
PHYS-338: Physique Statistique 2024-2025

Lecture 7: Échantillonage et Algorithmes de Monte-Carlo
Professeur: Florent Krzakala Scribes: Pignalosa Antoine, Baud Ilan, Meylan Benjamin, Maillard Louis, Bénon Loris, Cottin Clément, Hafner Léo

7.1 Motivation

Dans les chapitres précédents, on s’est intéressé au formalisme de la mécanique statistique en étudiant des sys-
tèmes simples où on a le plus souvent supposé que les particules n’interagissaient pas entre elles. Il va de soi que
ces suppositions ne tiennent plus dans la plupart des systèmes réels et que dans ces derniers, les particules inter-
agissent entre elles. Malheureusement, lorsque les particules sont en interaction, la fonction de partition devient
considérablement plus compliquée a calculer et il sera donc plus raisonnable de l’estimer numériquement plutôt
que de la calculer directement.

Pour illustrer comment on peut estimer une fonction de partition, on considère un système à N particules avec un
hamiltonien H qui est une fonction “compliquée" des configurations.1 La fonction de partition s’écrit alors :

Z (N ,V ,T) =
∫

d x⃗1 . . .d x⃗N e−βH (⃗x1,...,⃗xN). (7.1)

Souvent ce qui nous intéresse dans un système, c’est les valeurs moyennes d’une observable O. Cette valeur se
calcule suivant :

〈O〉 =
1

Z

∫
d x⃗1 . . .d x⃗N O (⃗x1, ..., x⃗N)e−βH (⃗x1,...,⃗xN). (7.2)

Si on est capable de calculer notre observable pour N configurations et en supposant que N est assez grand, on
sait par la loi des grands nombres, qu’on peut écrire la valeur moyenne d’une observable comme

〈O〉 ≈ 1

N

N∑
i =1

O
(⃗
x(i)

1 , ..., x⃗(i)
N

)
, (7.3)

où les
(⃗
x(i)

1 , . . . , x⃗(i)
N

)
dénotent des points de l’espace des configurations. On pose

X (i) :=

∣∣∣∣∣∣∣∣
x⃗(i)

1
...
x⃗(i)

N

, (7.4)

où X (i) dénote alors la i -ème configuration étudiée. Notre objectif principal est donc d’échantillonner notre es-
pace proportionnellement à la probabilité associée à chacune des configurations. En d’autres mots, on cherche à
générer des variables aléatoires X (i) telles que

X (i) ∼ 1

Z
e
−βH

(⃗
x(i)

1 ,...,⃗x(i)
N

)
. (7.5)

Toute cette procédure de génération de variables aléatoires qu’on appelle plus communément échantillonage est
résolue par les simulations Monte-Carlo. Mais avant ça, on va s’intéresser à comment échantilloner des distribu-
tions plus simples.

1L’idée se généralise facilement si on considère aussi les impulsions.

7-1

7-2 Lecture 7: Échantillonage et Algorithmes de Monte-Carlo

7.2 Échantillonage de lois discrètes unidimensionnelles

Nous allons étudier un système à N états avec un ensemble de probabilités associées à chaque état {pi }N
i =1. Par

exemple, cherchons à répondre à la question “Que faire ce soir ?" et on imagine les réponses suivantes :

1. “Fêter Halloween" avec p1 = 0.5

2. “Lire un livre" avec p2 = 0.1

3. “Aller dans un bar" avec p = 0.2

4. “Regarder la télévision" avec p = 0.2

Dans les sections suivantes, nous illustrerons cet exemple avec des différents algorithmes. Avant de poursuivre,
nous devons supposer qu’un ordinateur peut calculer des réalisations d’une loi de distribution uniforme.

7.2.1 Algorithme de Rejet (Rejection Sampling)

Pour implémenter un algorithme de rejet, on dresse un tableau de taille 1 par 1 contenant des rectangles représen-
tant chaques évènements (ou états). Ces rectangles doivent avoir une aire proportionnelle à la probabilité de
réalisation de l’évènement qu’ils représentent. Un exemple d’un tel montage est représenté à la figure 7.1.

L’idée de l’algorithme de rejet est de générer deux variables aléatoires
indépendantes X ,Y suivant une loi de distribution uniforme U [0,1]
et de regarder où la coordonée d’une réalisation de ces deux vari-
ables aléatoires (x, y) a atteri sur le tableau dressé précédemment.

Un exemple d’un tel algorithme pourrait être :

Algorithme 1.

ok = 0
while(ok = 0){

x ∼ U(0,1)
y ∼ U(0,1)
if ((x,y) ∈ Histogram){ok = 1}

}
Return(int) 4x+1

Figure 7.1: Illustration d’un tableau pour un
algorithme de rejet.

Pour améliorer cet algorithme on va chercher à réduire le nombre de rejets. On remarque alors facilement que pour
ce faire, on peut simplement reduire l’intervalle de la loi de distribution de la variable aléatoire Y à U

(
0,max(pi)

)
.

Procéder ainsi nous permet de retirer toute l’aire inutile qui se trouve au dessus des rectangles.

Lecture 7: Échantillonage et Algorithmes de Monte-Carlo 7-3

7.2.2 Algorithme de la Cummulative (Tower sampling)

Figure 7.2: Illustration d’un
tableau pour un algorithme de
rejet.

Pour implémenter un algorithme de la cumulative, on dresse un axe avec
des segments mis bout-à-bout où ces segments on une taille égale à la
probabilité de l’évènement qu’ils représentent. Un exemple est donné à la
figure 7.2. L’idée de l’algorithme de la cumulative est de générer une vari-
able aléatoire X ∼U (0,1) et ensuite regarder sur quel segment une réalisa-
tion de cette variable aléatoire est arrivée. Pour ce faire on doit également
définir les bords des segments c(i) comme illustré sur la figure ci-contre.

Un exemple d’un tel algorithme pourrait être :

Algorithme 2.

x ∼ U[0,1]
ok = 0
i = 2
while(x > c(i)){ i ← i + 1 }
Return i

L’algorithme de la cumulative a l’avantage sur l’algorithme de rejet de ne pas avoir à générer plusieurs fois une vari-
able aléatoire. On dira alors que l’algorithme de la cumulative est “rejection free" ce qui est computationellement
nettement meilleur.

On remarque également qu’une version plus rapide de l’algorithme 2 consite à faire une recherche de la réalisation
de la variable aléatoire par dichotomie.

7.2.3 Algorithme de Walker

Cet algorithme, un peu plus dur à implémenter, cherche
à construire un tableau avec une aire proportionnelle à la
propabilité de l’évènement associé mais cette fois sans avoir
de possibilité de rejet. La figure 7.3 illustre un tel montage.

Il nous suffit, une fois le tableau dressé, de générer deux vari-
ables aléatoires X ,Y et noter la surface sur laquelle elle est
arrivée. Figure 7.3: Illustration de l’algorithme de

Walker en 1D avec les probabilités données.

7.3 Echantillonage de loi continue unidimensionnelle

Dans cette section, on s’intéresse à différentes méthodes pour échantillonner des variables aléatoires X suivant
une distribution continue et unidimensionnelle X ∼ PX , où PX est une densité de probabilité.

7.3.1 Algorithme de rejet (Rejection sampling)

Imaginons qu’on connaisse le graphe de la densité de probabilité PX (x). On génère deux variables aléatoires X ,Y
telles que X est uniforme sur l’intervalle qu’on considère, i.e. X ∼U (xmin, xmax), et Y ∼U (0,c), où c ∈ R>0 est un
paramètre de notre implémentation.

7-4 Lecture 7: Échantillonage et Algorithmes de Monte-Carlo

L’algorithme de rejet consiste à observer où le couple (x, y)
d’une réalisation de ces deux variables aléatoires arrive sur le
graphe. Si le couple désigne un point sous le graphe on accepte
sinon on rejette.

Un exemple du graphe que donnerait une implémentation de
l’algorithme de rejet est donné à la figure 7.4.

Algorithme 3.

ok = 0
while(ok = 0){

x ∼ U[0,1]
y ∼ c · U[0,1]
if (y < PX (x)){ok = 1}

}
Return x

Figure 7.4: Illustration d’un algorithme de re-
jet avec c = 1.

On peut noter que faire tourner l’algorithme un grand nombre de fois nous donne l’aire sous la courbe, qui n’est
autre que la valeur de l’intégrale I = (c −0)(xmax −xmin)P (accept).

Comme pour dans le cas discret, on veut réduire à un minimum le nombre de rejets de cet algorithme. Pour ce faire
on peut penser au premier abord à restreindre notre variable aléatoire Y a suivre une loi uniforme sur l’intervalle
U (0,c), où c = max(PX (x)) comme nous l’avions vu pour échantillonner une loi discrète. Il existe cependant une
méthode qui peut s’avérer encore meilleure pour certaines situations :

On suppose qu’on sait générer des variables aléatoires selon une autre loi de distribution continue que la loi uni-
forme que l’on notera QX et on suppose aussi que QX (x) ≥ PX (x), ∀x. Alors on voit simplement qu’on peut générer
X ∼U (0,1) et Y ∼QX et alors regarder si le couple (x, y) est arrivé sous la courbe de PX .

Figure 7.5: Illustration d’un algorithme de re-
jet avec c = max(Q(x)).

La figure 7.5 illustre un exemple d’échantillonnage efficace de
PX , où on a pris QX comme étant une Gaussienne.

Algorithme 4.

ok = 0
while(ok = 0){

x ∼ U[0,1]
y ∼ Q(x)
if (y < PX (x)){ok = 1}

}
Return x

7.3.2 Méthode cumulative inverse

Soit x ∼ P (x). On cherche une transformation T tel que x = T (u) ∼ P (ω), T −1 (T (x)) = x (i.e. T admet un inverse
unique) avec u qui suit une loi uniforme. Pour cela nous utilisons la cumulative FX (x):

FX (x) =
∫ x

−∞
PX (θ)dθ = P (X ≤ x) = P (T (u) ≤ x) = P (u ≤ T −1(x)) = T −1(x) (7.6)

Où nous avons utilisé pour la dernière égalité le fait que, pour une loi uniforme u[0,1], P ((x ∼ u[0,1]) ≤ a) = a.

Lecture 7: Échantillonage et Algorithmes de Monte-Carlo 7-5

Ainsi, si on prend x = T (u) avec T (·) = F−1
X (·) alors x ∼ PX (x).

Exemple: Prenons x ∼ e−x , x ≥ 0, alors on a PX (x) = e−x et FX (x) = 1−e−x On en tire

u = 1−e−x =⇒ x = − log(1−u)

Ainsi, si on prend u uniforme, alors x suivra bien la distribution exponentielle. Cela montre que l’on sait échantil-
lonner les lois exponentielles.

R Si on avait pris x = log(u) cela aurait très bien fonctionné car 1−u et u sont également distribués uniformément.
Attention cependant numériquement: lorsque u est proche de 0 ou 1, il peut y avoir des problèmes dus au
logarithme. Il faut ainsi choisir judicieusement selon le problème si l’on choisit x = log(u) ou x = log(1−u)

7.4 Transformations utiles

Dans cette section, quelques transformations de loi de probabilité permettant d’échantillonner sur des espaces
importants vont être mises en avant :

7.4.1 Le cercle

Pour ce premier format, l’objectif est d’échantillonner des points à l’intérieur du cercle unité, dans ce but nous
allons lister trois méthodes dont deux fonctionnent :

Méthode 1

Pour le premier algorithme on va générer deux variables aléa-
toires indépendantes X ,Y suivant une loi de distribution uniforme
U [−1,1] et puis on garde ceux qui tombent dans le cercle unité.

L’algorithme est le suivant :

Algorithme 1.

x ∼ U(-1,1)
y ∼ U(-1,1)
if x2 + y2 ≥ 1 on rejette

Cette méthode permet aussi de calculer la valeur de π en util-
isant le fait que la probabilité de tomber dans le cercle est

Pi n = aire cercle
aire carré = π

4 = Ni n
Ntot al

où Ni n est le nombre de points
tombés dans le cercle et Ntot al le nombre total de points, cela
implique:

π =
4Ni n

Ntot al
(7.7)

Figure 7.6: Échantillonnage du cercle avec rejet

7-6 Lecture 7: Échantillonage et Algorithmes de Monte-Carlo

Méthode 2

Figure 7.7: Echantillonnage du cercle en coordonnées
polaires

Pour le second algorithme on va générer des points en échantil-
lonnant avec r suivant une loi de distribution uniforme U [0,1] et
θ ∼ U[0,2π] cela nous donne des couples de points dans le cercle
(x, y) = (r cosθ,r si nθ) :

Algorithme 2.

r ∼ U(0,1)
θ ∼ U(0,2π)
Return (rcosθ,rsinθ)

En échantillonnant de la sorte, on voit tout de suite que plus la
valeur de r est proche de 1 moins les points seront denses. Donc
l’échantillonnage n’est pas équitablement répartie sur le cercle en-
tier

" Attention cette méthode ne fonctionne pas.

Méthode 3

La troisième méthode qui permet bien d’échantillonner uniformément le cercle est de partir de la loi jointe de x et
y :

P (x, y) =
1

π
, si x2+y2 ≤ 1 (7.8)

= 0, sinon (7.9)

On peut donc écrire en passant en coordonnées polaires :

P (x, y)d xd y =
1

π
d xd y =

r

π
dr dθ (7.10)

On trouve donc ensuite :

P (x, y)d xd y =

(
1

2π
dθ

)
(2r dr) = U (0,2π)×Pr (r)dr dθ (7.11)

Il faut trouver un moyen d’échantillonner une loi Pr (r) = 2r , cela se fait en utilisant la variable Y ∼ U(0,1) et en
posant Y = r 2, on obtient bien :

P (r) =

∣∣∣∣dY

dr

∣∣∣∣ = 2r (7.12)

On voit donc qu’on peut échantillonner uniformément des points dans le cercle en choisissant les variables suiv-
antes :

θ ∼U (0,2π) (7.13)

Y ∼U (0,1) (7.14)

r =
p

Y (7.15)

Lecture 7: Échantillonage et Algorithmes de Monte-Carlo 7-7

Cela nous donne donc des couples (x,y) avec :

x =
p

Y cosθ (7.16)

y =
p

Y si nθ (7.17)

Contrairement à la deuxième méthode, la troisième fonctionne bien. Cela est du au fait que cette fois ci, on a inclus
dans nos calculs le jacobien de la transformation en coordonnées polaires.

7.4.2 La gaussienne

Il nous serait très utile de savoir échantillonner des variables de distribution Gaussienne. En effet, toutes les distri-
butions "smooth" peuvent être écrite comme une superposition de Gaussienne. Savoir échantillonner selon une
Gaussienne permet donc d’échantillonner selon toutes les distributions voulues.

Pour ce faire, on utilise la méthode de Box-Muller. En partant de la fonction de densité de probabilité jointe, on a :

PX (x, y)d xd y =
e−x2/2

p
2π

e−y2/2

p
2π

=
dθ

2π
· r e−r 2/2dr (7.18)

où l’on a procédé au changement en coordonnées polaires.

En posant Y = r 2

2 , on obtient :

(
1

2π
dθ

)(
e−Y dY

)
= Uθ[0,2π]dθ ·exp(Y)dY (7.19)

On peut alors en partant de la loi uniforme U [0,1], que l’on sait échantillonner numériquement, échantillonner
des variables aléatoires qui suivent une distribution Gaussienne. On procède de la manière suivante :

1. D’abord on échantillone θ et Y à l’aide de la loi uniforme et des relations suivantes :

θ = 2π ·U [0,1] (7.20)

Y = − log(U [0,1]) (7.21)

2. On peut ensuite tirer x et y à l’aide du changement de coordonnées polaire :

x =
p

2πcosθ (7.22)

y =
p

2πsinθ (7.23)

De cette manière, on tire directement deux variables indépendantes x et y qui suivent les deux une distribution
Gaussienne.

7.5 Chaîne de Markov Monte-Carlo (MCMC)

Le MCMC est un algorithme créant une séquence de variables aléatoires en espérant qu’elle converge vers une
variable aléatoire avec la probabilité désirée. Un exemple de MCMC est l’échantillonage de l’intérieur d’un carré

7-8 Lecture 7: Échantillonage et Algorithmes de Monte-Carlo

de côté qui vaut 2 centré en l’origine. On commence à un certain point à l’intérieur du carré puis à chaque pas de
temps on avance vers un autre point, l’algorithme s’exprime de la façon suivante :

x t+1 = x t +ϵU [−1,1] (7.24)

y t+1 = y t +ϵU [−1,1] (7.25)

si au temps t + 1 le point est en dehors du carré trois choix s’offrent à nous :

1.Je relance jusqu’à ce que j’obtienne un point dans le carré puis je vais à ce point.

2.Je vais au point et je continue à avancer jusqu’à ce que je rentre à nouveau dans le carré puis je supprime tous
les points obtenus en dehors du carré.

3.Je reste à ma position du temps t , je compte un point en plus à cette même position puis je relance.

Le troisième algorithme s’avère être le meilleur, c’est l’algorithme de Metropolis.

7.5.1 Exemple avec une grille à 9 états

Figure 7.8: Grille pour le MCMC, on
peut se déplacer seulement horizon-
talement ou verticalement avec une
certaine probabilité

Une chaîne de Markov est un processus stochastique où la
probabilité de transition vers l’état suivant dépend unique-
ment de l’état actuel et non des états précédents. Mathéma-
tiquement, cela s’exprime par :

P (X t+1 = x | X t = xt , X t−1 = xt−1, . . . , X0 = x0) = P (X t+1 = x | X t = xt).
(7.26)

Dans le cas discret, on peut imaginer une grille, comme
représentée à la figure 7.8, contenant 9 états où l’on peut se
déplacer d’un état a à un état b seulement horizontalement ou
verticalement avec un taux de transition Pa→b .

7.5.2 Matrice de Transition

L’évolution de la chaîne de Markov est décrite par une matrice de transition P , où Pi j , est la probabilité de passer
de l’état j à l’état i :

Pi j = P (X t+1 = i | X t = j). (7.27)

Une chaine de Markov est entièrement déterminée par cette matrice de transfert car elle contient la probabilité
d’être dans un état i au temps t + 1 si on est dans un état j au temps t pour tout i , j et t .

7.5.3 Conservation de probabilité

Le but est que pour t grand, l’algorithme visite tous les états avec une probabilité donnée π⃗eq . Cela impose cer-
taines conditions. La première est la conservation de probabilité :

1 = P j→ j +
∑
i d j

P j→i (7.28)

Lecture 7: Échantillonage et Algorithmes de Monte-Carlo 7-9

en effet, les seules possibilités sont soit de rester dans l’état dans lequel on était déjà, soit on bouge vers un autre
état.

7.5.4 Équation maîtresse

La deuxième condition est l’équation maitresse, elle exprime la probabilité d’être dans l’état j au temps t + 1

πt+1
j =πt

j P j→ j +
∑
i ̸= j

πt
i Pi→ j (7.29)

le premier terme est simplement la probabilité d’être dans l’état j au temps t multiplié par la probabilité d’y rester
et le deuxième terme est la somme des probabilités d’être dans un état i au temps t multiplié par la probabilité
d’aller de i à j .

7.5.5 Distribution d’Équilibre, bilan global et détaillé

La chaîne de Markov possède une distribution d’équilibre π∗ si elle satisfait :

π∗
j =

∑
i
π∗

i Pi j pour tout j . (7.30)

On peut multiplier par 1 des deux côtés et utiliser le fait que
∑

i P j i = 1:

1×π∗
j =

∑
i
π∗

i Pi j (7.31)∑
i
π∗

j P j i =
∑

i
π∗

i Pi j (7.32)

où la dernière égalité est le bilan global qui est la dernière condition, à l’équilibre, on voudrait échantillonner
cette loi. Il faut que les taux de transition satisfassent cette loi, sans ça, il n’est pas possible de converger vers les
probabilités recherchées. Etant donné que les vecteurs π⃗i ont souvent une grande dimension, il est nécessaire de
faire une simplification, pour se faire on peut regarder une sous-classe d’algorithmes qui satisfait le bilan détaillé :

π∗
j P j i =π∗

i Pi j (7.33)

Le bilan détaillé implique le bilan global mais le contraire est faux.

7.6 Algorithme de Metropolis-Hastings

L’algorithme de Metropolis-Hastings est une méthode MCMC pour générer des échantillons d’une distribution
de probabilité cible π(x) connue jusqu’à un facteur de normalisation.

7.6.1 Description de l’Algorithme

1. Initialiser avec un état initial x0.

2. Pour chaque étape t :

(a) Générer une proposition x ′ à partir de l’état actuel xt en utilisant une distribution de proposition q(x ′ |
xt).

7-10 Lecture 7: Échantillonage et Algorithmes de Monte-Carlo

(b) Calculer le taux d’acceptation :

α = min

(
1,
π(x ′)q(xt | x ′)
π(xt)q(x ′ | xt)

)
. (7.34)

(c) Accepter x ′ avec une probabilité α :

• Si ´E ≤ 0, accepter le changement.

• Sinon, accepter avec une probabilité α.

7.6.2 La règle de Metropolis

Comme vu au point précédent, l’algorithme de Metropolis utilise une version simplifiée du bilan détaillé. Cette
condition s’appelle la rêgle de Metropolis et s’écrit comme :

Pa→b = min

[
1,
π

eq
b

π
eq
a

]
(7.35)

Grâce à cette rêgle, les taux de transitions sont seulement donnés que par des rapports de probabilités. Pourquoi
est-ce important ? Imaginons un système décrit par X (1) et l’on cherche à se rendre à l’état X (2) par un mouvement
de Monte-Carlo :

X (1) =

∣∣∣∣∣∣∣∣
x⃗(1)

1
...
x⃗(1)

N

→ X (2) =

∣∣∣∣∣∣∣∣
x⃗(2)

1
...
x⃗(2)

N

Dans le formalisme canonique, les probabilités à l’équilibre sont données par :

π
eq
1 =

e−βH(X (1))

Z
, π

eq
2 =

e−βH(X (2))

Z

On a alors pour la rêgle de Metropolis dans le cas canonique la relation suivante :

P1→2 = min
[

1,e−β(E2−E1)
]

(7.36)

La rêgle de Metropolis permet donc de calculer les taux de transitions sans calculer ou même connaître la fonction
Z . Cette rêgle permet donc de simplifier à la fois les calculs et le bilan détaillé. En effet, en respectant la rêgle de
Metropolis, on est assuré de respecter le bilan détaillé. Cependant, cela ne nous garanti pas de trouver la méthode
la plus efficace. Il reste alors une question à se poser : la vitesse de convergence de l’algorithme de Metropolis.

7.6.3 La convergence de Metropolis

Tout d’abord, voyons pourquoi nous sommes sûr que la matrice converge. La matrice de transition T est droite-
stochastique (la somme sur les lignes vaut toujours 1). Si la dynamique respecte les conditions d’ergodicité et
d’irréductibilité, alors il existe une seule valeur propre |λ|= 1 et toutes les autres ont valeurs |λi < 1|. De plus, le
vecteur propre associé à |λ|= 1 est π⃗eq . Voyons pourquoi ceci assure la convergence de la matrice :

Lecture 7: Échantillonage et Algorithmes de Monte-Carlo 7-11

Soit λi et ei les valeurs propres et vecteurs propres de la matrice T . On peut alors écrire :

π⃗t=0 =
∑

i
αi ei

On décrit l’évolution de π⃗ comme :
π⃗t=t = T π⃗t=t−1 = T t π⃗t=0 =

∑
i
αiλ

t
i ei

Mais comme toutes les valeurs propres autres que |λ1|= 1 sont plus petites que 1, leurs valeurs tend vers 0 lorsque
t devient grand. On a donc la relation :

π⃗t=t = π⃗eq ≈ π⃗eq +α2λ
t
2π⃗

2 (7.37)

On voit alors que le temps de convergence dépend uniquement de la vitesse de convergence vers 0 de λ2.

On peut réecrire λt
2 comme :

λt
2 = e t logλ2 = e

−t log 1
λ2 = e

−t/ 1
log 1

λ2

On définit alors τ = 1
log 1

λ2

et c’est ce paramètre qui définit la vitesse de convergence. Plusλ2 sera proche de 1, plus τ

sera grand et donc la convergence longue. Dans la pratique, il est très difficile de connaître λ2 mais la convergence
est toujours garantie.

7.6.4 Les conditions nécessaires à la convergence

Voyons plus en détails les conditions nécessaires à la convergence de la chaîne de Markov.

1. Tout d’abord, il faut respecter le bilan global.

2. Il faut être ergodique, c’est à dire que n’importe quel point est atteignable depuis n’importe quel point. Imag-
inons une grille pour le MCMC de taille 2x2 numérotée de 1 à 4. Un exemple de matrice non-ergodique est
pour ce système est :

T =


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


Dans ce cas là, la matrice T décrit deux sous-systèmes indépendants qui ne communique pas. On reste soit
dans les points 1 et 2, soit dans les points 3 et 4. Mathématiquement, on peut diagonaliser par bloc cette
matrice avec chaque bloc ayant une valeur propre λ = 1.

3. La dernière condition est d’être apériodique. En pratique, cela n’arrive pratiquement jamais. Voyons quand
même un cas de matrice périodique. Imaginons une grille pour le MCMC de seulement 2 cases numérotées
1 et 2. On considère la matrice de transition suivante :

T =

[
0 1
1 0

]
On a ici un exemple de système périodique, connaissant le point de départ on sait exactement où l’on se
trouve au temps t . On voit mathématiquement que le théorème n’est pas valide car les 2 valeurs propres de
cette matrice sont λ1,2 = ±1.

	Motivation
	Échantillonage de lois discrètes unidimensionnelles
	Algorithme de Rejet (Rejection Sampling)
	Algorithme de la Cummulative (Tower sampling)
	Algorithme de Walker

	Echantillonage de loi continue unidimensionnelle
	Algorithme de rejet (Rejection sampling)
	Méthode cumulative inverse

	Transformations utiles
	Le cercle
	La gaussienne

	Chaîne de Markov Monte-Carlo (MCMC)
	Exemple avec une grille à 9 états
	Matrice de Transition
	Conservation de probabilité
	Équation maîtresse
	Distribution d'Équilibre, bilan global et détaillé

	Algorithme de Metropolis-Hastings
	Description de l'Algorithme
	La règle de Metropolis
	La convergence de Metropolis
	Les conditions nécessaires à la convergence

