre ∆f
pour atteindre un autre minimum local, le temps nécessaire à cette transition sera proportionnel à eN∆f par
la loi d’Arrhenius. Il est donc possible pour un système dans un état qui est un minimum local de l’énergie
libre d’y rester pour un temps exponentiellement grand en N . L’état est alors dit métastable parce que le
système a tendance à rester dans cet état sans pour autant qu’il soit le minimum global de l’énergie libre.
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Dans la région spinodale, où il existe trois solutions, la dynamique du système devient particulièrement
intéressante. Si l’on démarre dans un minimum local, le système y reste piégé pour un temps exponentielle-
ment long, même si ce n’est pas l’état d’équilibre global. Ce phénomène est particulièrement visible dans les
transitions de premier ordre, où les minima se croisent mais continuent d’exister pendant un certain temps
après leur croisement.

Cette métastabilité conduit à l’hystérése, où l’état du système dépend de son histoire. Par exemple, en
partant d’un champ h très positif et en le diminuant lentement, le système suit une trajectoire différente de
celle qu’il suit lorsqu’on augmente le champ depuis des valeurs très négatives. Le système ne saute d’un état
à l’autre qu’aux points spinodaux, où le minimum local disparâıt complètement.

Ce phénomène, bien que surestimé dans le modèle de champ moyen en termes de temps de transition,
est observé dans de nombreux systèmes physiques. Par exemple, on peut observer :

• de l’eau surfondue (liquide en dessous de 0°C)

• des solides qui restent solides au-dessus de leur point de transition

Il est important de noter que dans les systèmes réels en dimension finie, les temps de transition sont
généralement plus courts que ceux prédits par le modèle de champ moyen, mais le phénomène de métastabilité
reste néanmoins observable et pertinent.

8.5 Approximation de champ moyen

Le modèle de Curie-Weiss fait l’hypothèse suivante:

H = −α
∑
i,j

SiSj = −αN
∑(

S̄

N

)2

(8.31)

Ceci est donc beaucoup plus simple à résoudre, mais n’est manifestement pas physique, car les interactions
réelles entre spins sont d’origine quantique et électromagnétique et décroissent avec la distance.

Nous aimerions désormais partir de modèles plus proches de ce qu’on attend d’un système ferromagnétique
réel, mais quand même calculer sa fonction de partition de manière simple, avec une approximation. Pour
ce faire, il existe toujours un type d’approximation qui, même s’il n’est pas physique au départ, produit
des résultats similaires au modèle de Curie-Weiss. C’est ce qu’on appelle l’approximation de champ moyen.
Le modèle de Curie-Weiss est souvent appelé un ”modèle champ moyen”. Un modèle champ moyen est un
modèle où l’approximation de champ moyen est exacte.

8.5.1 Le modèle d’Ising

Le modèle d’Ising doit être de dimension finie. En général, les objets sont en 3D. Un modèle plus pertinent
donne l’hamiltonien

H = −
∑
⟨i,j⟩

JSiSj − h
∑
i

Si (8.32)

où le symbole ⟨i, j⟩ signifie que la somme est appliquée sur les i et j voisins sur un réseau.

Le modèle peut aussi être représenté en 2D (un matériel ferromagnétique étalé sur une couche) ou en 1D
(une ligne composée de spins). Dans ce modèle, les spins interagissent uniquement avec leurs voisins de
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réseau, ce qui est plus proche de la réalité que lorsqu’ils interagissent avec tous les autres spins du réseau.
Le modèle de Curie-Weiss est un modèle d’Ising de dimension infinie car l’interaction d’un spin se fait avec
tous les autres, il n’est donc pas très physique. Cependant, on comprend très bien le modèle d’Ising pour
des dimensions supérieures à 3 (Le modèle est extrêmement dur à résoudre en dimension 3).

On s’intéresse donc au problème suivant :

Z(β, h) =
∑
{S⃗}

e−βH =
∑
{S⃗}

e
∑

⟨i,j⟩ JSiSj−h
∑

i Si (8.33)

où la somme se fait sur les 2N configuration de spins. Pour calculer Z, l’astuce de dire que l’hamiltonien
ne dépend que de la valeur moyenne des spin ne marche pas dans ce cas car l’hamiltonien se calcule sur les
voisins et non l’ensemble des spins. La somme dans l’hamiltonien peut être calculée en 1D et il existe aussi
une solution exacte en 2D, sinon ils est très difficile de calculer l’hamiltonien.

Il existe une approximation sous laquelle l’énergie libre du modèle d’Ising en dimension finie est exactement
donnée à une constante près par la solution du modèle du Curie-Weiss.

Il y a deux méthode différentes pour y arriver.

8.5.2 Méthode 1: Méthode Variationnelle

Dans la méthode variationnelle, plutôt que de regarder la réalité qui est donnée par

PB(S⃗) =
1

Z
e−βH(S⃗) (8.34)

où PB(S⃗) est la probabilité de Boltzmann, on va essayer de deviner cette probabilité. On cherche donc un

”Ansatz” que l’on notera par PGuess(S⃗) de sorte à ce qu’elle soit le plus proche possible de PB(S⃗).

Definition 8.1 (Énergie libre de Gibbs)

L’Énergie libre de Gibbs est une fonctionnelle notée FGibbs.

FGibbs = ⟨H⟩PGuess
− TH(PGuess) (8.35)

Ici, ⟨H⟩PGuess
signifie que l’énergie est moyennée en utilisant la probabilité PGuess que l’on suppose et

H(PGuess) est l’entropie de Shannon associée à PGuess.

L’énergie libre de Gibbs est un concept utile grace au théorème suivant :

Theorem 8.2 (Inégalité variationnelle)

∀PGuess :

(i) F ≤ FGibbs(PGuess)

(ii) F = FGibbs(PGuess) ⇐⇒ PGuess = PB
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Proof 1 〈
log
[
PB(S⃗)

]〉
PGuess

= −β⟨H⟩PGuess
− log(Z) (8.36)

log(Z) sort de la moyenne car il ne dépend pas de S⃗. Il vient ensuite :

F = −T log(Z) = ⟨H⟩PGuess
+ T

〈
log
[
PB(S⃗)

]〉
PGuess

(8.37)

Ensuite, l’on va ajouter et enlever l’entropie de Boltzmann :

F = ⟨H⟩PGuess
− TH(PGuess) + T

[〈
log
[
PB(S⃗)

]〉
PGuess

+H(PGuess)

]
(8.38)

On retrouve l’expression de l’énergie libre de Gibbs et on développe les autres termes :

F = FGibbs + T

[∫
PGuess(S⃗) log

(
PB(S⃗)

)
dS⃗ −

∫
PGuess(S⃗) log

(
PGuess(S⃗)

)
dS⃗

]
(8.39)

on regroupe les deux intégrales, ce qui va faire apparâıtre la divergence de Kullback-Leibler notée DKL :

F = FGibbs − T

∫
PGuess(S⃗) log

(
PGuess(S⃗)

PB(S⃗)

)
dS = FGibbs − TDKL(PGuess||PB) (8.40)

Pour conclure la preuve, on rappelle les propriétés de DKL(p||q) :

(i) DKL(p||q) ≥ 0

(ii) DKL(p||q) = 0 ⇐⇒ p = q

On obtient alors l’inégalité variationnelle souhaitée.

R La preuve est réalisée en faisant les calculs avec les spins, mais ce raisonnement peut s’appliquer pour
tous les systèmes.

8.5.3 Méthode 2: Approximation champ moyen

L’approximation champ moyen consiste à faire un ”Guess” PGuess qui soit simple, homogène et factorisé.
On suppose donc que tous les spins sont indépendants. On a alors :

PGuess(S⃗) =

N∏
i=1

(
1 +mi

2
δ(Si − 1) +

1−mi

2
δ(Si + 1)

)
(8.41)

où tous les mi = m car la probabilité est identique pour tous les spins car ils sont indépendants. PGuess est
homogène car la probabilité est identique pour tous les spins, factorisée car les Si n’interagissent pas avec
d’autres spins, et simple car le produit ne dépend que d’un paramètre. Il faut maintenant calculer l’énergie
libre de Gibbs :

⟨H⟩PGuess
=

∫ −J

2

∑
i

∑
j∈∂i

SiSj − h
∑
i

Si

 (8.42)
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où j ∈ ∂i signifie les j dans le voisinage de i. Comme tous les spins sont indépendant, l’expression précédente
fais intervenir la valeur moyenne de chaque spin. Il vient :

⟨H⟩PGuess
= −J

2
Ncm2 − hNm (8.43)

où c est le nombre de voisins.

On veut maintenant calculer l’entropie. Si P (S1, . . . , SN ) =
∏N

i=1 Q(Si), alors H(P ) =
∑N

i=1 H(Qi). Ainsi :∫
p log(p) = −N

[
1 +m

2
log

(
1 +m

2

)
+

1−m

2
log

(
1−m

2

)]
= HBin(m) (8.44)

L’énergie libre de Gibbs par spin est donc donnée par :

1

N
FGibbs(m) = −Jc

2
m2 − hm+ THBin(m) (8.45)

La meilleure énergie libre de Gibbs correspond au minimum sur le paramètre !

fApprox
C.M (h, β) = min

h

[
−Jc

2
m2 − hm+ THBin(m)

]
(8.46)

Le paramètre m∗ qui minimise l’énergie libre de Gibbs est

m∗ = tanh(β(Jcm∗ + h)) (8.47)

L’approximation champ moyen peut se voir de la manière suivante, reprenons l’experession de l’hamiltonien

H = −
∑
i

JSi

∑
j∈∂i

Sj − h
∑
i

Si =
∑
i

−JSi

∑
j∈∂i

Sj︸ ︷︷ ︸
(∗)

−hSi

 (8.48)

On remplace (∗) par leur valeur moyenne, ce qui donne :

H =
∑
i

(−JSih
eff), heff = h+ cm (8.49)

On peut alors calculer la valeur moyenne de Si :

m = S̄i =
eβ[

Jc
2 +h] − e−β[ Jc

2 +h]

eβ[
Jc
2 +h] + e−β[ Jc

2 +h]
= tanh[β(Jcm+ h)] (8.50)

8.6 Gaz de particules en champ moyen

Soient N particules de masse m et de vecteur de vitesse p⃗ et l’énergie cinétique Ec =
|p⃗|
2m . On définit le poten-

tiel U(x⃗i, x⃗j) ≡ U(|x⃗i− x⃗j |). Le Hamiltonien s’écrit H
(
{x⃗i}Ni=1), {p⃗i}Ni=1

)
=
∑N

i=1
|p⃗i|2
2m +

∑N
i=1

∑N
j>i U(|x⃗j−

x⃗i|). Pour que le modèle soit réaliste physiquement, il doit prendre en compte le fait que les particules sont
solides et ne peuvent pas se superposer. Nous imposons cette condition en précisant que pour un certain r0,
U(|x⃗i − x⃗j |< r0) = ∞, nous définissions aussi V0 = 4

3πr
3
0 qui est le volume occupé par une particule. Le but

est de calculer la fonction de partition du système :
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ZN (β) =
1

h3N

∫
ΠN

i=1dx⃗iΠ
N
i=1dp⃗ie

−βH({x⃗i}N
i=1),{p⃗i}N

i=1)

=
1

N !

(√
2πmkBT

h

)3N ∫
ΠN

i=1dx⃗ie
−β

∑N
i=1

∑N
j>i U(|x⃗j−x⃗i|) =

1

N !

(√
2πmkBT

h

)3N

Q(β)

(8.51)

La partie cinétique du Hamiltonien est une intégrale Gaussienne qui peut être facilement calculée, c’est
l’intégrale sur les positions Q(β) appelée intégrale de configuration qui peut être difficile selon la forme du
potentiel. Dans le cas U(x⃗i, x⃗j) = 0,∀i, j le cas du gaz parfait est retrouvé et Q(β) = V N . Pour un potentiel
plus compliqué, c’est ici qu’il faut utiliser l’approximation en champ moyen pour simplifier le potentiel :∑

i,j

U(|x⃗j − x⃗i|) ≈
1

V

∑
i,j

∫
V

dx⃗jU(|x⃗j − x⃗i|) =
N

2V

∑
i

∫
V

dx⃗U(|x⃗− x⃗i|) = − α

V
N2 (8.52)

D’abord, nous approximons le potentiel total par la somme des potentiels moyens de chaque particule indi-
viduelle. En négligeant les effets de bord et en supposant une certaine homogénéité, il est ensuite possible
de dire que l’intégrale en x⃗ est indépendante de la valeur de x⃗i et vaut donc une constante −2α (le signe
négatif est ajouté arbitrairement pour se rappeler que l’énergie est négative). Puisque U(|x⃗i− x⃗j |< r0) = ∞,
exp (−βU(|x⃗i − x⃗j |< r0)) = 0, l’intégration peut donc être réduite de V à un sous-volume V \ V0 exclu-
ant le volume occupé par la particule en x⃗i. Cette approximation peut être substituée dans l’intégrale de
configuration qui n’est plus que le produit de N intégrales d’une constante sur un volume V − V0 :

Q(β) = ΠN
i=1

∫
V \V0

dx⃗ie
− α

V N2

= e
− α

V N2

(V − V0)
N

(8.53)

À l’aide de cette fonction de partition nous pouvons calculer la pression P = −∂F/∂V . On obtient alors
l’équation suivante: (

P +
αN2

V 2

)
(V −Nv0) = NRT (8.54)

Qui est l’équation d’état du gaz de Van der Waals. Cette équation ressemble à celle d’un gaz parfait, mais
c’est un meilleur modèle car il prédit notamment les transitions d’état liquide-gaz.
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