PHYS-338: Physique Statistique 2024-2025

Lecture 7: Echantillonage et Algorithmes de Monte-Carlo

Professeur: Florent Krzakala Scribes: Pignalosa Antoine, Baud Ilan, Meylan Benjamin, Maillard Louis, Bénon Loris, Cottin Clém

7.1 Motivation

Dans les chapitres précédents, on s’est intéressé au formalisme de la mécanique statistique en étudiant des sys-
témes simples ol on a le plus souvent supposé que les particules n’interagissaient pas entre elles. Il va de soi que
ces suppositions ne tiennent plus dans la plupart des systemes réels et que dans ces derniers, les particules inter-
agissent entre elles. Malheureusement, lorsque les particules sont en interaction, la fonction de partition devient
considérablement plus compliquée a calculer et il sera donc plus raisonnable de I'estimer numériquement plutot
que de la calculer directement.

Pour illustrer comment on peut estimer une fonction de partition, on consideére un systéme a N particules avec un
hamiltonien /# qui est une fonction “compliquée" des configurations.! La fonction de partition s’écrit alors :

Z(N,V,T) = f dz,...dxy e P CH-3N) 7.1)

Souvent ce qui nous intéresse dans un systeme, c’est les valeurs moyennes d'une observable O. Cette valeur se
calcule suivant :

1 .
<O>:E f dzy...dxy OFy, ..., in)e P E-3N) (7.2)

Si on est capable de calculer notre observable pour .4 configurations et en supposant que .4 est assez grand, on
sait par la loi des grands nombres, qu’on peut écrire la valeur moyenne d'une observable comme

1 i () =)
Oy == 0(#",... %), (7.3)
=
ol les (J_EY) Yoo J?E\’,)) dénotent des points de I'espace des configurations. On pose
=(i)
. XI
X(l) = , (7.4)
=(i)
XN

oi1 X¥ dénote alors la i-eme configuration étudiée. Notre objectif principal est donc d’échantillonner notre es-
pace proportionnellement a la probabilité associée a chacune des configurations. En d’autres mots, on cherche a
générer des variables aléatoires XV telles que
S P (G R
x0 L b)) (7.5)
Z

Toute cette procédure de génération de variables aléatoires qu’'on appelle plus communément échantillonage est
résolue par les simulations Monte-Carlo. Mais avant ¢a, on va s’intéresser a comment échantilloner des distribu-
tions plus simples.

11idée se généralise facilement si on considere aussi les impulsions.

7-1

7-2 Lecture 7: Echantillonage et Algorithmes de Monte-Carlo

7.2 Echantillonage de lois discrétes unidimensionnelles

Nous allons étudier un systeme a N états avec un ensemble de probabilités associées a chaque état { pi}ﬁ\i |- Par
exemple, cherchons a répondre a la question “Que faire ce soir ?" et on imagine les réponses suivantes :

1. “Féter Halloween" avec p; =0.5 3. “Aller dans un bar" avec p=0.2

2. “Lire unlivre" avec p» =0.1 4. “Regarder la télévision" avec p =0.2

Dans les sections suivantes, nous illustrerons cet exemple avec des différents algorithmes. Avant de poursuivre,
nous devons supposer qu'un ordinateur peut calculer des réalisations d'une loi de distribution uniforme.

7.2.1 Algorithme de Rejet (Rejection Sampling)

Pour implémenter un algorithme de rejet, on dresse un tableau de taille 1 par 1 contenant des rectangles représen-

tant chaques évenements (ou états). Ces rectangles doivent avoir

une aire proportionnelle a la probabilité de

réalisation de I'événement qu’ils représentent. Un exemple d'un tel montage est représenté a la figure 7.1.

Lidée del’algorithme de rejet est de générer deux variables aléatoires
indépendantes X, Y suivant une loi de distribution uniforme U0, 1]
et de regarder ou la coordonée d’une réalisation de ces deux vari-
ables aléatoires (x, y) a atteri sur le tableau dressé précédemment.

Un exemple d’'un tel algorithme pourrait étre :

Algorithme 1.
ok =0
while(ok = 0){
x ~ U(0,1)
y ~ U(0,1)
if ((x,y) € Histogram){ok = 1}
}
Return(int) 4x+1

0.751

0.5

Probabilités

0.25

0 0.25 0.5 0.75 1
X

Figure 7.1: Illustration d'un tableau pour un
algorithme de rejet.

Pour améliorer cet algorithme on va chercher a réduire le nombre de rejets. On remarque alors facilement que pour
ce faire, on peut simplement reduire l'intervalle de la loi de distribution de la variable aléatoire Y a U (O, max(pl-)).
Procéder ainsi nous permet de retirer toute 1'aire inutile qui se trouve au dessus des rectangles.

Lecture 7: Echantillonage et Algorithmes de Monte-Carlo

7-3

7.2.2 Algorithme de la Cummulative (Tower sampling)

Pour implémenter un algorithme de la cumulative, on dresse un axe avec

10 des segments mis bout-a-bout oli ces segments on une taille égale a la

4 probabilité de I'événement qu’ils représentent. Un exemple est donné ala

0.8 Cl4)=08:P(x<4) figure 7.2. L'idée de l'algorithme de la cumulative est de générer une vari-

3 able aléatoire X ~ U(0, 1) et ensuite regarder sur quel segment une réalisa-

22 2 €3)=06:Px=3) tion de cette variable aléatoire est arrivée. Pour ce faire on doit également
. c(2)=0.5:P(x=2)

définir les bords des segments c(i) comme illustré sur la figure ci-contre.

Un exemple d'un tel algorithme pourrait étre :

1
Algorithme 2.
0 1) =0:Px=<1) x ~ U[0,1]
ok =0
Figure 7.2: Illustration d'un i=2
tableau pour un algorithme de while(x > c(@)){ i « i+ 1}
rejet. Return i

Lalgorithme de la cumulative a '’avantage sur I’algorithme de rejet de ne pas avoir a générer plusieurs fois une vari-
able aléatoire. On dira alors que l'algorithme de la cumulative est “rejection free" ce qui est computationellement

nettement meilleur.

On remarque également qu'une version plus rapide de I'algorithme 2 consite a faire une recherche de la réalisation

de la variable aléatoire par dichotomie.

7.2.3 Algorithme de Walker

Cet algorithme, un peu plus dur a implémenter, cherche
a construire un tableau avec une aire proportionnelle a la
propabilité de I'évenement associé mais cette fois sans avoir
de possibilité de rejet. La figure 7.3 illustre un tel montage.

Il nous suffit, une fois le tableau dressé, de générer deux vari-
ables aléatoires X,Y et noter la surface sur laquelle elle est
arrivée.

0.2

0.1

Figure 7.3: Illustration de l'algorithme de
Walker en 1D avec les probabilités données.

7.3 Echantillonage de loi continue unidimensionnelle

Dans cette section, on s’intéresse a différentes méthodes pour échantillonner des variables aléatoires X suivant
une distribution continue et unidimensionnelle X ~ Py, ol1 Px est une densité de probabilité.

7.3.1 Algorithme de rejet (Rejection sampling)

Imaginons qu'on connaisse le graphe de la densité de probabilité Px (x). On généere deux variables aléatoires X, Y
telles que X est uniforme sur l'intervalle qu’'on considére, i.e. X ~ U(Xmin, Xmax), €t Y ~ U(0,¢), ou ¢ € R, est un

parametre de notre implémentation.

7-4 Lecture 7: Echantillonage et Algorithmes de Monte-Carlo

Lalgorithme de rejet consiste a observer ou le couple (x,y)
d’'une réalisation de ces deux variables aléatoires arrive sur le
graphe. Sile couple désigne un point sous le graphe on accepte
sinon on rejette.

Un exemple du graphe que donnerait une implémentation de
I'algorithme de rejet est donné a la figure 7.4.

Algorithme 3.
ok =0
while(ok = 0){
x ~ U[0,1]
y ~ ¢ - U[0,1] ’ e
if (y < Px(x)){ok = 1}
} Figure 7.4: Illustration d'un algorithme de re-
Return x jetavecc=1.

On peut noter que faire tourner I'algorithme un grand nombre de fois nous donne I'aire sous la courbe, qui n’est
autre que la valeur de I'intégrale I = (¢ — 0) (Xmax — Xmin) P (accept).

Comme pour dans le cas discret, on veut réduire a un minimum le nombre de rejets de cet algorithme. Pour ce faire
on peut penser au premier abord a restreindre notre variable aléatoire Y a suivre une loi uniforme sur l'intervalle
U(0, c), ou1 ¢ = max(Px(x)) comme nous I'avions vu pour échantillonner une loi discrete. 1l existe cependant une
méthode qui peut s’avérer encore meilleure pour certaines situations :

On suppose qu’on sait générer des variables aléatoires selon une autre loi de distribution continue que la loi uni-
forme que I'on notera Qx et on suppose aussi que Qx (x) = Px(x), Vx. Alors on voit simplement qu’on peut générer
X ~U(0,1) et Y ~ Qx et alors regarder si le couple (x, y) est arrivé sous la courbe de Py.

o La figure 7.5 illustre un exemple d’échantillonnage efficace de
! A x Px, ouon a pris Qx comme étant une Gaussienne.
eject
0.8 *
’; Pr@)N
0.6 * 3 Algorithme 4.
) ° o
0.4 oo 0, ok =0
Accept while(ok = O){
0.2 o ° x ~ U[lo,1]
N4 - y ~ A
0 02 04 06 08 1 if (y < Px(x)){ok = 1}
x X
Return x

Figure 7.5: lllustration d'un algorithme de re-

jet avec ¢ = max(Q(x))

7.3.2 Méthode cumulative inverse

Soit x ~ P(x). On cherche une transformation T tel que x = T(u) ~ P(w), T~N(T(x)) = x (i.e. T admet un inverse
unique) avec u qui suit une loi uniforme. Pour cela nous utilisons la cumulative Fx (x):

P
Fx(x) =f Px(0)d0=P(X<x)=P(T(w) < x)=Pu<T '(x)=T"1(x)

(7.6)

Ot nous avons utilisé pour la derniére égalité le fait que, pour une loi uniforme u[0,1], P((x ~ u[0,1]) < a) = a.

Lecture 7: Echantillonage et Algorithmes de Monte-Carlo

I Ainsi, si on prend x = T'(u) avec T(-) = F;(l () alors x ~ Px (x).

Exemple: Prenons x ~ e™*,x =0, alorson a Px(x) =e * et Fx(x)=1—e ¥ Onen tire

X

u=l-e* = x=-log(1-u)

7-5

Ainsi, si on prend u uniforme, alors x suivra bien la distribution exponentielle. Cela montre que I'on sait échantil-

lonner les lois exponentielles.

Si on avait pris x =log(u) cela aurait tres bien fonctionné car 1 - u et u sont également distribués uniformément.
Attention cependant numériquement: lorsque u est proche de 0 ou 1, il peut y avoir des problemes dus au
logarithme. Il faut ainsi choisir judicieusement selon le probléme siI'on choisit x =log(u) ou x =log(1 — u)

7.4 Transformations utiles

Dans cette section, quelques transformations de loi de probabilité permettant d’échantillonner sur des espaces

importants vont €tre mises en avant :

7.4.1 Lecercle

Pour ce premier format, 1'objectif est d’échantillonner des points a 'intérieur du cercle unité, dans ce but nous

allons lister trois méthodes dont deux fonctionnent :

Méthode 1

Pour le premier algorithme on va générer deux variables aléa-
toires indépendantes X, Y suivant une loi de distribution uniforme
U[-1,1] et puis on garde ceux qui tombent dans le cercle unité.

Lalgorithme est le suivant :

Algorithme 1.
x ~ U(-1,1)
Y ~ U(_lyl) =
if x> + y2 = 1 on rejette

—0.25 +
3

Cette méthode permet aussi de calculer la valeur de m en util-

isant le fait que la probabilité de tomber dans le cercle est -oso0-.

_ airecercle _ zn _ _Niu

ol N;, est le nombre de points

in = TJirecarré ~ 4 ~ Ny

tombés dans le cercle et N;,;, le nombre total de points, cela %757

implique:

= (7.7)

Niotal

Echantillonnage de points dans un cercle unité

1.00 >

3
0.75 -
0.50 -
0.25 <

0.00 -

sa T
Points acceptés
Points rejetés

4N; ~1.00 : ‘

2100 -0.75 —0.50

—0.25

0.00
X

T
0.25

T
0.50

Figure 7.6: Echantillonnage du cercle avec rejet

7-6 Lecture 7: Echantillonage et Algorithmes de Monte-Carlo

Méthode 2
Cercle unité avec sous-zones de densité
——- Rayonr
1.0 4 ————[_1 Plus dense en points
/ Moins dense en points

0.5

> 0.0

—0.5 4

N

-1.04

Figure 7.7: Echantillonnage du cercle en coordonnées
polaires

Méthode 3

Pour le second algorithme on va générer des points en échantil-
lonnant avec r suivant une loi de distribution uniforme U[0, 1] et
0 ~ U[0,2n] cela nous donne des couples de points dans le cercle
(x,y)=(rcosf,rsinf) :

Algorithme 2.

r ~ U(0,1)
6 ~ U(0,2m)
Return (rcosf,rsinf)

En échantillonnant de la sorte, on voit tout de suite que plus la
valeur de r est proche de 1 moins les points seront denses. Donc
I’échantillonnage n’est pas équitablement répartie sur le cercle en-
tier

/\ Attention cette méthode ne fonctionne pas.

La troisieme méthode qui permet bien d’échantillonner uniformément le cercle est de partir de la loi jointe de x et

y:

P(x,) !
X, =)
Y /A

six?+y? <1 (7.8)

=0, sinon (7.9)

On peut donc écrire en passant en coordonnées polaires

1
P(x,y)dxdy:;dxdy: %drd@ (7.10)

On trouve donc ensuite :

P(x,y)dxdy= (%d@) (2rdr)=U(0,2m) x Pr(r)drd@ (7.11)

11 faut trouver un moyen d’échantillonner une loi P, (r)
posant Y = r2, on obtient bien :

= 2r, cela se fait en utilisant la variable Y ~ U(0,1) et en

ay
P =Ll -or (7.12)
ar
On voit donc qu’on peut échantillonner uniformément des points dans le cercle en choisissant les variables suiv-
antes :
0 ~U(0,2n) (7.13)
Y ~U(0,1) (7.14)

r=VY (7.15)

Lecture 7: Echantillonage et Algorithmes de Monte-Carlo 7-7

Cela nous donne donc des couples (x,y) avec :

x=VYcoso (7.16)
y=VYsinb (7.17)

Contrairement a la deuxieme méthode, la troisieme fonctionne bien. Cela est du au fait que cette fois ci, on a inclus
dans nos calculs le jacobien de la transformation en coordonnées polaires.

7.4.2 Lagaussienne

Il nous serait tres utile de savoir échantillonner des variables de distribution Gaussienne. En effet, toutes les distri-
butions "smooth" peuvent étre écrite comme une superposition de Gaussienne. Savoir échantillonner selon une
Gaussienne permet donc d’échantillonner selon toutes les distributions voulues.

Pour ce faire, on utilise la méthode de Box-Muller. En partant de la fonction de densité de probabilité jointe, on a:

2 _2
exIZeyIZ do

2
Px(x,y)dxdy= = re " 2qr (7.18)
NSV Ve 2n
olt'on a procédé au changement en coordonnées polaires.
En posant Y = ’72, on obtient :
1
(z—de) (e7YdY)=Upyl0,271d6 - exp(Y)dY (7.19)
b2

On peut alors en partant de la loi uniforme U0, 1], que I'on sait échantillonner numériquement, échantillonner
des variables aléatoires qui suivent une distribution Gaussienne. On procede de la maniere suivante :

1. D’abord on échantillone 0 et Y al’aide de la loi uniforme et des relations suivantes :

0=2n-U[0,1] (7.20)
Y =-log(UI0,1]) (7.21)

2. On peut ensuite tirer x et y al’aide du changement de coordonnées polaire :

x=v2mcosf (7.22)
y=V2nsing (7.23)

De cette maniere, on tire directement deux variables indépendantes x et y qui suivent les deux une distribution
Gaussienne.

7.5 Chaine de Markov Monte-Carlo (MCMCQC)

Le MCMC est un algorithme créant une séquence de variables aléatoires en espérant qu’elle converge vers une
variable aléatoire avec la probabilité désirée. Un exemple de MCMC est I’échantillonage de l'intérieur d'un carré

7-8 Lecture 7: Echantillonage et Algorithmes de Monte-Carlo

de coté qui vaut 2 centré en 'origine. On commence a un certain point a I'intérieur du carré puis a chaque pas de
temps on avance vers un autre point, I’algorithme s’exprime de la facon suivante :

™ =x" +eU[-1,1] (7.24)
y* =yl v eUl-1,1] (7.25)
siau temps ¢ +1 le point est en dehors du carré trois choix s’offrent a nous :

1.Je relance jusqu’a ce que j'obtienne un point dans le carré puis je vais a ce point.

2.Je vais au point et je continue a avancer jusqu’a ce que je rentre a nouveau dans le carré puis je supprime tous
les points obtenus en dehors du carré.

3.Je reste a ma position du temps ¢, je compte un point en plus a cette méme position puis je relance.

Le troisieme algorithme s’avere étre le meilleur, c’est I'algorithme de Metropolis.

7.5.1 Exemple avec une grille a 9 états

1 2 Une chaine de Markov est un processus stochastique ou la
probabilité de transition vers I'état suivant dépend unique-
ment de I'état actuel et non des états précédents. Mathéma-

6 5 4 tiquement, cela s’exprime par :

PXp=x| Xy =% Xp1=X4-1,..., Xo=X0) = P(Xpp1 =X | Xy = Xy¢).

7 8 9 (7.26)

Dans le cas discret, on peut imaginer une grille, comme
représentée a la figure 7.8, contenant 9 états ot 'on peut se
déplacer d'un état a a un état b seulement horizontalement ou
verticalement avec un taux de transition P,_, .

Figure 7.8: Grille pour le MCMC, on
peut se déplacer seulement horizon-
talement ou verticalement avec une
certaine probabilité

7.5.2 Matrice de Transition

L'évolution de la chaine de Markov est décrite par une matrice de transition P, ou P;}, est la probabilité de passer
del’état jal'étati:

Pij=P(Xp1=1| X =J). (7.27)
Une chaine de Markov est entierement déterminée par cette matrice de transfert car elle contient la probabilité
d’étre dans un état i au temps ¢ +1 si on est dans un état j au temps ¢ pour tout i,j et ¢.

7.5.3 Conservation de probabilité

Le but est que pour ¢ grand, I'algorithme visite tous les états avec une probabilité donnée 7i°9. Cela impose cer-
taines conditions. La premiére est la conservation de probabilité :

1=Pjﬁj+zpjﬁi (7.28)
idj

Lecture 7: Echantillonage et Algorithmes de Monte-Carlo 7-9

en effet, les seules possibilités sont soit de rester dans I'état dans lequel on était déja, soit on bouge vers un autre
état.

7.5.4 FEquation maitresse

La deuxieme condition est I’équation maitresse, elle exprime la probabilité d’étre dans I’état j au temps £ +1

n}f_+l - ﬂ;Pj—»j + Z ﬂfPiﬂ' (7.29)
i#j

le premier terme est simplement la probabilité d’étre dans I'état j au temps ¢ multiplié par la probabilité d’y rester
et le deuxieme terme est la somme des probabilités d’étre dans un état i au temps ¢ multiplié par la probabilité
d’allerdeiaj.

7.5.5 Distribution d’Equilibre, bilan global et détaillé

La chaine de Markov posséde une distribution d’équilibre 7 * si elle satisfait :

n=) n;P;; pour tout j. (7.30)

14
On peut multiplier par 1 des deux coOtés et utiliser le fait que }_; Pj; = 1:
1xn;f=Z_n;fp,-j (7.31)
14
2 mjPji=) 7} Pij (7.32)
L 14
ol la derniere égalité est le bilan global qui est la derniére condition, a I’équilibre, on voudrait échantillonner
cette loi. Il faut que les taux de transition satisfassent cette loi, sans ¢a, il n’est pas possible de converger vers les

probabilités recherchées. Etant donné que les vecteurs ji; ont souvent une grande dimension, il est nécessaire de
faire une simplification, pour se faire on peut regarder une sous-classe d’algorithmes qui satisfait le bilan détaillé :

H;PjiZH;Pij (7.33)

Le bilan détaillé implique le bilan global mais le contraire est faux.

7.6 Algorithme de Metropolis-Hastings

Lalgorithme de Metropolis-Hastings est une méthode MCMC pour générer des échantillons d'une distribution
de probabilité cible 7(x) connue jusqu’a un facteur de normalisation.

7.6.1 Description de 'Algorithme

1. Initialiser avec un état initial x.
2. Pour chaque étape ¢ :

(a) Générer une proposition x’ a partir de I’état actuel x; en utilisant une distribution de proposition g (x|
xt) .

7-10 Lecture 7: Echantillonage et Algorithmes de Monte-Carlo

(b) Calculer le taux d’acceptation :
m(x")q(x; | X)

a=min|1, .
m(x)q(x'| x¢)

(7.34)

(c) Accepter x’ avec une probabilité « :

¢ Si “E <0, accepter le changement.

» Sinon, accepter avec une probabilité a.

7.6.2 Laregle de Metropolis

Comme vu au point précédent, I'algorithme de Metropolis utilise une version simplifiée du bilan détaillé. Cette
condition s’appelle la régle de Metropolis et s’écrit comme :

eq
. Ty,
P, .p=min |1, —eq (7.35)
”a

Gréce a cette régle, les taux de transitions sont seulement donnés que par des rapports de probabilités. Pourquoi
est-ce important ? Imaginons un systéme décrit par X! et 'on cherche a se rendre a I'état X® par un mouvement
de Monte-Carlo :

fﬁl) 5552)
xW = | - x@ _ | -

=(1) =(2)

XN AN

Dans le formalisme canonique, les probabilités a I'équilibre sont données par :

_BHXW _BH(X@
oq e PIX?) g e PO

= —— , Vs =
1 7 2 7

On a alors pour la régle de Metropolis dans le cas canonique la relation suivante :

Pi_,=min |1,e AE2~E1) (7.36)

Larégle de Metropolis permet donc de calculer les taux de transitions sans calculer ou méme connaitre la fonction
Z. Cette régle permet donc de simplifier a la fois les calculs et le bilan détaillé. En effet, en respectant la régle de
Metropolis, on est assuré de respecter le bilan détaillé. Cependant, cela ne nous garanti pas de trouver la méthode
la plus efficace. Il reste alors une question a se poser : la vitesse de convergence de I'algorithme de Metropolis.

7.6.3 La convergence de Metropolis

Tout d’abord, voyons pourquoi nous sommes s{ir que la matrice converge. La matrice de transition T est droite-
stochastique (la somme sur les lignes vaut toujours 1). Si la dynamique respecte les conditions d’ergodicité et
d’irréductibilité, alors il existe une seule valeur propre |1|=1 et toutes les autres ont valeurs |A; < 1|. De plus, le
vecteur propre associé a |A|=1 est 79, Voyons pourquoi ceci assure la convergence de la matrice :

Lecture 7: Echantillonage et Algorithmes de Monte-Carlo 7-11

Soit A; et e; les valeurs propres et vecteurs propres de la matrice T. On peut alors écrire :

J_f[:O :Zaiei
i

On décrit I’évolution de 7i comme :
A =TRST =T =Y aid e
i

Mais comme toutes les valeurs propres autres que |A;|=1 sont plus petites que 1, leurs valeurs tend vers 0 lorsque
t devient grand. On a donc la relation :

A =709 = 799 4 ap AL (7.37)

On voit alors que le temps de convergence dépend uniquement de la vitesse de convergence vers 0 de A,.

On peut réecrire /15 comme :
1

—tlogt T
Aézetlog?tg o o8y _, logg,

On définit alors 7 = logl — et c'est ce parametre qui définit la vitesse de convergence. Plus A, sera proche de 1, plus 7
b

sera grand et donc la convergence longue. Dans la pratique, il est tres difficile de connaitre 1, mais la convergence
est toujours garantie.

7.6.4 Les conditions nécessaires a la convergence

Voyons plus en détails les conditions nécessaires a la convergence de la chaine de Markow.

1. Tout d’abord, il faut respecter le bilan global.

2. Ilfaut étre ergodique, c’est a dire que n'importe quel point est atteignable depuis n'importe quel point. Imag-
inons une grille pour le MCMC de taille 2x2 numérotée de 1 a 4. Un exemple de matrice non-ergodique est
pour ce systeme est :

1 1
} 300
I 199
T=18 & 1 1
i1
0o 11

Dans ce cas 13, la matrice T décrit deux sous-systemes indépendants qui ne communique pas. On reste soit
dans les points 1 et 2, soit dans les points 3 et 4. Mathématiquement, on peut diagonaliser par bloc cette
matrice avec chaque bloc ayant une valeur propre A = 1.

3. La derniére condition est d’étre apériodique. En pratique, cela n’arrive pratiquement jamais. Voyons quand
meéme un cas de matrice périodique. Imaginons une grille pour le MCMC de seulement 2 cases numérotées
1 et 2. On considére la matrice de transition suivante :

=11 o

L

On a ici un exemple de systeme périodique, connaissant le point de départ on sait exactement ot 'on se
trouve au temps ¢. On voit mathématiquement que le théoréme n’est pas valide car les 2 valeurs propres de
cette matrice sont 132 =+1.

	Motivation
	Échantillonage de lois discrètes unidimensionnelles
	Algorithme de Rejet (Rejection Sampling)
	Algorithme de la Cummulative (Tower sampling)
	Algorithme de Walker

	Echantillonage de loi continue unidimensionnelle
	Algorithme de rejet (Rejection sampling)
	Méthode cumulative inverse

	Transformations utiles
	Le cercle
	La gaussienne

	Chaîne de Markov Monte-Carlo (MCMC)
	Exemple avec une grille à 9 états
	Matrice de Transition
	Conservation de probabilité
	Équation maîtresse
	Distribution d'Équilibre, bilan global et détaillé

	Algorithme de Metropolis-Hastings
	Description de l'Algorithme
	La règle de Metropolis
	La convergence de Metropolis
	Les conditions nécessaires à la convergence

