PHYS-338: Physique Statistique 2024-2025

Lecture 6: Formalismes PT & Grand canonique

Professeur: Florent Krzakala Scribes: Andrds Horkay, Dimitri Wybaillie, Florence O’Donovan
Cléa Ricou, Ljubomir Ceranic, Kalina Mihailovska, Chaussard Jules

6.1 Grand canonique

Rappel :

e Micro-canonique (E,V, N) : Ensemble complétement isolé.

e Canonique (T,V,N) : Au lieu de fixer I’énergie, on fixe la température, créant ainsi un couplage
thermique.

e Grand Canonique (7, V, i) : On couple le systéme avec un thermostat, mais aussi avec un réservoir de
particules, puisque le potentiel chimique p est fixe.

Systeme Micro-Canonique (isolé)

N,V fixes
B LN
— > —F >

Systeme Grand Canonique

Figure 6.1: Diagramme d’un systeme grand-canonique couplé a un systeme micro-canonique isolé, ot un
échange de I’énergie et particules est possible.

Considérons alors un systéme grand-canonique (petite boite) couplé a un systéme micro-canonique isolé
(grande boite). La petite boite peut échanger de ’énergie et également des particules avec la grande boite.
On peut se demander alors quelle est la probabilité que notre systeme ait n; particules et une énergie &;:

P(nl,&) O(QPB(EZ,TLZ)QJ_(E—(S'Z,N—TLZ) (61)

o QPB(gu”i)eésl(Eigi’me) (6.2)
A (SL(BN) 28| £-85| ni+l225624 255 Einit- )

x QPB(gi7ni)€kB < Plet PRl e e (6.3)
L ST

x Qpp(&,n;)e FeT T FpT™ (6.4)

ou en (6.2) on a utilisé un développement de Taylor autour de (E, N), et en (6.4) en négligeant les dérivées

secondes et notant que g—% = % et g—f/ = — £, on simplifie I'expression.
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La normalisation ou la probabilité totale est appelée la grande fonction de partition, donnée par la somme
sur toutes configurations pour un nombre de particules N fixe et sur tous nombres de particules possibles (on
somme sur le nombre de configurations et pas sur le spectre d’énergies, car ils existent plusieurs configurations
possibles pour la méme énergie). Elle peut se réécrire en termes de la fonction de partition canonique et la

fugacité ~ : _
BB p) =YY e PPEITAN NN 7 (8) = > vV Zn(B)
N i N N
ou f = ,CE%T et cb dénote la i-e configuration pour N fixe. Ainsi la probabilité d’avoir la petite boite dans

une certaine configuration pour un nombre de particules N s’écrit

. e~ BE(cy)+BuN
P[N,cy] = W (6.5)

Les dérivées du logarithme de la grande fonction de partition sont reliés aux moyennes du nombre de
particules et de I’énergie.

log(2) = éaiE == ZZ )+ ,uN) —BE(ci)+BuN

= éz Z (*E(Cfv)) e BE(CN)+BuN é Z Z uNe*ﬁE(cﬁv)+BuN
SN =N
_ (Z ) (ZE ) BE(CN)) (Z HN@BMN> (Z eﬂl;(c}\,))
N i

o8

<E> + u(N)
0 ‘ eﬁu i
- = — —BE(cN)+BuN _ —BE(cy)
= B(N)
En inversant ces expressions, on voit que les variables p et g fixent les moyennes de E et V.
10
N)=—-—1IlogZ=
(N) Gon
uw o _ 0
E)==—1logE2— —logZ=

Dérivation alternative :

On peut se dire également que la probabilité d’avoir une certaine configuration P[N, c’;] maximise I’entropie
de Gibbs-Shannon mais avec (N) et (E) donnés.

Ainsi, 'entropie de Gibbs-Shannon s’écrit :

Sce = —kp Y _ pilogp (6.6)

i

Et donc le Lagrangien est :

L=—kpY pilogpi+\ (szEz - E) + A2 <ZP¢N1' - N) + A3 (sz - 1) (6.7)
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de _ de _ de
0 0, rs =0et

Et en dérivant ce Lagrangien par rapport a p;, A1, Ay et A3, on obtient : o =0 dqn =
3 1
dc

dxs
Ceci implique que :

p o e PEHBUN (6.8)

ou (8 et u sont des combinaisons linéaires des coefficients de Lagrange A1, Ao et As.
En prenant la probabilité p[N, ¢] donnée par (6.5), on définit ’entropie dans le systéme grand canonique
comme :

e~ BE(ck)+BuN

Sec=-kpy_ > <E> (—=BE(cly) + BuN —log E) . (6.9)
N 1

Or, la grande fonction de partition = ne dépend ni des configurations c’;, ni de N. On peut donc la sortir
des sommes :

1
= SGc:kBlogE+—<E>—ﬁ<N> (6.10)
T T
Definition 6.1 (Grand potentiel 1)
- 1.
J=—kgTlogZz = 3 log = (6.11)
Definition 6.2 (Grand Potentiel II)
J(T,1,V) = (B) = TS — ji{N) = F(T) — () (6.12)
En calculant la variance de N, on obtient :
O(N
(N?) —(N)? = kBTéM> (6.13)

i.e. la dérivée seconde de la grande fonction de partition =.
Avec cette définition de la variance on peut analyser comment la variable p modifie le systéme. Puisqu’on
sait la variance de 1’énergie F, on peut écrire:

(N?) = (N)? < 0] (6.14)

C’est une relation importante dans les grands systemes. J est extensif; il doit donc prendre une certaine
forme. On ne peut pas dire que J soit proportionnel a N parce qu’il n’existe pas. Cependant J est
proportionnel au V. On peut écrire :

(N?) = (N)? x 07 = O(V) (6.15)

C’est une relation intuitive parce que un grand volume signifie qu’il y a plus de particules, et donc plus de
fluctuations.

On peut utiliser I’équation 6.15 pour écrire la variance en matiere du nombre de particules par unité de
volume:

N, N 5 1 1
(7)) = U37))° = 3 VarINl o« O5; (6.16)
Pour un grand systeéme ou le volume tend vers 'infini, on peut écrire:
N
—=n—-n" (6.17)

\%
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E

Dans un grand systeme les fluctuations convergeront vers leur limite déterministe parce que leur variante est
%. Il en est de méme pour tous les systemes parce que lorsque V est grand, il n’y a plus de variante.

On peut appliquer cette relation au grand potentiel canonique. Comme on 'a déja défini dans ’équation
6.7, on peut récrire la grande fonction de partition comme :

2(.00) = DN 2y (8) = 3 N s (20 (619)

Lorsque nous sommes passés du micro-canonique au canonique, nous avons dit qu’il y avait une
compétition entre ’entropie, qui tendait vers les états les plus nombreux, et le thermostat, qui
empéchait ’énergie de devenir trop importante, d’ou le terme d’énergie négative dans ’expression
(voir legon 5) :

Zean =3 oFp Smicrocan(E)=BE
E

Nous avons une situation similaire lorsque nous passons du formalisme canonique au formalisme grand-
canonique. Dans 1’équation (6.19), on a un terme négatif qui vise & minimiser 1’énergie libre, et un
terme qui impose une dépendance aux grands N. On a donc une compétition entre le nombre de
molécules dans le systéme et 1’énergie libre du systéme, l'arbitre étant ici p (et 8). Si nous écrivions
Flanonique €n termes d’entropie et d’énergie, nous verrions qu’il y a en fait deux compétitions. D’une
part, on veut maximiser 1’entropie, mais on a aussi un terme controlant I’énergie du systéme et le terme
BuN imposant que N soit grand. En conséquence, nous voyons qu’'un équilibre est créé. L’équation
(6.19) peut étre considérée comme une perturbation exponentielle (la terme e?*?V) & quelque chose qui
était déja exponentiel.

Comme nous 'avons vu précédemment :

N
n:V—HL* quand V — oo
ol n* est la moyenne (une valeur déterministe). Ceci nous indique que lorsque V est grand, la fonction de

partition du formalisme grand-canonique est donnée par :

= Zeku%—ﬁ%} Voo, |, oV max, (Bun—B (n))
N

par la méthode de Laplace. Cela signifie que le grand potentiel J = —kpT'logZ= est la transformée de
Legendre de I'énergie a N fixée avec un SvN devant elle. Une fois de plus, nous constatons que les différents
potentiels ne sont que des transformées de Legendre les uns des autres : précédemment, nous sommes passés
de I’entropie S (microcanonique) & 'énergie libre F' (canonique), et maintenant nous passons de F' & J (grand
canonique).

Si nous voulons connaitre la probabilité d’avoir un certain nombre de particules n, nous avons un principe
de grandes déviations :

P(n) L2E < VIBUN =B (n)]

Nous voyons que le taux de grande déviation est donné par la transformée de Legendre de F'/V a n fixe avec
un terme avant. Ceci est important pour nous car cela permet de dériver les relations thermodynamiques
de J(u, T, V), qui a la forme :

J(u, T, V) = extry[F(N,T,V) — uN]

pour les raisons mentionnées dans la remarque ci-dessus. Une fois de plus, lorsque le systéme est grand,
tout devient completement déterministe et N sera tel que le potentiel est maximisé. Enfin, nous pouvons
facilement vérifier (comme nous avons fait dans les legons précédentes) que :

dJ = —SdT — pdV — pdN.
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L’exemple suivant met en évidence 1'utilité du formalisme grand canonique, et les résultats seront utiles
lorsque l'on travaillera avec des gaz parfaits au cours de la série 7.

6.2 Limites thermodynamiques

A 1a limite thermodynamique, on s’attends a avoir les principes d’extensivités. On aura donc pour ’enthalpie

libre G(p, T, N) = Ng(p,T) et pour le grand potentiel J(u, V,T) = Vj(u, T).

Or, par les relations de dérivations g—ﬁ =p et g—“ﬂ = —p cela implique que

G(p,T,N) = Nu(p,T)
J(u, V,T) = =Vp(p,T)

6.3 Problemes quantiques

On considere un systéme de particules quantiques et un niveau d’énergie F, et on se demande combien de
particules en moyenne (N) vont occuper ce niveau d’énergie. Ici E est fixé mais pas N et il est donc pertinent
de traiter ce probléeme dans ’ensemble Grand-canonique.

Pour écrire la fonction de partition du systeme, il est nécessaire de distinguer entre les bosons et les
fermions.

6.3.1 Systeme de bosons

Dans un tel systéme on peut envisager d’avoir une infinité de bosons sur un méme niveau d’énergie, la
fonction de partition grand-canonique s’écrit donc:

_ i $ e BEN+BN (6.20)

(1]

N=0 Q
oo
— Z P u—E)N (6.21)
N=0
1

Ou l'on a remarqué qu’il n’y a qu’une seule configuration d’énergie puisqu’un seul niveau d’énergie et des
bosons qui sont indiscernables, et que I’énergie de cette configuration est NE. On a alors naturellement:

1 & Sy Nef=E)N
- _ B(u—E)N _ £LsN=0
(N) =2 Nz_:ONe = S (6.23)
dlog(2)
= 6.24
B3 - B)) (629
eB(n—E)
1
= BE= 1 (6.26)

Si 'on généralise maintenant ce résultat & un systéme de bosons a plusieurs niveaux d’énergie F;, alors on
note =; la fonction de partition du sous-systeme de IV; bosons d’énergie E;, et on peut alors simplement
écrire:

1

(Ni) = eBu—E:) _ |

(6.27)

C’est la distribution de Bose-Einstein.
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6.3.2 systeme de fermions

Pour un systeme de Fermions le principe est le méme mais il faut prendre en compte le principe d’exclusion
de Pauli, selon lequel deux fermions identiques par ailleurs ne peuvent occuper le méme niveau d’énergie.
Il ne peut donc y avoir au maximum qu’un fermion dans le niveau d’énergie E La fonction de partition
grand-canonique s’écrit donc:

1
E=) BN (6.28)
N=0
=1+ B (6.29)
Et on a alors:
1 1
(N) == > Nelw=rN (6.30)
~ N=0
eBlu—E)
= D (6.31)
1
= SE T (6.32)

Et de méme pour un systeme de fermions identiques avec plusieurs sous-systemes de N; fermions d’énergie
Eii

1

(N:) = eBEi—pn) 4+ 1

(6.33)

C’est la distribution de Fermi-Dirac. Il se trouve que ces deux distributions sont d’'une importance
fondamentale en physique du solide, notamment dans la description des phénomenes de conduction et de
supraconductivité.

30 4 — T =1/3k 1

: T =1/4k,
]k 0.8
%59 —— T =1/5k

: — T =1/6k
074 0.6

\Z/lrw : \Z/

: 0.4
109 i
- H 0.24
0 0.04
E=u 06 08 10 12 14

E
(a) (b)

Figure 6.2: 6.2a: Distribution de Bose-Einstein, 6.2b: Distribution de Fermi-Dirac

6.4 Formalisme PT

L’ensemble PT est un ensemble a N, T et la pression P fixés tandis que E et V sont des variables aléatoires.
Considérons une nouvelle fois une grande boite dans un systeme isolé avec donc N, V et E fixés. A l'intérieur
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se trouve une petite boite capable d’échanger de I’énergie mais pas des particules. Elle est composée d’une
paroi mobile pouvant faire varier son volume. On peut alors se demander quelle est la probabilité que notre
systeme ait une énergie £ et un volume v:

6.34
6.35
6.36

6.38

)
)
)
6.37)
)
6.39)

(
(
(
__£ __ v P (
(
(

ol en (6.36) on a utilisé un développement de Taylor autour de (€,v) le tout en négligeant les dérivées
secondes. Pour le (6.37) on a noté que % = %. Ainsi, la probabilité d’une certaine configuration et d’un

certain volume est :

o~ BE (config)—BPV g1/ (6.40)

P(config,V) = Z(ﬁl P

Ici, Z vaut:

Vimaz
Z _ / dv e—ﬂE(conf)e—ﬁpV
V;nin Z

oot (6.41)
Vimaz
= [ ave zgn ),

ou ZZ" est la fonction de partition canonique pour un systeme & [N particules.

On peut alors définir le potentiel suivant

Definition 6.3 (Enthalpie libre) ~
G = _kBTIOgZ(B7p7 N), (642)

que l'on nomme enthalpie libre ou énergie libre de Gibbs selon les conventions (F' est I’énergie libre de
Helmbholtz).

Voyons voir les dérivées de log Z:

o . 057
——logZ7 = ——=
o5 7
1 Vm,az a
- _ v —BE(conf) ,—BpV
Z /‘/wmin dV Zf aﬂ (e ‘ )
V fixé (6.43)
1 ‘/7710.(17
=-z dv Z (—E(conf) — pV') e~ #E(cond) =PV
Vm,in V(;Of{lf’

= (E) +p(V)
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1 . 1032
f*glogZ = ——aBN
B op Bz
11 fYmes 9
. dv i (675E(conf)efﬂpV)
B Vinin ;nf dp
V Hixe (6.44)
- _1{/‘/”” AV S (—pV) e BEconD) —ppV
B Z Vimin conf
V fixé
=(V)
La moyenne du volume V' est donc implicitement fixée par la constante p.
On rappelle que F = —(log Z$¢™) /B et on peut alors écrire Z comme suit:
Vimax
Z = / dVe PPV e=AE(V.A.N) (6.45)
Vimin

Supposons que 1’énergie libre extensive, c’est-a-dire F'(V, 8, N) = N f(3,v), on a alors:
7~ / dv e~ PN@UHF(B2)) o o—BN minlpot F(B,0)] (6.46)

En appliquant kT log a cette relation, on reconnait que I’enthalpie libre est la transformée de Legendre de
I’énergie libre par rapport au volume.

Derniéres Remarques:

A la limite thermodynamique ot N est trés grand, on s’attend a ce que G ait un comportement
extensif:
G(N,p,T) =~ Ng(p,T). (6.47)

Sachant que Oy G = p, on obtient la relation:

G(N,p,T) = Nu(p,T). (6.48)

De maniere équivalente, dans le formalisme grand-canonique, pour un tres grand volume V' nous avons

que J(u, V,T) =Vj(u,T). Hors v J = —p, et donc:
J(p, V,T) = =Vp(u,T). (6.49)

6.5 Résumé
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