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Le but de ce chapitre est de montrer le lien profond existant entre le formalisme micro-canonique et le
formalisme canonique, ainsi que de redériver explicitement un certain nombre de lois thermodynamiques
bien connues.

5.1 Observation fondamentale

Selon le formalisme grand canonique, pour un 5 = kE%T fixé, la fonction de partition Z(8) est donnée par:

Z(B) = QE)e " (5.1)
E
A partir de la, la probabilité d’obtenir une certaine énergie E & [ fixé s’écrit:
Q(E)e PF
Ps(F) = —F——. 5.2
(B = =5 (5.2)

Or, dans ce chapitre, on va considérer la limite des grands systémes, soit la limite N — oco. Ainsi, en faisant
I’hypothese d’une somme continue et d’un systeme se comportant de fagon réguliere a Uinfini, la fonction de
partition peut s’exprimer sous la forme d’une intégrale:

Z(8) = / dE exp {;BS#C(E) - ﬁE} ~ / de exp [N (;BS,w(e) - 56» (5.3)

N . L . R Spe
ol S,c(F) représente 'entropie micro-canonique du systéme, en sachant que e = % et que s,(e) = ‘T(e)

Ainsi, pour N — oo, la méthode de Laplace permet de conclure sur le comportement asymptotique de

Z(B):
251 [acem [ (ot 50)] = oo [vomes (Lot -5)]. s

Maintenant qu’une expression pour Z(3) a été dérivée, elle peut étre insérée dans 'Eq.(5.2) afin d’expliciter
la formule donnant la probabilité d’obtenir une énergie F a [ fixé:

ey I oo (=) (=) 69

L’observation fondamentale a faire est donc la suivante: lorsque N est grand, la fonction de partition est

dominée par une seule valeur de e, appelée e*, étant celle qui maximise ’argument de ’exponentielle dans
I'Eq.(5.4).

Ainsi, Z(8) peut se réécrire de la fagon suivante:
1
Z(B) < exp |[Nmax | —suc(e) —fBe || =exp |N | —spuc(e”) — pe” )|, (5.6)
e kB kB
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ol e* = argmax {és(e) - Be}, ce qui conduit a :
€

Py(E) ~ exp [N (l;(suc(e) — spule”)) + Ble” — @)] . (5.7)
5.2 Transformée de Legendre

En prenant le logarithme de 'Eq.(5.6) dérivée dans la premiére partie, on peut arriver & une équation pour
I’énergie libre canonique f:

~p1(6) = 22 (59)
& ~31(8) = max (-50) - ). (59)

On peut aussi réécrire cette équation en fonction de T
F(T) = min (€ = Tspe(e)) (5.10)

e

Les conventions pour les équations (5.9) et (5.10) varient au niveau du signe et du min/max, d’un
auteur a I’autre, mais restent équivalentes.

Ainsi, on peut remarquer que ces équations nous permettent de définir une relation entre énergie libre canon-
ique et entropie micro-canonique. En effet, on observe, grace & I'Eq.(5.9), que Iénergie libre canonique est
la transformée de Legendre de I'entropie micro-canonique, ce qui rejoint tout a fait les définitions thermo-
dynamiques de ces deux concepts. Cette relation est ici une conséquence directe du principe de Laplace
pour calculer des intégrales: I'intégrale de 'Eq.(5.6) est exponentiellement dominée par le maximum, ce qui
signifie qu’il faut trouver l'extremum sur e du terme contenu dans l’exponentielle. Et prendre l'extremum
sur e revient en fait & prendre une transformée de Legendre.

Un point intéressant qu’il est nécessaire de relever est que nous venons de déduire un résultat de la thermo-
dynamique a partir du formalisme de la physique statistique et avec ’aide de la méthode de Laplace pour
les intégrales, ce qui permet de mettre a nouveau en évidence les liens entre thermodynamique et physique
statistique.

De plus, le fait que 1’énergie libre canonique soit une transformée de Legendre permet aussi de montrer que
les relations dérivées a la fin du précédent chapitre ont un sens. On rappelle ces relations ici:

dF = —SdT — pdV + pdN, (5.11)

1 P H
= —dE 4+ =dV — ZdN. 12
ds Td + TdV Td (5.12)

Ces dernieres étaient déduites, en thermodynamique, du fait que F est la transformée de Legendre de
Pentropie S. On aimerait maintenant dériver une relation pour F' et S, semblable & celle qui lie f et s,
(Eq.5.9). F, la transformée de Legendre de S, est donc donnée par:

F(T,V,N) = min (E — TS,c(E,V.N)) = E* = TS,c(E", V, N), (5.13)

ol on a noté E* énergie qui minimise 'argument. Il faut noter que cette équation implique Eq.(5.11) et
Eq.(5.12), mais aussi que la notation E* est trompeuse: en effet, il faut prendre en compte que E* dépend de
T,V et N puisque le minimum de E—T'S,,.(F,V, N) doit dépendre de T', V' et N. Ainsi, plus rigoureusement,
I’Eq.(5.13) se reécrit:

F(T,V,N)=FE*(T,V,N)-TS5,.(E*(T,V,N),V,N). (5.14)
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Maintenant, on veut essayer de retrouver ’'Eq.(5.11) & partir de cette relation pour ’énergie libre et de
I’Eq.(5.14). Premiérement, on dérive 'Eq.(5.14) par rapport a T":

(23 _ OFE™ g 0S5, OE*
T lvy — 0T e OE* 0T
OE* oS
- 1-T “C) S, (E*,V,N
oT ( OE* She(E7, V. N)
=—5,.(E*,V,N), (5.15)
ou 'on a utilisé le fait que %ii‘f = % pour passer de la deuxieéme a la troisieme ligne. Ce premier résultat

correspond & 1'Eq.(5.11). On proceéde de maniere analogue pour les deux autres relations de dérivées partielles
par rapport & V et N respectivement:

oF OF* 0S8, OE* 05,
v _ _T uc uc
57w = v ~ T o av * o)
OFE* aS oS
= e P
oV ( OE* ) oV
oS
= Tk
oV
= —p. (5.16)
Pour passer de la troisieme a la quatrieme ligne, on a utilisé 'Eq.(5.12), pour dire que % = %.
or _ oE* T(@Suc oE* 8Suc)
ON |1, v ON oE* ON ON
B OE* 85'“6 GSHC
~ ON (1 T oE ) TN
0Spe
= TN
=pu (5.17)
I 0S,c

Ici on a encore une fois utilisé Eq.(5.12) pour passer a la derniere égalité ot on a dit que —%& Sa -

Avec les trois résultats trouvés aux Eq.(5.15), Eq.(5.16), et Eq.(5.17), on reconstruit facilement Eq.(5.11).
En effet, a cause de la transformée de Legendre, le mouvement du minimum E* n’a pas de conséquences sur
ces résultats. Donc, les relations Eq.(5.11) et Eq.(5.12) sont parfaitement cohérentes.

5.3 Transformée de Legendre inverse

Nous avons vu dans un cours précédent que pour une fonction convexe ou concave, la transformée de
Legendre de la transformée de Legendre de la fonction est égale a la fonction originale. Définissons 1’énergie
libre canonique comme suit:

f(T) = Extre [e — T'spc(e)] (5.18)
ou Extr[ ] représente Uextremum de la fonction. Or, comme on considére des fonctions convexes ou concaves,
Pextremum est unique, et il n’est donc pas nécessaire de préciser s’il s’agit d’un minimum ou d’un maximum.
On peut maintenant inverser ’'Eq.5.18:

spe(€) = Extrr {; _ % f(T)} (5.19)
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N kisuc(e) — Extrg [Be — B(8)]. (5.20)
B

On voit donc que, & partir de I’énergie libre canonique f(T'), on peut calculer I’entropie micro-canonique
suc(e): ainsi, lorsque N est grand, les deux formalismes sont équivalents pour une énergie e définie. Cest ce
qu’on appelle I’équivalence des ensembles. Puisqu’on retrouve les lois de la thermodynamique quand N
est grand, on appelle cette limite quand N — oo, la limite thermodynamique.

Deux exemples permettront d’illustrer notre propos.

Exemple 1 (N oscillateurs classiques) : On a vu au chapitre 1 que pour un systéme de N oscillateurs
classiques, la fonction de partition Zn(B) s’écrit:

Zn(B) = (1>N (5.21)

de sorte que son log a forme

log(Zn(B)) = N log (hiﬁ) = Nlog (k;f) = —Nlog (]Z;w) (5.22)
: log(Zx(5) h
08(Zn(B) _ . (T
— = log (kBT> . (5.23)
Or, quand N — oo , on a w = —Bf(B), et on obtient :
kT
—Bf(B) =log (;u) : (5.24)

L’énergie moyenne (e) est égale a l’énergie e* quand N est grand. Dans le formalisme canonique, on a que

l’énergie moyenne est égale a la dérivée de w par rapport a 8. Ici on trouve :
1
(e) =e* = 5 kpT. (5.25)

Revenons a notre transformée de Legendre:

kp ™ 'sue(e) = Extrg [Be — Bf(5)] (5.26)

On dérive cette expression par rapport a 3 en posant que la dérivée doit étre nulle car on dérive un extremum,
et en utilisant I"équation (5.24) on obtient :

1 1
On insére ce résultat dans l’équation (5.26) pour trouver :
ks e(e) = B~ +1og [ —— ) =1 +1o (i) (5.28)
B Zpel® = B & hwB ) 8\ hw /- ’

On a donc trouvé une expression pour l’entropie micro-canonique d partir de l'expression de f, I’énergie libre
canonique. Pour vérifier I’équivalence des ensembles, on peut faire l'inverse, comme suit.

D’apres le cours 3, on avait :

1 ENYTY  ns1 1 (ENY E Y e\ N
UE) = — [ — EMRY S () Ex () NoEx () eNoE 2
(E) = v = (m) 0 N (hw) 0 (th) cro (m) e7oB,  (5.29)
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z log(z)—x x

ot l'on a utilisé l'approximation de Stirling, qui nous dit que x!~ e = z%e~". FEn prenant le
logarithme de cette derniére expression, en divisant par N et dans la limite ou N — oo, on obtient :

s log (%) +1+0(1). (5.30)

log(2(E))
N

Dans la limite de N grand, o(1) est négligeable, et on trouve que les équations (5.28) et (5.30) sont égales.
C’est l’équivalence des ensembles. [

Exemple 2 (N spins indépendants) Soient N particules indépendantes de spins s; = +1,i=1,...,N.

En supposant que le champ magnétique est aligné avec la direction des spins, et que [’énergie magnétique est
donnée par E = m - B, avec m le moment magnétique d’une particule, on a alors le Hamiltonien suivant:

N
M =—g.usBY _si, (5.31)
i=1

ot gs est le facteur de Landé, pup est le magnéton de Bohr et B la norme du champ magnétique. Notons
pour simplifier k = gsupB.

Le nombre d’états possibles est 2. On dénote {s:}; les spins des particules pour Uétat j = 1,.. 2N La
fonction de partition pour l’ensemble des particules est alors:

2N
ZnB) =) s, (5.32)
j=1

En séparant tous les états de spins possibles, on peut écrire:

S SEED ol |

s1=+1s5=741 sy=+1i=1

(5 )5 ) -

Zn(B)

Slzil SN:il
2 cosh(Bk) 2 cosh(Bk)
= (2cosh(Bk))V .
En prenant le logarithme on obtient alors:
log(Zn(B)) = N log(2 cosh(8k)). (5.34)
Par la définition de f(B) on a:
1
—Bf(B) = 55 log(Zn(B)) = log(2 cosh(Bk)), (5.35)

et donc, en utilisant la limite des grands ensembles e* = (e):

9BS(8)
op

Pour retrouver s,. du formalisme micro-canonique, on prend alors la transformée de Legendre de f:

— (e) = ¢* = —k tanh(Bk). (5.36)

1

T Sne = Extrg[Be — Bf(58)]. (5.37)
B
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On cherche alors l'extremum, en imposant la dérivée selon B nulle:

0glBe — Bf(B)] = e — 03[Bf(B)] = e — (e) = e+ ktanh(Sk) 20 = B = ! arctanh (E) , (5.38)

k k
et donc, en substituant dans Eq.5.37:
1
gS/w(e) = —% arctanh (%) + log (2 cosh (arctanh (%))) . (5.39)

Pour simplifier cette expression, utilisons [’identité:

1 1 1-— 1-—
—z arctanh () 4 log(2 cosh(arctanh (x))) = H(z) = — —&2—35 log ( —;—x) - z log ( 5 x) ,  (5.40)

ot H(z) est appelée l’entropie binaire. Finalement, on obtient I’expression suivante pour l’entropie micro-
canonique:

sucle) = kpH (%) . (5.41)

5.4 Grandes déviations

Commengons par discuter la fonction de partition du systéme. Dans la forme discrete, elle peut s’écrire
comme la somme des fonctions partielles associées aux énergies:

Z =Y Ze). (5.42)

La fonction de partition Z décrivant des variations continues prend la forme d’une intégrale:

7 /exp (N <‘°’*kl(;> - ,@e)) de = exp (ngx (Sf;ff(f) - ﬂ(e))) , (5.43)

lorsque N est tres grand.

En utilisant la définition de ’entropie, on peut en déduire la probabilité de se trouver dans un état avec une
énergie particuliere:

ex suele) _ e Spcle Spel®
o gy~ (e (0 0

On réarrange les termes et introduit une nouvelle fonction f(7T") = min(e — T's(e)):
P(e) = exp(—AN (e — Tsuele) — F(T))). (5.45)

Nous voyons que pour certaine énergie e 'argument de cette exponentielle s’annule. C’est cette énergie
)
dénotée e*, qui caractérise la configuration dominante, e.g. la plus probable. La probabilité est ainsi donné
b )
par une fonction qui converge vers le Delta de Dirac centré en e*.

Dans la limite thermodynamique, on peut écrire, pour la probabilité canonique P(e):

log(P(e)) N-oo
N

—fB(e —T'suc(e) + cst) (5.46)
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Ou e — Ts,.(e) correspond a I’énergie moins T multiplié par ’entropie micro-canonique.
o

Finalement, on obtient:

r) o (20 (542 .)) o

Le premier terme de I'exposant est issu du formalisme micro-canonique et est exponentiellement dominé par
le maximum de s,.(e). Le deuxiéme terme correspond & une perturbation exponentielle.

Dans la limite thermodynamique, la physique statistique obéit au formalisme des grandes déviations. Cer-
taines lois de la probabilité incluent une exponentielle qui est dominée par un nombre et tout le reste est
exponentiellement faible. L’argument de ces exponentielles est appelé rate et correspond a ce qui a été
discuté en probabilité.

Selon le principe de grandes déviations (”Large Deviation Principle” en anglais, ou LDP), la probabilité
mentionnée ci-dessous est conforme a la loi:

P(e) < exp(—NI(e)), (5.48)

avec rate I(e). Dans le cas présent, le I(e) est définie comme:

I(e) = Be — %TS) —cC. (5.49)

Cette fonction nous permet d’étudier des configurations qui arrivent exponentiellement rarement. Cette
étude s’avere intéressante car elle nous fournit un moyen pour étudier les changements de systéme comme
des perturbations exponentielles dont la forme mathématique vient d’étre dérivée.

5.5 Astuce: le terme source

Supposons d’avoir un systeme avec Hamiltonien H et qu’on soit intéressés a un observable O. Normalement
on commencerait notre étude par le calcul de la fonction de répartition:

Z(p) =) e "%, (5.50)

conf

ou E; est ’énergie de la configuration i. Une astuce qui nous permet de beaucoup simplifier notre traitement
de l'observable consiste en rajouter au systéme un terme de source qui contient ’observable lui-méme,
pondéré par une variable t:

—BH := —BH +tO. (5.51)
Ceci nous donne une nouvelle fonction de répartition:
Z(B,t) =Y e PEHOL (5.52)
conf

ou O; est la valeur de I'observable O dans la configuration i. Le but de ce changement est la possibilité de
pouvoir calculer rapidement les cumulants de ’observable. En effet:

O IOg(Z)|t:0 = (0), (5.53)
0} log(2)] (0%) - (0)*, (5.54)

t=0

ce qui fait de log(Z(,t)) la fonction caractéristique pour ’observable O.
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Il est aussi possible d’encadrer 'utilisation du terme de source dans le formalisme des transformées de
Legendre. Ecrivons la fonction de répartition en tant qu’intégrale sur les o = O/N:

Z(t) = Zosine(t, B) = / doe—PNJotie(@)+tNo o ,~ANIminf(0)=to] (5.55)

ou on a utilisé Laplace pour le dernier passage. Des qu’on rajoute le terme de source, la fonction de
répartition est donnée par une transformée de Legendre, de fagon a ce qu’on revoit apparaitre les ensembles
thermodynamiques qui en sortent et la théorie des larges déviations.



