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Lecture 8: Systemes en interaction et transitions de phases
Professeur: Florent Krzakala Scribes: Alexandre Nozet, Loona Clet, Célia Budelot, Léo Martin, Adam Sch

8.1 Transitions de phases

Une transition de phase correspond a une subite modification des propriétés macroscopiques d’un systeme
thermodynamique, liée a une réorganisation microscopique du systeéme, lorsqu’un parametre extérieur fran-
chit une valeur critique.

Il existe deux types de transitions de phases. Le premier type regroupe des phénomenes bien connus, tels
que la fusion ou I’évaporation. Il est possible de visualiser ce phénomene sur le diagramme P-V de la fig.8.1.
Ainsi, lorsque la température est suffisamment faible, tel que T' < T, ou T est appelée température critique,
(courbe bleue sur la fig.8.1), les phases entrent en zone de coexistence. Dans cette zone, le volume V' change
drastiquement. Ce genre de discontinuité au temps critique indique qu’il existe une non-analyticité dans la
fonction d’état. Si une telle singularité est observée, la transition de phase est dite du premier ordre, ou
encore discontinue. Ce nom vient du fait que c’est I'une des dérivées premieres qui présente une discontinuité.
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Figure 8.1: Diagramme P,V pour plusieurs isothermes T'> To, T =Tc et T < T¢ |
Un autre type de transition est celui observé dans des systémes ferromagnétiques. Les matériaux comme le

fer ou le nickel possedent certaines propriétés magnétiques. Cela est par exemple visible chez les aimants, qui,
au contact d’un objet en fer, restent collés dessus. En chauffant un matériau ferromagnétique, par exemple
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en mettant un clou en fer dans un champ magnétique B, et en le mettant en contact avec un briquet, le
matériau perd ses propriétés magnétiques, et peut alors se décoller de 'aimant. Cela est le cas pour tous les
matériaux ferromagnétiques en présence de hautes températures.

Pierre Curie, apres plusieurs manipulations a montré la tendance de la magnétisation m en fonction de la
température T, visible sur la fig.8.2a. Il est alors observé qu’au-dela d’une certaine température T, dite
température critique, ou de Curie, les propriétés magnétiques du matériau sont perdues.

Ici, la discontinuité est de second ordre. En effet, la dérivée g—’?[? en fonction de T n’est pas continiment
dérivable en T, = 1 comme montre la fig.8.2a. Dans ce cas, on parle de transitions de second ordre, transitions
continues, ou encore de phénomenes critiques.

Dans les phénomenes ferromagnétiques, on observe aussi des transitions de premier ordre. En se placant a
température constante, tel que T' < T, et dans un champ extérieur h # 0, le comportement de I’aimantation
en fonction du champ h, visible sur la fig.8.2b, présente un saut.
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Figure 8.2: (a) Transition de 2nd ordre, m en fonction de T' (b) Transition De ler Ordre, m en fonction de
h pour T < T, fixe (I'=0.8).

—0.50 A

—0.75 A

—1.00 A

Pourquoi cette non-analycité devrait-elle étonner? Rappelons tout d’abord ce qu’est une fonction
d’état. L’énergie libre par exemple, est donnée, pour un systeme a N particules, par:

1

Fy = 3

1
logZN:—Blog Z e PEBeons (8.1)
conf,2N

Mais alors, I’exponentielle est une fonction parfaitement analytique, une somme d’exponentielles aussi, et le
logarithme d’une telle somme reste analytique. Sauf que ce qui nous intéresse en Physique Statistique est la
limite thermodynamique, définie comme:

. Fy
F=Jm (8.2)

Or, Fy peut étre analytique en tout N, rien ne dit que la limite ne reste analytique! Ce qui améne & une
premiere remarque: Une transition de phase ne peut arriver que dans la limite thermodynamique.
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On pourrait remarquer que dans une situation physique réelle nous ne sommes jamais VRAIMENT dans
la limite thermodynamique: un systéme contient toujours un nombre fini d’éléments (particules, spins...).
On ne devrait donc pas s’attendre a des discontinuités. En effet, avec des instruments de mesure ou calculs
numériques suffisamment précis nous pourrions toujours en réalité identifier que les transitions ne sont pas
discontinues: il y a un minuscule domaine de transition. Ceci dit, dans toutes les situations pratiques ces
détails échappent & I’observation et se placer dans la limite thermodynamique reste justifiable et utile.

8.2 Le modele d’Ising/Curie-Weiss

Modele d’Ising Curie-Weiss

Le modele d’Ising est un modele simplifié de la réalité ou le magnétisme d’un seul atome est réduit a +1 et
I’on note

S; ==+1 (“Spin d’Ising”) (8.3)

Le modele d’Ising est pertinent pour les systemes ayant deux dimensions, quand 'une des deux est tres
anisotrope et que le moment s’organise dans une seule des dimensions. Pour le ferromagnétisme, on considere
qu’il y a probablement une interaction entre les voisins, faisant que les spins voisins veulent étre alignés dans
la méme direction. Le modele de Curie-Weiss suppose que 'on a une force a tres longue portée et que les
spins interagissent tous entre eux :

VZ,] = 1, ...,N, ]EU = 7JSZ‘SJ', Curie-Weiss (84)

Ainsi & température nulle les deux spins sont de méme signe et a température infinie I’énergie ne compte
pas donc les quatre configurations sont équiprobables. Le modele est facile a résoudre mais une mauvaise
représentation de la réalité car linteraction est en vérité tres locale. C’est un modele de type “Champ
moyen”, ce qui veut dire que sur un réseau, ’approximation de champ moyen donne le méme genre de
résultat.

Ainsiles spins S; = +1, Vi,j =1,..., N, donnent 2%V états qui sont les positions des spins. L’Hamiltonien
est alors

H= —%ZSZ-SJ- —hZSi (8.5)
1] 1

Le terme 1/N permet d’avoir une énergie extensive. Si tous les spins sont 1, 'énergie est d’ordre N. Dans le
cas olt il y a un champ magnétique on rajoute le terme —h ). S;. Comme nous sommes dans un formalisme
canonique :

ZN(57h) = Z e—BH[CO"f] — Ze% >0 SiSi+BRY, Si (86)

2N configurations Si
Grace au modele utilisé, chaque élément interagit avec chaque autre, il est donc possible d’introduire

SZ%ZS% 5‘2:%2&53‘» > =2 57
i i

{s} 5 {s|5}

Il vient alors que :

Zn(B,h) =Y T ST HOSN (8.8)
{5}
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Le Hamiltonien ne dépend que de la valeur moyenne de S et plus des S;. C’est donc la somme sur toutes les
configurations, donc les valeurs possibles de S du nombre de fagons de réaliser S que on définit Q(S5) :

Q(S) = nombre de fagons d’avoir en moyenne S avec N spins (8.9)

:ZQ( B S +BRSN _ ZS( >€ﬂ§52+3hSN (8.10)
S

Ot N7 est le nombre de spins positifs qui donne S et S est le spin moyen. Notons que cette formule, qui
est encore exacte, n’est pas si compliquée et peut étre évaluée numériquementﬁ(beaucoup de fois) par un
ordinateur. On sait aussi que le nombre de facons d’obtenir S défini comme Q(S) = ( ]\[,\Q) est borné :

eNH(S) _ oNH(S)
<Q(S) < 8.11
N+1 — (5) = N (8.11)
Avec la fonction entropie H(z) définie comme :
1+ 1+x 1—=x 11—z
H = — 1 — 1 12
(@) = =15 o (15 ) = F 5 voe (15 (5.12)
Alors Zn (8, h) est également borné par
1 1 1 . o
N(BS?/2+Bh5+H(S)) N(B5?/2+BhS+H(S))
N1 Z < Zn(B,h) < Z e (8.13)
5=-1,65=2/N 5:71
Ainsi en prenant le logarithme
log N log Zn (5, h log N
71 N(BS/2+Bh+H(S)) < h) 1y N(BS/2+Bh+H(S
og Z +0 N N < —log Z )+ 0 N
(8.14)

Donc il est possible de trouver la limite de log Zxn (8, h)/N en l'infini en utilisant l'intégrale de Laplace

B

1 No(5) oy _ P a2 g G
Nlogge avec  ¢(S) = 55 + BhS + H(S) (8.15)
Ainsi vient le résultat
. log Zn(B,h) _ §
Remarque 1: En calculant
1
Bahlog NBZ Z B Z S;)e N(Z: S;) = magnétisation moyenne (8.17)

Nous obtenons exactement ce que 1’on cherchait, une description du comportement moyen de la magnétisation
du systeme, qui nous est donné par une dérivée de I’énergie libre.
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Remarque 2: Les termes de la somme dans I'Eq.(8.10), qui donnent les "poids” pour un S donné,
peuvent également étre bornés:

- 1
P(S=m)= Eﬂ(m)eﬂw/%”hm (8.18)
1 1 2 - 11 2
— BNm”/2+BNhm+BNH(m) — < oBNmT/24+BNhm+BNH(m) )
Nriz® < P(S m)*NZe (8.19)
1 _

= lim (logP(S = m)) = ¢(m) — p(m") (8.20)

N—oo \ N
— P(S =m) = Nem=o(m7)] (8.21)

donc la probabilité de trouver une magnétisation m différente de m* se comporte asymptotiquement comme
une fonction de grande déviation.
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8.3 Analyse des états stables du systeme

Pour trouver les états stables il nous faut identifier les maximas de la fonction ¢(m) car & cause de
I'exponentielle, dans la limite, ils dominent.

% = Bm + Bh + az;;lm) =0 (8.22)
= [(m+ h) = atanh(m) (8.23)

On voit donc que dans ce modele, la magnétisation m* a 1’équilibre dans un champ magnétique externe h
et & température T est fixée par 'équation de Curie-Weiss (dite aussi auto-consistante):

(8.24)

m* = tanh (m + h)

Cette équation ne peut pas étre inversée pour isoler une variable sans perdre de solutions, il est plus
commode de résoudre graphiquement en relevant les points auxquels les courbes f1(m) = m et fo(m) =
tanh (mTHL) se croisent. La figure 8.5 montre ces solutions, nous y remarquons que pour 7' < 1 il y a
3 solutions, pour T" > 1 la seule solution est m* = 0. La présence de plusieurs minimums implique que
I’énergie libre n’est pas un fonction convexe, ce qui va faire apparaitre une non-équivalence des ensembles
thermodynamiques. Reprenons ’expression de 1’énergie libre donnée par 1’équation 8.16, nous définissons de
plus la fonction f,,(m) = f%mQ — H(m)T qui est 'énergie libre du systéme si h = 0. L’énergie libre peut
alors se réécrire :

me[—1,1]

Nous reconnaissons que f(h, ) est la transformée de Legendre de f,,,(m).

Remarque 1
E f *
_Th, =m
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On peut prouver cette relation avec des dérivées en chaines en faisant attention au fait que dans la formule

de Iénergie libre f(h,3) on a f,,(m(h, (), 3)

Of(hB) _ OfmOm . Om _ 9m [Dfm(m)
oh on on " oh _ oh

————~ —h| —m*=-m"
om }
Pour la derniere partie du calcul il faut se rappeler que nous avons effectué une transformée de Legendre,
défini par le minimum d’une fonction. Donc la dérivée de celle-ci est bien nulle.
Q fm(m) 9 fm(m)

gl om M= g, h=0

Remarque 2 On pourrait croire que

Jm(m, B) = ming[fn(h, B) + mh]

Attention : on ne peut pas dire ¢a ici parce que la fonction f(h, 8) n’est pas convexe comme vu précédemment.
La double transformée de Legendre de f(h, 8) donne son enveloppe convexe. Puisqu’il n’y a pas de bijection
entre les ensembles, ces derniers ne sont pas équivalents.

Remarque 3

O fm(m) o
om
On peut le prouver avec le méme raisonnement que précédemment.
1
05 :
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Figure 8.5: Les croisement avec f1(m) sont les solutions m* pour différentes valeurs de T' & champ magnétique
externe h =0

Si on revient sur ce que 'on a vu précédemment. Lorsque nous étudions m* en fonction de T, nous
observons une fonction continue avec une transition de deuxiéme ordre (8.2a). et en regardant m* en
fonction de T, nous observons une fonction avec une transition de premier ordre (8.2b).

Rappel : nous obtenons une transition de premier ordre, car la fonction étudié a deux minimums locaux.
et quand h augmente la position du maximum réel passe d’'un coup d’une valeur négative a une valeur
positive. Cela explique la discontinuité de la transition de second ordre.
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Or nous sommes dans une situation ou il y a des maximums locaux. Lorsque h augmente la fonction
passe par différents états. Au départ (h croissant) la fonction a un seul maximum. la phase de transition
de 1 & 2 maximums s’appelle la spinodale , apres cela la fonction a 2 maximums locaux. Ensuite, le pseudo-
maximums devient le vrai maximums (apres le saut) puis on a de nouveau le passage de la spinodale. Dans
la région centrale, entre les deux spinodales il y a 3 solutions potentielles, je cherche la bonne solution.

Classification de Landau Voir les transitions de phase comme étant les maximisations d’'un certain
potentiel donne lieu & une classification valable tout le temps (avec I'image ”champ moyen”, presque tout
le temps sinon). C’est ce qu’on appelle la classification de Landau. Si 1’état initial du systéme maximise le
potentiel et soudainement n’est plus un maximum et change donc spontanément, il s’agit d’une transition
continue. Si une nouvelle solution (maximum local) apparait et les deux solutions se croisent, il s’agit d’une
transition discontinue. Cette classification est due & Lev Landau, qui a développé une théorie générale des
transitions de phase.

Théoréme : Loi des aires ou Construction de Maxwell Nous sommes dans le cas ou il y a 3 solutions,
ainsi nous avons une fonction h(m) qui coupe 3 fois 'axe m. On dénote les 3 solutions m_, mg et m. L’aire
sous la courbe entre m_ et mqg est A, entre mg et my est As.

Alors,
A=Ay
Preuve
A = / " hm)dm (8.25)
mo g -

= [ P o — (e (8.26)
= fm(mo) — fm(m+) (8.27)

de la méme maniere
Az = fm(mo) — frm(m+) (8.28)

Les deux aires sont égales lorsque fr,(m—) = fin(my) le moment ol les deux maximums se croisent.

Exemple : modele de Van der Waals Le cas du modele de Van der Waals est une application de cette
loi des aires.
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Figure 8.6: Isothermes du gaz de Van der Waals

8.4 Brisure Spontanée de symétrie

Le modele de Curie-Weiss illustre bien le phénomene de brisure spontanée de symétrie. Dans ce cas, le
systeme a tendance a rester sur un état qui minimise localement 1’énergie libre malgré la présence d’autres
minimums d’énergie libre. Pour le champ magnétique externe h = 0 et une température 7' < T, on a
deux minimums m™ et m~ de Iénergie libre avec f(m*) = f(m™) = f(m™). Les deux états sont alors
équiprobables puisque P(S = m) =< e~ (NV(F(m)=f (m™)) | pourtant la probabilité qu'un systéme mesuré dans
Iétat sT passe dans 1'état s~ (ou vice-versa) est trés faible. Ceci arrive parce que le systéme doit, pour
passer d’'un état a un autre, passer par des états intermédiaires qui sont eux exponentiellement rares. Si
pour passer m* & m™, le minimum d’énergie libre par lequel il faut passer est donné par f(mmax), €n notant

Af = f(mmax) — f(m*), il suit que:
Pt —ym- x e VAS (8.29)
et le temps nécessaire au passage d’une barriére d’énergie libre Af est 7 donné par:
T o eNAS (8.30)
Ce dernier point est I’énoncé de la loi d’Arrhenius.

Ici encore nous voyons une limitation du modele, car en réalité nous observons des temps de transitions
d’échelle raisonnable, qui ne sont pas exponentiels en N. L’hypothése suspicieuse est celle de I'interaction
entre toutes deux particules du réseau.

8.4.1 Métastabilité

Dans le modele de Curie-Weiss, la métastabilité se manifeste comme une conséquence directe de la structure
de Dénergie libre f(m). Si depuis un minimum local le systéme doit passer une barriere d’énergie libre A f
pour atteindre un autre minimum local, le temps nécessaire & cette transition sera proportionnel & eV2f par
la loi d’Arrhenius. Il est donc possible pour un systéme dans un état qui est un minimum local de 1’énergie
libre d’y rester pour un temps exponentiellement grand en N. L’état est alors dit métastable parce que le
systeme a tendance a rester dans cet état sans pour autant qu’il soit le minimum global de 1’énergie libre.
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Dans la région spinodale, ou il existe trois solutions, la dynamique du systéme devient particulierement
intéressante. Si I’on démarre dans un minimum local, le systeme y reste piégé pour un temps exponentielle-
ment long, méme si ce n’est pas 1’état d’équilibre global. Ce phénomene est particulierement visible dans les
transitions de premier ordre, ot les minima se croisent mais continuent d’exister pendant un certain temps
apres leur croisement.

Cette métastabilité conduit a 'hystérése, ou I’état du systeme dépend de son histoire. Par exemple, en
partant d’un champ h tres positif et en le diminuant lentement, le systeme suit une trajectoire différente de
celle qu'’il suit lorsqu’on augmente le champ depuis des valeurs tres négatives. Le systeme ne saute d’un état
a l'autre qu’aux points spinodaux, ol le minimum local disparait completement.

Ce phénomene, bien que surestimé dans le modele de champ moyen en termes de temps de transition,
est observé dans de nombreux systémes physiques. Par exemple, on peut observer :

e de l'eau surfondue (liquide en dessous de 0°C)

e des solides qui restent solides au-dessus de leur point de transition

Il est important de noter que dans les systemes réels en dimension finie, les temps de transition sont

généralement plus courts que ceux prédits par le modele de champ moyen, mais le phénomene de métastabilité
reste néanmoins observable et pertinent.

8.5 Approximation de champ moyen

Le modele de Curie-Weiss fait I’hypothese suivante:

H= —a%:sisj =—aN>)_ (;)2 (8.31)

Ceci est donc beaucoup plus simple a résoudre, mais n’est manifestement pas physique, car les interactions
réelles entre spins sont d’origine quantique et électromagnétique et décroissent avec la distance.

Nous aimerions désormais partir de modeles plus proches de ce qu’on attend d’un systeme ferromagnétique
réel, mais quand méme calculer sa fonction de partition de maniére simple, avec une approximation. Pour
ce faire, il existe toujours un type d’approximation qui, méme s’il n’est pas physique au départ, produit
des résultats similaires au modele de Curie-Weiss. C’est ce qu’on appelle 'approximation de champ moyen.
Le modele de Curie-Weiss est souvent appelé un "modele champ moyen”. Un modele champ moyen est un
modele ou 'approximation de champ moyen est exacte.

8.5.1 Le modele d’Ising

Le modele d’Ising doit étre de dimension finie. En général, les objets sont en 3D. Un modele plus pertinent
donne ’hamiltonien
H=—> JSiS;—h> S (8.32)
(4.) @
ou le symbole (i, j) signifie que la somme est appliquée sur les i et j voisins sur un réseau.

Le modele peut aussi étre représenté en 2D (un matériel ferromagnétique étalé sur une couche) ou en 1D
(une ligne composée de spins). Dans ce modele, les spins interagissent uniquement avec leurs voisins de
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réseau, ce qui est plus proche de la réalité que lorsqu’ils interagissent avec tous les autres spins du réseau.
Le modele de Curie-Weiss est un modele d’'Ising de dimension infinie car U'interaction d’un spin se fait avec
tous les autres, il n’est donc pas tres physique. Cependant, on comprend tres bien le modele d’Ising pour
des dimensions supérieures & 3 (Le modele est extrémement dur & résoudre en dimension 3).

On s’intéresse donc au probléeme suivant :
Z(B,h) =Y e P =3 Ty IS hELS: (8.33)
{S} S}

ol la somme se fait sur les 2V configuration de spins. Pour calculer Z, 1’astuce de dire que I’hamiltonien
ne dépend que de la valeur moyenne des spin ne marche pas dans ce cas car I’hamiltonien se calcule sur les
voisins et non I’ensemble des spins. La somme dans ’hamiltonien peut étre calculée en 1D et il existe aussi
une solution exacte en 2D, sinon ils est tres difficile de calculer I’hamiltonien.

Il existe une approximation sous laquelle ’énergie libre du modele d’Ising en dimension finie est exactement
donnée a une constante pres par la solution du modele du Curie-Weiss.

Il y a deux méthode différentes pour y arriver.

8.5.2 Méthode 1: Méthode Variationnelle
Dans la méthode variationnelle, plutot que de regarder la réalité qui est donnée par

~ 1 a
Ps(9) = Ee—ﬁ’*“) (8.34)

ou Pp (g) est la probabilité de Boltzmann, on va essayer de deviner cette probabilité. On cherche donc un

”Ansatz” que I'on notera par P de sorte a ce qu’elle soit le plus proche possible de PB(g).

uess(S5)
Definition 8.1 (Energie libre de Gibbs)

L’Energie libre de Gibbs est une fonctionnelle notée Faibbs-
Faivbs = (H) Pouese — TH(Pauess) (8.35)

Ici, (H)pg,... signifie que U'énergie est moyennée en utilisant la probabilité Pgyess que 'on suppose et
H(Pguess) est Uentropie de Shannon associée & Pgyess-

L’énergie libre de Gibbs est un concept utile grace au théoreme suivant :

Theorem 8.2 (Inégalité variationnelle)

VPGuess :

(Z) F S fGibbs(PGuess)
(“) F= fGibbs(PGuess) — PGuess = PB
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Proof 1
(tog [P5(8)]), = —BH)rou... ~1o8(2) (8.36)

log(Z) sort de la moyenne car il ne dépend pas de S. Il vient ensuite :

F=-Tlog(Z) = (H)pg,... +T <log [PB(§)} > (8.37)

Pcuess

Ensuite, l’on va ajouter et enlever l’entropie de Boltzmann :

Pguess

F = (H)pg,... — TH(Pouess) + T [<log P, +H (Pauess)} (8.38)

On retrouve l'expression de l’énergie libre de Gibbs et on développe les autres termes :

-,

F = Faivps +T {/ Peruess(S) log (PB(g)) ds — /PGuess( ) log (PGuesS(g)) dg] (8.39)

on regroupe les deux intégrales, ce qui va faire apparaitre la divergence de Kullback-Leibler notée Dy, :

o P uess g
F= ]:Gibbs -T PGuess(S) log <i3(§())> dsS = ]:Gibbs - TDKL(PGuessHPB) (840)
B

Pour conclure la preuve, on rappelle les propriétés de Dir.(pllq) :

(i) Drr(pllg) >0

(i) Dir(pllg) =0<=p=g¢q

On obtient alors linégalité variationnelle souhaitée.

La preuve est réalisée en faisant les calculs avec les spins, mais ce raisonnement peut s’appliquer pour
tous les systemes.

8.5.3 Meéthode 2: Approximation champ moyen

L’approximation champ moyen consiste a faire un ” Guess” Pgyess qui soit simple, homogeéne et factorisé.
On suppose donc que tous les spins sont indépendants. On a alors :

N
Pouess(8) = [ (1 *2”“5(5; 4 38+ 1)) (8.41)

i=1
ou tous les m; = m car la probabilité est identique pour tous les spins car ils sont indépendants. Pgyess €st
homogeéne car la probabilité est identique pour tous les spins, factorisée car les S; n’interagissent pas avec

d’autres spins, et simple car le produit ne dépend que d’un parametre. Il faut maintenant calculer 1’énergie
libre de Gibbs :

(M) Poese = / —% Z Z SiSj — hZSi (8.42)
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ou j € 0; signifie les j dans le voisinage de . Comme tous les spins sont indépendant, I’expression précédente
fais intervenir la valeur moyenne de chaque spin. Il vient :

J
(H) poen. = —5Ncm2 —hNm (8.43)
oll ¢ est le nombre de voisins.
On veut maintenant calculer l'entropie. Si P(S,...,Sn) = HZ 1 Q(S;), alors H(P) = Zf\;l H(Q;). Ainsi :
1 1 1-— 1-—
/plog(p):—N { —;mlog( —;m) + 2mlog( Qm)} = Hgin(m) (8.44)

L’énergie libre de Gibbs par spin est donc donnée par :

1 J
N‘FGibbs(m) = _?Cm — hm + THBH!( ) (845)

La meilleure énergie libre de Gibbs correspond au minimum sur le parametre !
Approx o . Je 2
feh 7 (h,B) = min | ——-m” — hm + T Hgin(m) (8.46)
Le parametre m™ qui minimise I’énergie libre de Gibbs est

m* = tanh(B(Jem™ + h)) (8.47)

L’approximation champ moyen peut se voir de la maniere suivante, reprenons 1’experession de I’hamiltonien

ZJS > S —th _Z —JS; Y S;—hsS; (8.48)

JEO; JEO;
——
()

On remplace (*) par leur valeur moyenne, ce qui donne :

H=> (=JSh™),  rT=h+cm (8.49)

On peut alors calculer la valeur moyenne de S; :

m=_9; = — o] = tanh[B(Jem + h)] (8.50)

8.6 Gaz de particules en champ moyen

Soient N particules de masse m et de vecteur de vitesse p'et 1’énergie cinétique F, = l On définit le poten-
tiel U (%, 7;) = U(|4; — 25]). Le Hamiltonien s’écrit H ({23 }¥,), {pi} ;) = PR |127;T|L —&-ZZ 1Z]>ZU(|x3

Z;|). Pour que le modele soit réaliste physiquement, il doit prendre en compte le fait que les particules sont
solides et ne peuvent pas se superposer. Nous impObOHb cette condition en précisant que pour un certain rq,
U(|; — @3]< 7o) = 00, nous définissions aussi Vo = 37§ qui est le volume occupé par une particule. Le but
est de calculer la fonctlon de partition du systeme :
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1 v
Zn(8) = hTN/Hﬁldﬁngld@e—ﬁﬂ({m}iil),{m X

3N 3N
- (ﬂm;;’fBT ) / MY dgje—P S S 00— L (v%’;:kBT ) Q)

(8.51)
N1

La partie cinétique du Hamiltonien est une intégrale Gaussienne qui peut étre facilement calculée, c’est
Pintégrale sur les positions Q(8) appelée intégrale de configuration qui peut étre difficile selon la forme du
potentiel. Dans le cas U (7}, 2;) = 0, V4, j le cas du gaz parfait est retrouvé et Q(3) = V. Pour un potentiel
plus compliqué, c’est ici qu’il faut utiliser ’approximation en champ moyen pour simplifier le potentiel :

- L 1 . I, N R, @
Suls-ah~ g X [ anvis-ah - o ¥ [ avge-a)--gNt 652
12} i,j i

D’abord, nous approximons le potentiel total par la somme des potentiels moyens de chaque particule indi-
viduelle. En négligeant les effets de bord et en supposant une certaine homogénéité, il est ensuite possible
de dire que l'intégrale en & est indépendante de la valeur de &; et vaut donc une constante —2« (le signe
négatif est ajouté arbitrairement pour se rappeler que I’énergie est négative). Puisque U(|Z; — 2}|< 79) = 00,
exp (—BU(|7; — j|< 19)) = 0, l'intégration peut donc étre réduite de V' & un sous-volume V' \ Vj exclu-
ant le volume occupé par la particule en #;. Cette approximation peut étre substituée dans I'intégrale de
configuration qui n’est plus que le produit de N intégrales d’une constante sur un volume V — Vj :

QE) =T, [ dme ¥ — e (v )Y (8.53)
VA\Vo
A Paide de cette fonction de partition nous pouvons calculer la pression P = —9F/9V. On obtient alors
I’équation suivante:
aN?
(P + ‘/2) (V. — Nuvy) = NRT (8.54)

Qui est I'équation d’état du gaz de Van der Waals. Cette équation ressemble & celle d’un gaz parfait, mais
c’est un meilleur modele car il prédit notamment les transitions d’état liquide-gaz.
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