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6.1 Grand canonique

Rappel :

• Micro-canonique (E, V,N) : Ensemble complètement isolé.

• Canonique (T, V,N) : Au lieu de fixer l’énergie, on fixe la température, créant ainsi un couplage
thermique.

• Grand Canonique (T, V, µ) : On couple le système avec un thermostat, mais aussi avec un réservoir de
particules, puisque le potentiel chimique µ est fixe.

Système Micro-Canonique (isolé)

Système Grand Canonique

N,V fixes

E N

Figure 6.1: Diagramme d’un système grand-canonique couplé à un système micro-canonique isolé, où un
échange de l’énergie et particules est possible.

Considérons alors un système grand-canonique (petite bôıte) couplé à un système micro-canonique isolé
(grande bôıte). La petite bôıte peut échanger de l’énergie et également des particules avec la grande bôıte.
On peut se demander alors quelle est la probabilité que notre système ait ni particules et une énergie Ei:

P (ni, Ei) ∝ ΩPB(Ei, ni)Ω⊥(E − Ei, N − ni) (6.1)

∝ ΩPB(Ei, ni)e
1

kB
S⊥(E−Ei,N−ni) (6.2)

∝ ΩPB(Ei, ni)e

1
kB

(
S⊥(E,N)− ∂S

∂E

∣∣∣
E

Ei− ∂S
∂N

∣∣∣
N

ni+
1
2

∂2S
∂E2 E2

i +
∂2S

∂E∂N Eini+···
)

(6.3)

∝ ΩPB(Ei, ni)e
− Ei

kBT + µ
kBT ni (6.4)

où en (6.2) on a utilisé un développement de Taylor autour de (E,N), et en (6.4) en négligeant les dérivées
secondes et notant que ∂S

∂E = 1
T et ∂S

∂N = − µ
T , on simplifie l’expression.
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La normalisation ou la probabilité totale est appelée la grande fonction de partition, donnée par la somme
sur toutes configurations pour un nombre de particules N fixe et sur tous nombres de particules possibles (on
somme sur le nombre de configurations et pas sur le spectre d’énergies, car ils existent plusieurs configurations
possibles pour la même énergie). Elle peut se réécrire en termes de la fonction de partition canonique et la
fugacité γ :

Ξ(β, µ) =
∑
N

∑
i

e−βE(ciN )+βµN =
∑
N

eβµNZN (β) =
∑
N

γNZN (β)

où β = 1
kBT et ciN dénote la i-e configuration pour N fixe. Ainsi la probabilité d’avoir la petite bôıte dans

une certaine configuration pour un nombre de particules N s’écrit

P [N, ciN ] =
e−βE(ciN )+βµN

Ξ(β, µ)
(6.5)

Les dérivées du logarithme de la grande fonction de partition sont reliés aux moyennes du nombre de
particules et de l’énergie.

∂

∂β
log(Ξ) =

1

Ξ

∂

∂β
Ξ =

1

Ξ

∑
N

∑
i

(
−E(ciN ) + µN

)
e−βE(ciN )+βµN

=
1

Ξ

∑
N

∑
i

(
−E(ciN )

)
e−βE(ciN )+βµN +

1

Ξ

∑
N

∑
i

µNe−βE(ciN )+βµN

= −
(∑

N

eβµN

)(∑
i

E(ciN )
e−βE(ciN )

Ξ

)
+

(∑
N

µN
eβµN

Ξ

)(∑
i

e−βE(ciN )

)
= −⟨E⟩+ µ⟨N⟩

∂

∂µ
log(Ξ) =

1

Ξ

∑
N

∑
i

βNe−βE(ciN )+βµN =

(∑
N

βN
eβµN

Ξ

)(∑
i

e−βE(ciN )

)
= β⟨N⟩

En inversant ces expressions, on voit que les variables µ et β fixent les moyennes de E et N .

⟨N⟩ = 1

β

∂

∂µ
log Ξ

⟨E⟩ = µ

β

∂

∂µ
log Ξ− ∂

∂β
log Ξ

Dérivation alternative :

On peut se dire également que la probabilité d’avoir une certaine configuration P [N, ciN ] maximise l’entropie
de Gibbs-Shannon mais avec ⟨N⟩ et ⟨E⟩ donnés.

Ainsi, l’entropie de Gibbs-Shannon s’écrit :

SGC = −kB
∑
i

pi log pi (6.6)

Et donc le Lagrangien est :

L = −kB
∑
i

pi log pi + λ1

(∑
i

piEi − Ē

)
+ λ2

(∑
i

piNi − N̄

)
+ λ3

(∑
i

pi − 1

)
(6.7)
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Et en dérivant ce Lagrangien par rapport à pi, λ1, λ2 et λ3, on obtient : dL
dpi

= 0, dL
dλ1

= 0, dL
dλ2

= 0 et

dL
dλ3

= 0.

Ceci implique que :
p ∝ e−βE+βµN (6.8)

où β et µ sont des combinaisons linéaires des coefficients de Lagrange λ1, λ2 et λ3.
En prenant la probabilité p[N, ciN ] donnée par (6.5), on définit l’entropie dans le système grand canonique

comme :

SGC = −kB
∑
N

∑
i

(
e−βE(ciN )+βµN

Ξ

)(
−βE(ciN ) + βµN − log Ξ

)
. (6.9)

Or, la grande fonction de partition Ξ ne dépend ni des configurations ciN , ni de N . On peut donc la sortir
des sommes :

=⇒ SGC = kB log Ξ +
1

T
⟨E⟩ − µ

T
⟨N⟩ (6.10)

Definition 6.1 (Grand potentiel I)

J = −kBT log Ξ = − 1

β
log Ξ (6.11)

Definition 6.2 (Grand Potentiel II)

J(T, µ, V ) = ⟨E⟩ − TS − µ⟨N⟩ = F (T )− µ⟨N⟩ (6.12)

En calculant la variance de N , on obtient :

⟨N2⟩ − ⟨N⟩2 = kBT
∂⟨N⟩
∂µ

(6.13)

i.e. la dérivée seconde de la grande fonction de partition Ξ.
Avec cette définition de la variance on peut analyser comment la variable µ modifie le système. Puisqu’on
sait la variance de l’énergie E, on peut écrire:

⟨N2⟩ − ⟨N⟩2 ∝ ∂2
µJ (6.14)

C’est une relation importante dans les grands systèmes. J est extensif; il doit donc prendre une certaine
forme. On ne peut pas dire que J soit proportionnel à N parce qu’il n’existe pas. Cependant J est
proportionnel au V . On peut écrire :

⟨N2⟩ − ⟨N⟩2 ∝ ∂2
µJ = O(V ) (6.15)

C’est une relation intuitive parce que un grand volume signifie qu’il y a plus de particules, et donc plus de
fluctuations.
On peut utiliser l’équation 6.15 pour écrire la variance en matière du nombre de particules par unité de
volume:

⟨(N
V
)2⟩ − (⟨N

V
⟩)2 =

1

V 2
V ar[N ] ∝ O

1

V
(6.16)

Pour un grand système où le volume tend vers l’infini, on peut écrire:

N

V
= n → n∗ (6.17)
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E

V
=→ e∗ (6.18)

Dans un grand système les fluctuations convergeront vers leur limite déterministe parce que leur variante est
1
V . Il en est de même pour tous les systèmes parce que lorsque V est grand, il n’y a plus de variante.
On peut appliquer cette relation au grand potentiel canonique. Comme on l’a déjà défini dans l’équation
6.7, on peut récrire la grande fonction de partition comme :

Ξ(β, µ) =
∑

eβµNZN (β) =
∑

eβµN−βFcanonique(β,N) (6.19)

R Lorsque nous sommes passés du micro-canonique au canonique, nous avons dit qu’il y avait une
compétition entre l’entropie, qui tendait vers les états les plus nombreux, et le thermostat, qui
empêchait l’énergie de devenir trop importante, d’où le terme d’énergie négative dans l’expression
(voir leçon 5) :

Zcan =
∑
E

e
1

kB
Smicrocan(E)−βE

.

Nous avons une situation similaire lorsque nous passons du formalisme canonique au formalisme grand-
canonique. Dans l’équation (6.19), on a un terme négatif qui vise à minimiser l’énergie libre, et un
terme qui impose une dépendance aux grands N . On a donc une compétition entre le nombre de
molécules dans le système et l’énergie libre du système, l’arbitre étant ici µ (et β). Si nous écrivions
Fcanonique en termes d’entropie et d’énergie, nous verrions qu’il y a en fait deux compétitions. D’une
part, on veut maximiser l’entropie, mais on a aussi un terme contrôlant l’énergie du système et le terme
βµN imposant que N soit grand. En conséquence, nous voyons qu’un équilibre est créé. L’équation
(6.19) peut être considérée comme une perturbation exponentielle (la terme eβµN ) à quelque chose qui
était déjà exponentiel.

Comme nous l’avons vu précédemment :

n =
N

V
→ n⋆ quand V → ∞

où n⋆ est la moyenne (une valeur déterministe). Ceci nous indique que lorsque V est grand, la fonction de
partition du formalisme grand-canonique est donnée par :

Ξ =
∑
N

eV [βµN
V −β F

V ] V→∞−−−−→∼ eV maxn(βµn−β F
V (n))

par la méthode de Laplace. Cela signifie que le grand potentiel J = −kBT log Ξ est la transformée de
Legendre de l’énergie a N fixée avec un βνN devant elle. Une fois de plus, nous constatons que les différents
potentiels ne sont que des transformées de Legendre les uns des autres : précédemment, nous sommes passés
de l’entropie S (microcanonique) à l’énergie libre F (canonique), et maintenant nous passons de F à J (grand
canonique).

Si nous voulons connâıtre la probabilité d’avoir un certain nombre de particules n, nous avons un principe
de grandes déviations :

P(n)
LDP−−−→≍ eV [βµN−β F

V (n)]

Nous voyons que le taux de grande déviation est donné par la transformée de Legendre de F/V à n fixe avec
un terme avant. Ceci est important pour nous car cela permet de dériver les relations thermodynamiques
de J(µ, T, V ), qui a la forme :

J(µ, T, V ) = extrN [F (N,T, V )− µN ]

pour les raisons mentionnées dans la remarque ci-dessus. Une fois de plus, lorsque le système est grand,
tout devient complètement déterministe et N sera tel que le potentiel est maximisé. Enfin, nous pouvons
facilement vérifier (comme nous l’avons fait dans les leçons précédentes) que :

dJ = −SdT − pdV − µdN.
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L’exemple suivant met en évidence l’utilité du formalisme grand canonique, et les résultats seront utiles
lorsque l’on travaillera avec des gaz parfaits au cours de la série 7.

6.2 Limites thermodynamiques

À la limite thermodynamique, on s’attends à avoir les principes d’extensivités. On aura donc pour l’enthalpie
libre G(p, T,N) = Ng(p, T ) et pour le grand potentiel J(µ, V, T ) = V j(µ, T ).
Or, par les relations de dérivations ∂G

∂N = µ et ∂J
∂V = −p cela implique que

G(p, T,N) = Nµ(p, T )

J(µ, V, T ) = −V p(µ, T )

6.3 Problèmes quantiques

On considère un système de particules quantiques et un niveau d’énergie E, et on se demande combien de
particules en moyenne ⟨N⟩ vont occuper ce niveau d’énergie. Ici E est fixé mais pas N et il est donc pertinent
de traiter ce problème dans l’ensemble Grand-canonique.

Pour écrire la fonction de partition du système, il est nécessaire de distinguer entre les bosons et les
fermions.

6.3.1 Système de bosons

Dans un tel système on peut envisager d’avoir une infinité de bosons sur un même niveau d’énergie, la
fonction de partition grand-canonique s’écrit donc:

Ξ =

∞∑
N=0

∑
Ω

e−βEN+βµN (6.20)

=

∞∑
N=0

eβ(µ−E)N (6.21)

=
1

1− eβ(µ−E)
(6.22)

Où l’on a remarqué qu’il n’y a qu’une seule configuration d’énergie puisqu’un seul niveau d’énergie et des
bosons qui sont indiscernables, et que l’énergie de cette configuration est NE. On a alors naturellement:

⟨N⟩ = 1

Ξ

∞∑
N=0

Neβ(µ−E)N =

∑∞
N=0 Neβ(µ−E)N∑∞
N=0 e

β(µ−E)N
(6.23)

=
∂ log(Ξ)

∂(β(µ− E))
(6.24)

=
eβ(µ−E)

1− eβ(µ−E)
(6.25)

=
1

eβ(E−µ) − 1
(6.26)

Si l’on généralise maintenant ce résultat à un système de bosons à plusieurs niveaux d’énergie Ei, alors on
note Ξi la fonction de partition du sous-système de Ni bosons d’énergie Ei, et on peut alors simplement
écrire:

⟨Ni⟩ =
1

eβ(µ−Ei) − 1
(6.27)

C’est la distribution de Bose-Einstein.
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6.3.2 système de fermions

Pour un système de Fermions le principe est le même mais il faut prendre en compte le principe d’exclusion
de Pauli, selon lequel deux fermions identiques par ailleurs ne peuvent occuper le même niveau d’énergie.
Il ne peut donc y avoir au maximum qu’un fermion dans le niveau d’énergie E La fonction de partition
grand-canonique s’écrit donc:

Ξ =

1∑
N=0

eβ(µ−E)N (6.28)

= 1 + eβ(µ−E) (6.29)

Et on a alors:

⟨N⟩ = 1

Ξ

1∑
N=0

Neβ(µ−E)N (6.30)

=
eβ(µ−E)

1 + eβ(µ−E)
(6.31)

=
1

eβ(E−µ) + 1
(6.32)

Et de même pour un système de fermions identiques avec plusieurs sous-systèmes de Ni fermions d’énergie
Ei:

⟨Ni⟩ =
1

eβ(Ei−µ) + 1
(6.33)

C’est la distribution de Fermi-Dirac. Il se trouve que ces deux distributions sont d’une importance
fondamentale en physique du solide, notamment dans la description des phénomènes de conduction et de
supraconductivité.
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Figure 6.2: 6.2a: Distribution de Bose-Einstein, 6.2b: Distribution de Fermi-Dirac

6.4 Formalisme PT

L’ensemble PT est un ensemble à N , T et la pression P fixés tandis que E et V sont des variables aléatoires.
Considérons une nouvelle fois une grande boite dans un système isolé avec donc N , V et E fixés. A l’intérieur
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se trouve une petite boite capable d’échanger de l’énergie mais pas des particules. Elle est composée d’une
paroi mobile pouvant faire varier son volume. On peut alors se demander quelle est la probabilité que notre
système ait une énergie E et un volume v:

P (E , v) ∝ ΩPB(E , v)Ω⊥(E − E , V − v) (6.34)

∝ ΩPB(E , v)e
1

kB
S⊥(E−E,V−v)

(6.35)

∝ ΩPB(E , v)e−
E

kBT − v
kB

∂S
∂V (6.36)

∝ ΩPB(E , v)e−
E

kBT − v
kB

P
T (6.37)

∝ ΩPB(E , v)e−βE−βPv (6.38)

(6.39)

où en (6.36) on a utilisé un développement de Taylor autour de (E , v) le tout en négligeant les dérivées
secondes. Pour le (6.37) on a noté que ∂S

∂V = P
T . Ainsi, la probabilité d’une certaine configuration et d’un

certain volume est :

P (config, V ) =
1

Z̃(β, P )
e−βE(config)−βPV dV (6.40)

Ici, Z̃ vaut:

Z̃ =

∫ Vmax

Vmin

dV
∑
conf
V fixé

e−βE(conf)e−βpV

=

∫ Vmax

Vmin

dV e−βpV Zcan
N (V, β),

(6.41)

où Zcan
N est la fonction de partition canonique pour un système à N particules.

On peut alors définir le potentiel suivant

Definition 6.3 (Enthalpie libre)
G = −kBT log Z̃(β, p,N), (6.42)

que l’on nomme enthalpie libre ou énergie libre de Gibbs selon les conventions (F est l’énergie libre de
Helmholtz).

Voyons voir les dérivées de log Z̃:

− ∂

∂β
log Z̃ = −∂βZ̃

Z̃

= − 1

Z̃

∫ Vmax

Vmin

dV
∑
conf
V fixé

∂

∂β

(
e−βE(conf)e−βpV

)

= − 1

Z̃

∫ Vmax

Vmin

dV
∑
conf
V fixé

(−E(conf)− pV ) e−βE(conf)e−βpV

= ⟨E⟩+ p⟨V ⟩

(6.43)
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− 1

β

∂

∂p
log Z̃ = − 1

β

∂βZ̃

Z̃

= − 1

β

1

Z̃

∫ Vmax

Vmin

dV
∑
conf
V fixé

∂

∂p

(
e−βE(conf)e−βpV

)

= − 1

β

1

Z̃

∫ Vmax

Vmin

dV
∑
conf
V fixé

(−βV ) e−βE(conf)e−βpV

= ⟨V ⟩

(6.44)

La moyenne du volume V est donc implicitement fixée par la constante p.
On rappelle que F = −(logZcan

N )/β et on peut alors écrire Z̃ comme suit:

Z̃ =

∫ Vmax

Vmin

dV e−βpV e−βF (V,β,N). (6.45)

Supposons que l’énergie libre extensive, c’est-à-dire F (V, β,N) = Nf(β, v), on a alors:

Z̃ ∝
∫

dv e−βN(pv+f(β,v)) ∝ e−βN min[pv+f(β,v)]. (6.46)

En appliquant kBT log à cette relation, on reconnâıt que l’enthalpie libre est la transformée de Legendre de
l’énergie libre par rapport au volume.

Dernières Remarques:

R À la limite thermodynamique où N est très grand, on s’attend à ce que G ait un comportement
extensif:

G(N, p, T ) ≈ Ng(p, T ). (6.47)

Sachant que ∂NG = µ, on obtient la relation:

G(N, p, T ) ≈ Nµ(p, T ). (6.48)

De manière équivalente, dans le formalisme grand-canonique, pour un très grand volume V nous avons
que J(µ, V, T ) = V j(µ, T ). Hors ∂V J = −p, et donc:

J(µ, V, T ) = −V p(µ, T ). (6.49)

6.5 Résumé
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