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Le but de ce chapitre est de montrer le lien profond existant entre le formalisme micro-canonique et le
formalisme canonique, ainsi que de redériver explicitement un certain nombre de lois thermodynamiques
bien connues.

5.1 Observation fondamentale

Selon le formalisme grand canonique, pour un β = 1
kBT fixé, la fonction de partition Z(β) est donnée par:

Z(β) =
∑
E

Ω(E)e−βE . (5.1)

À partir de là, la probabilité d’obtenir une certaine énergie E à β fixé s’écrit:

Pβ(E) =
Ω(E)e−βE

Z(β)
. (5.2)

Or, dans ce chapitre, on va considérer la limite des grands systèmes, soit la limite N −→ ∞. Ainsi, en faisant
l’hypothèse d’une somme continue et d’un système se comportant de façon régulière à l’infini, la fonction de
partition peut s’exprimer sous la forme d’une intégrale:

Z(β) =

∫
dE exp

[
1

kB
Sµc(E)− βE

]
≈
∫

de exp

[
N

(
1

kB
sµc(e)− βe

)]
, (5.3)

où Sµc(E) représente l’entropie micro-canonique du système, en sachant que e = E
N et que sµc(e) =

Sµc(e)
N .

Ainsi, pour N −→ ∞, la méthode de Laplace permet de conclure sur le comportement asymptotique de
Z(β):

Z(β) ≈
∫

de exp

[
N

(
1

kB
sµc(e)− βe

)]
≍ exp

[
N max

e

(
1

kB
sµc(e)− βe

)]
. (5.4)

Maintenant qu’une expression pour Z(β) a été dérivée, elle peut être insérée dans l’Eq.(5.2) afin d’expliciter
la formule donnant la probabilité d’obtenir une énergie E à β fixé:

Pβ(E) ≈
exp

[
N
(

1
kB

sµc(e)− βe
)]

exp
[
Nmax

e

(
1
kB

sµc(e)− βe
)] = exp

[
N

((
1

kB
sµc(e)− βe

)
−max

e

(
1

kB
sµc(e)− βe

))]
. (5.5)

L’observation fondamentale à faire est donc la suivante: lorsque N est grand, la fonction de partition est
dominée par une seule valeur de e, appelée e∗, étant celle qui maximise l’argument de l’exponentielle dans
l’Eq.(5.4).

Ainsi, Z(β) peut se réécrire de la façon suivante:

Z(β) ≍ exp

[
Nmax

e

(
1

kB
sµc(e)− βe

)]
= exp

[
N

(
1

kB
sµc(e

∗)− βe∗
)]

, (5.6)
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où e∗ = argmax
e

[
1
kB

s(e)− βe
]
, ce qui conduit à :

Pβ(E) ≈ exp

[
N

(
1

kB
(sµc(e)− sµc(e

∗)) + β(e∗ − e)

)]
. (5.7)

5.2 Transformée de Legendre

En prenant le logarithme de l’Eq.(5.6) dérivée dans la première partie, on peut arriver à une équation pour
l’énergie libre canonique f :

−βf(β) =
logZ

N
(5.8)

⇔ −βf(β) = max
e

(
1

kB
sµc(e)− βe

)
. (5.9)

On peut aussi réécrire cette équation en fonction de T :

f(T ) = min
e

(e− Tsµc(e)) . (5.10)

R Les conventions pour les équations (5.9) et (5.10) varient au niveau du signe et du min/max, d’un
auteur à l’autre, mais restent équivalentes.

Ainsi, on peut remarquer que ces équations nous permettent de définir une relation entre énergie libre canon-
ique et entropie micro-canonique. En effet, on observe, grâce à l’Eq.(5.9), que l’énergie libre canonique est
la transformée de Legendre de l’entropie micro-canonique, ce qui rejoint tout à fait les définitions thermo-
dynamiques de ces deux concepts. Cette relation est ici une conséquence directe du principe de Laplace
pour calculer des intégrales: l’intégrale de l’Eq.(5.6) est exponentiellement dominée par le maximum, ce qui
signifie qu’il faut trouver l’extremum sur e du terme contenu dans l’exponentielle. Et prendre l’extremum
sur e revient en fait à prendre une transformée de Legendre.

Un point intéressant qu’il est nécessaire de relever est que nous venons de déduire un résultat de la thermo-
dynamique à partir du formalisme de la physique statistique et avec l’aide de la méthode de Laplace pour
les intégrales, ce qui permet de mettre à nouveau en évidence les liens entre thermodynamique et physique
statistique.

De plus, le fait que l’énergie libre canonique soit une transformée de Legendre permet aussi de montrer que
les relations dérivées à la fin du précédent chapitre ont un sens. On rappelle ces relations ici:

dF = −SdT − pdV + µdN, (5.11)

dS =
1

T
dE +

p

T
dV − µ

T
dN. (5.12)

Ces dernières étaient déduites, en thermodynamique, du fait que F est la transformée de Legendre de
l’entropie S. On aimerait maintenant dériver une relation pour F et S, semblable à celle qui lie f et sµc
(Eq.5.9). F , la transformée de Legendre de S, est donc donnée par:

F (T, V,N) = min
E

(E − TSµc(E, V,N)) = E∗ − TSµc(E
∗, V,N), (5.13)

où on a noté E∗ l’énergie qui minimise l’argument. Il faut noter que cette équation implique Eq.(5.11) et
Eq.(5.12), mais aussi que la notation E∗ est trompeuse: en effet, il faut prendre en compte que E∗ dépend de
T , V et N puisque le minimum de E−TSµc(E, V,N) doit dépendre de T , V et N . Ainsi, plus rigoureusement,
l’Eq.(5.13) se reécrit:

F (T, V,N) = E∗(T, V,N)− TSµc(E
∗(T, V,N), V,N). (5.14)
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Maintenant, on veut essayer de retrouver l’Eq.(5.11) à partir de cette relation pour l’énergie libre et de
l’Eq.(5.14). Premièrement, on dérive l’Eq.(5.14) par rapport à T :

∂F

∂T

∣∣∣
V,N

=
∂E∗

∂T
− Sµc − T

∂Sµc

∂E∗
∂E∗

∂T

=
∂E∗

∂T

(
1− T

∂Sµc

∂E∗

)
− Sµc(E

∗, V,N)

= −Sµc(E
∗, V,N), (5.15)

où l’on a utilisé le fait que
∂Sµc

∂E∗ = 1
T pour passer de la deuxième à la troisième ligne. Ce premier résultat

correspond à l’Eq.(5.11). On procède de manière analogue pour les deux autres relations de dérivées partielles
par rapport à V et N respectivement:

∂F

∂V

∣∣∣
T,N

=
∂E∗

∂V
− T

(∂Sµc

∂E∗
∂E∗

∂V
+

∂Sµc

∂V

)
=

∂E∗

∂V

(
1− T

∂Sµc

∂E∗

)
− T

∂Sµc

∂V

= −T
∂Sµc

∂V
= −p. (5.16)

Pour passer de la troisième à la quatrième ligne, on a utilisé l’Eq.(5.12), pour dire que p
T =

∂Sµc

∂V .

∂F

∂N

∣∣∣
T,V

=
∂E∗

∂N
− T

(∂Sµc

∂E∗
∂E∗

∂N
+

∂Sµc

∂N

)
=

∂E∗

∂N

(
1− T

∂Sµc

∂E∗

)
− T

∂Sµc

∂N

= −T
∂Sµc

∂N
= µ (5.17)

Ici on a encore une fois utilisé Eq.(5.12) pour passer à la dernière égalité où on a dit que − µ
T =

∂Sµc

∂N .

Avec les trois résultats trouvés aux Eq.(5.15), Eq.(5.16), et Eq.(5.17), on reconstruit facilement Eq.(5.11).
En effet, à cause de la transformée de Legendre, le mouvement du minimum E∗ n’a pas de conséquences sur
ces résultats. Donc, les relations Eq.(5.11) et Eq.(5.12) sont parfaitement cohérentes.

5.3 Transformée de Legendre inverse

Nous avons vu dans un cours précédent que pour une fonction convexe ou concave, la transformée de
Legendre de la transformée de Legendre de la fonction est égale à la fonction originale. Définissons l’énergie
libre canonique comme suit:

f(T ) = Extre [e− Tsµc(e)] , (5.18)

où Extr[ ] représente l’extremum de la fonction. Or, comme on considère des fonctions convexes ou concaves,
l’extremum est unique, et il n’est donc pas nécessaire de préciser s’il s’agit d’un minimum ou d’un maximum.

On peut maintenant inverser l’Eq.5.18:

sµc(e) = ExtrT

[
e

T
− 1

T
f(T )

]
(5.19)
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⇒ 1

kB
sµc(e) = Extrβ [βe− βf(β)] . (5.20)

On voit donc que, à partir de l’énergie libre canonique f(T ), on peut calculer l’entropie micro-canonique
sµc(e): ainsi, lorsque N est grand, les deux formalismes sont équivalents pour une énergie e définie. C’est ce
qu’on appelle l’équivalence des ensembles. Puisqu’on retrouve les lois de la thermodynamique quand N
est grand, on appelle cette limite quand N −→ ∞, la limite thermodynamique.

Deux exemples permettront d’illustrer notre propos.

Exemple 1 (N oscillateurs classiques) : On a vu au chapitre 1 que pour un système de N oscillateurs
classiques, la fonction de partition ZN (β) s’écrit:

ZN (β) =

(
1

h̄ωβ

)N

(5.21)

de sorte que son log a forme

log(ZN (β)) = N log

(
1

h̄ωβ

)
= N log

(
kBT

h̄ω

)
= −N log

(
h̄ω

kBT

)
(5.22)

et
log(ZN (β))

N
= − log

(
h̄ω

kBT

)
. (5.23)

Or, quand N −→ ∞ , on a log(ZN (β))
N = −βf(β), et on obtient :

−βf(β) = log

(
kBT

h̄ω

)
. (5.24)

L’énergie moyenne ⟨e⟩ est égale à l’énergie e∗ quand N est grand. Dans le formalisme canonique, on a que

l’énergie moyenne est égale à la dérivée de log(ZN (β))
N par rapport à β. Ici on trouve :

⟨e⟩ = e∗ =
1

β
= kBT. (5.25)

Revenons à notre transformée de Legendre:

kB
−1sµc(e) = Extrβ [βe− βf(β)] (5.26)

On dérive cette expression par rapport à β en posant que la dérivée doit être nulle car on dérive un extremum,
et en utilisant l’équation (5.24) on obtient :

e = ⟨e⟩ = 1

β
⇐⇒ β =

1

e
. (5.27)

On insère ce résultat dans l’équation (5.26) pour trouver :

kB
−1sµc(e) = β

1

β
+ log

(
1

h̄ωβ

)
= 1 + log

( e

h̄ω

)
. (5.28)

On a donc trouvé une expression pour l’entropie micro-canonique à partir de l’expression de f, l’énergie libre
canonique. Pour vérifier l’équivalence des ensembles, on peut faire l’inverse, comme suit.

D’après le cours 3, on avait :

Ω(E) =
1

(N − 1)!

(
E

h̄ω

)N−1

δE
N≫1
≈ 1

N !

(
E

h̄ω

)N

δE ≈
(

E

Nh̄ω

)N

eNδE ≈
( e

h̄ω

)N
eNδE, (5.29)
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où l’on a utilisé l’approximation de Stirling, qui nous dit que x!≈ ex log(x)−x = xxe−x. En prenant le
logarithme de cette dernière expression, en divisant par N et dans la limite où N −→ ∞, on obtient :

log(Ω(E))

N
−→ log

( e

h̄ω

)
+ 1 + o(1). (5.30)

Dans la limite de N grand, o(1) est négligeable, et on trouve que les équations (5.28) et (5.30) sont égales.
C’est l’équivalence des ensembles. ■

Exemple 2 (N spins indépendants) Soient N particules indépendantes de spins si = ±1, i = 1, . . . , N .

En supposant que le champ magnétique est aligné avec la direction des spins, et que l’énergie magnétique est
donnée par E = m⃗ · B⃗, avec m⃗ le moment magnétique d’une particule, on a alors le Hamiltonien suivant:

H = −gsµBB

N∑
i=1

si, (5.31)

où gs est le facteur de Landé, µB est le magnéton de Bohr et B la norme du champ magnétique. Notons
pour simplifier k = gsµBB.

Le nombre d’états possibles est 2N . On dénote {si}j les spins des particules pour l’état j = 1, . . . , 2N . La
fonction de partition pour l’ensemble des particules est alors:

ZN (β) =

2N∑
j=1

e
βk

∑
{si}j

si . (5.32)

En séparant tous les états de spins possibles, on peut écrire:

ZN (β) =
∑

s1=±1

∑
s2=±1

· · ·
∑

sN=±1

N∏
i=1

eβksi

=

( ∑
s1=±1

eβks1

)
︸ ︷︷ ︸

2 cosh(βk)

· · ·

( ∑
sN=±1

eβksN

)
︸ ︷︷ ︸

2 cosh(βk)

= (2 cosh(βk))
N
.

(5.33)

En prenant le logarithme on obtient alors:

log(ZN (β)) = N log(2 cosh(βk)). (5.34)

Par la définition de f(β) on a:

−βf(β) =
1

N
log(ZN (β)) = log(2 cosh(βk)), (5.35)

et donc, en utilisant la limite des grands ensembles e⋆ = ⟨e⟩:

−∂βf(β)

∂β
= ⟨e⟩ = e⋆ = −k tanh(βk). (5.36)

Pour retrouver sµc du formalisme micro-canonique, on prend alors la transformée de Legendre de f :

1

kB
sµc = Extrβ [βe− βf(β)]. (5.37)
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On cherche alors l’extremum, en imposant la dérivée selon β nulle:

∂β [βe− βf(β)] = e− ∂β [βf(β)] = e− ⟨e⟩ = e+ k tanh(βk)
!
= 0 =⇒ β⋆ = −1

k
arctanh

( e
k

)
, (5.38)

et donc, en substituant dans Eq.5.37:

1

kB
sµc(e) = − e

k
arctanh

( e
k

)
+ log

(
2 cosh

(
arctanh

( e
k

)))
. (5.39)

Pour simplifier cette expression, utilisons l’identité:

−x arctanh (x) + log(2 cosh(arctanh (x))) = H(x) = −1 + x

2
log

(
1 + x

2

)
− 1− x

2
log

(
1− x

2

)
, (5.40)

où H(x) est appelée l’entropie binaire. Finalement, on obtient l’expression suivante pour l’entropie micro-
canonique:

sµc(e) = kBH
( e
k

)
. (5.41)

■

5.4 Grandes déviations

Commençons par discuter la fonction de partition du système. Dans la forme discrète, elle peut s’écrire
comme la somme des fonctions partielles associées aux énergies:

Z =
∑
e

Z(e). (5.42)

La fonction de partition Z décrivant des variations continues prend la forme d’une intégrale:

Z ∝
∫

exp

(
N

(
sµc(e)

kB
− βe

))
de ≍ exp

(
N max

e

(
sµc(e)

kB
− β(e)

))
, (5.43)

lorsque N est très grand.

En utilisant la définition de l’entropie, on peut en déduire la probabilité de se trouver dans un état avec une
énergie particulière:

P(e) =
Ω(E) exp(−βE)

Z
≍

exp
(
N
(

sµc(e)
kB

− βe
))

exp
(
N
(
max

e

(
sµc(e)
kB

− βe
))) = exp

(
N

(
sµc(e)

kB
− βe−max

e

(
sµc(e)

kB
− βe

)))
.

(5.44)
On réarrange les termes et introduit une nouvelle fonction f(T ) = min

e
(e− Ts(e)):

P(e) ≍ exp(−βN(e− Tsµc(e)− f(T ))). (5.45)

Nous voyons que pour certaine énergie e l’argument de cette exponentielle s’annule. C’est cette énergie,
dénotée e∗, qui caractérise la configuration dominante, e.g. la plus probable. La probabilité est ainsi donné
par une fonction qui converge vers le Delta de Dirac centré en e∗.

Dans la limite thermodynamique, on peut écrire, pour la probabilité canonique P (e):

log(P (e))

N

N→∞−−−−→ −β(e− Tsµc(e) + cst) (5.46)
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Où e− Tsµc(e) correspond à l’énergie moins T multiplié par l’entropie micro-canonique.

Finalement, on obtient:

P(e) ≍ exp

(
N

(
sµc(e)

kB
− βe

))
. (5.47)

Le premier terme de l’exposant est issu du formalisme micro-canonique et est exponentiellement dominé par
le maximum de sµc(e). Le deuxième terme correspond à une perturbation exponentielle.

Dans la limite thermodynamique, la physique statistique obéit au formalisme des grandes déviations. Cer-
taines lois de la probabilité incluent une exponentielle qui est dominée par un nombre et tout le reste est
exponentiellement faible. L’argument de ces exponentielles est appelé rate et correspond à ce qui a été
discuté en probabilité.

Selon le principe de grandes déviations (”Large Deviation Principle” en anglais, ou LDP), la probabilité
mentionnée ci-dessous est conforme a la loi:

P(e) ≍ exp(−NI(e)), (5.48)

avec rate I(e). Dans le cas présent, le I(e) est définie comme:

I(e) = βe− sµc(e)

kB
− C. (5.49)

Cette fonction nous permet d’étudier des configurations qui arrivent exponentiellement rarement. Cette
étude s’avère intéressante car elle nous fournit un moyen pour étudier les changements de système comme
des perturbations exponentielles dont la forme mathématique vient d’être dérivée.

5.5 Astuce: le terme source

Supposons d’avoir un système avec Hamiltonien H et qu’on soit intéressés à un observable O. Normalement
on commencerait notre étude par le calcul de la fonction de répartition:

Z(β) =
∑
conf

e−βEi , (5.50)

où Ei est l’énergie de la configuration i. Une astuce qui nous permet de beaucoup simplifier notre traitement
de l’observable consiste en rajouter au système un terme de source qui contient l’observable lui-même,
pondéré par une variable t:

−βH̃ := −βH+ tO. (5.51)

Ceci nous donne une nouvelle fonction de répartition:

Z(β, t) =
∑
conf

e−βEi+tOi , (5.52)

où Oi est la valeur de l’observable O dans la configuration i. Le but de ce changement est la possibilité de
pouvoir calculer rapidement les cumulants de l’observable. En effet:

∂t log(Z)|t=0 = ⟨O⟩, (5.53)

∂2
t log(Z)

∣∣
t=0

= ⟨O2⟩ − ⟨O⟩2, (5.54)

ce qui fait de log(Z(β, t)) la fonction caractéristique pour l’observable O.
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Il est aussi possible d’encadrer l’utilisation du terme de source dans le formalisme des transformées de
Legendre. Écrivons la fonction de répartition en tant qu’intégrale sur les o = O/N :

Z(t) =
∑
o

Zo fixe(t, β) =

∫
doe−βNfo fixe(o)+tNo ≍ e

−βN [min
o

f(o)−to]
, (5.55)

où on a utilisé Laplace pour le dernier passage. Dès qu’on rajoute le terme de source, la fonction de
répartition est donnée par une transformée de Legendre, de façon à ce qu’on revoit apparâıtre les ensembles
thermodynamiques qui en sortent et la théorie des larges déviations.


