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Pour rappel, on utilise le formalisme micro-canonique lorsque le système étudié est isolé (c’est-à-dire que
E, V,N sont fixés).

À travers ce chapitre, nous nous donnons comme objectif d’établir le formalisme le plus utile pour décrire un
système macroscopique avec les outils de la physique statistique. En effet, l’hypothèse du système isolé n’est
pas souvent vérifiée. En revanche, nombreux sont les systèmes qui sont en contact thermique avec l’extérieur,
par exemple l’atmosphère, et donc peuvent échanger de l’énergie E. Un état d’équilibre s’établit, pour lequel
la loi de probabilité sur les configurations microscopiques prend une forme bien spécifique, appelée ensemble
canonique. Cet ensemble statistique permet d’étudier l’état d’équilibre d’un système du moment qu’il est
couplé à un grand système jouant le rôle de thermostat, c’est-à-dire permettant des échanges d’énergie à
température fixée.

4.1 Dérivation

Dans la description canonique, la température T est imposée par le thermostat avec lequel le système est en
contact. Deux méthodes sont proposées pour dériver le formalisme canonique. La première consiste à étudier
un système considéré comme petit au sein d’un plus grand système noté ’réservoir’. La seconde méthode
consiste à étudier l’entropie selon la théorie de l’information.

4.1.1 Le thermostat

Considérons à nouveau un système isolé dont l’énergie totale
est E, que nous appelons le ”grand système” (voir Fig.4.1).
Ce système est suffisamment vaste pour obéir au formalisme
microcanonique, où toutes les configurations accessibles à
énergie constante sont équiprobables. Cependant, pour in-
troduire le formalisme canonique, nous imaginons que ce
grand système est composé de deux sous-systèmes : un petit
système d’intérêt et un réservoir thermique (ou thermostat)
qui englobe le reste du grand système. Le petit système
peut échanger de l’énergie avec le réservoir, tout en main-
tenant une température constante, définie par le réservoir.
L’énergie totale E du grand système reste fixe, mais l’énergie
du petit système ε, elle, peut fluctuer. Le réservoir, étant
beaucoup plus grand, sert à stabiliser la température, per-
mettant ainsi d’appliquer le formalisme canonique au petit
système.

Figure 4.1: Illustration du grand système
(thermostat) d’énergie E ainsi que d’un
plus petit sous-système d’énergie ε.

4-1



4-2 Lecture 4: Le formalisme canonique de la physique statistique

À l’intérieur, on regarde un sous-système à l’équilibre avec le grand système. On se demande quelle est la
probabilité que la petite bôıte ait une énergie ε, c’est-à-dire

P(Epetite boite = ε) = Psyst(ε) =
nombre de configurations t.q. Epetite boite = ε

nombre total de configurations du grand système
(4.1)

En définissant le système perpendiculaire ⊥ comme le grand système privé du petit système et en supposant
que le grand système soit extensif (c’est-à-dire S = SGS(E) = Ns

(
E
N

)
) on obtient

Psyst(ε) =
Ωsyst(ε)Ω⊥(E − ε)

Ωtot(E)
∝ Ωsyst(ε)e

log Ω⊥(E−ε)

∝ Ωsyst(ε)e
1

kB
S⊥(E−ε) ∝ Ωsyst(ε)e

1
kB

S(E−ε)

(4.2)

En développant en série de Taylor, on obtient que

Psyst(ε) ∝ Ωsyst(ε)e
1

kB

[
S(E)−ε

∂S(E)
∂E − ε2

2
∂2S(E)

∂E2 |
Ẽ

]

∝ Ωsyst(ε)e
− ε

kBT − ε2

2kb

∂2S
∂E2

(4.3)

Le facteur e
S(E)
kB étant une constante, il a été omis en deuxième ligne, et Ẽ ∈ [E,E + ϵ]. L’extensivité du

grand système implique que
∂2S

∂E2
= N

∂2S
(
E
N

)
∂E2

=
1

N

∂2s(e)

∂e2
(4.4)

Mais, N est égal au nombre de particules dans le grand système, ça implique que ∂2S
∂E2 → 0. Par conséquent,

Psyst(ε) ∝ Ωsyst(ε)e
− ε

kBT (4.5)

On appelle e
− ε

kBT , le facteur de Boltzmann. Pour se débarrasser des symboles de proportionnalité, on peut
normaliser la probabilité, pour pouvoir avoir une égalité, ce qui donne :

Psyst =
1

Z(T )
Ω(ε)e

− 1
kBT ε

=
1

Z(β)
Ω(ε)e−βε (4.6)

Fonction de partition Le facteur de renormalisation, Z, est la fonction de partition canonique du système,
définie comme :

Z =
∑
ε

Ω(ε)e−βε =
∑
états

e−βε(état)
(4.7)

Si un système qui peut être dans un certain nombre d’états est mis en contact avec un bain thermique, alors
ce système n’est plus limité aux états à un niveau d’énergie donnée.

Remarques :

1. Un grand système jouant le rôle de thermostat (réservoir de chaleur) ne perd pas d’énergie de manière
significative lorsqu’il échange de l’énergie avec un petit système.

2. Notons que dans l’équation (4.7), nous avons donné deux expressions de la fonction de partition. Dans
la première écriture, la somme porte sur les valeurs des énergies accessibles et il faut alors tenir compte
de la dégénérescence de chaque niveau. Dans la seconde, la somme porte sur tous les micro-états
individuels.

3. La probabilité de trouver le système dans un micro-état quelconque m est alors donnée par le poids de
Boltzmann :

pm =
1

Z
e−Em/kBT =

1

Z
e−βEm (4.8)
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Quelle est l’énergie moyenne ?

⟨E⟩canonique(T ) =
N∑

config i=1

EiPi =

N∑
config i=1

Eie
− Ei

kBT

Z(T )
(4.9)

Dans le formalisme canonique, c’est la température T qui est fixée. L’énergie E est une variable aléatoire.

Remarques :

1. la fonction de partition s’exprime pour des niveaux d’énergie continus comme:

Z(T, V,N) =

∫
v

dN q⃗dN p⃗

(h)DN
e−βH[q⃗,p⃗] (4.10)

Avec q⃗, p⃗ les vecteurs donnant les coordonnées et impulsions généralisées de chaque particule, D le
nombre de degrés de liberté de chaque particule et H[q⃗, p⃗] l’hamiltonien associé.

2. Nous allons découvrir que la connaissance de la fonction de partition permet d’accéder aux quantités
thermodynamiques telles que l’énergie interne, l’entropie, l’énergie libre, etc.

4.1.2 Théorie de l’information

Il est possible de dériver l’expression du facteur de Boltzmann en utilisant le principe de maximisation de
l’entropie.

Considérons un système pouvant se trouver dans N états d’énergie différents, dont la probabilité d’occupation
pour chacun est pi (i = 1, ..., N). Fixons alors l’énergie moyenne:

⟨E⟩ =
N∑
i=1

piEi (4.11)

Notons que l’on ne peut pas fixer l’énergie exacte du système, comme celle-ci est une variable aléatoire
dans le formalisme canonique. On cherche alors à trouver la distribution de probabilités {pi}Ni=1 qui
maximise l’entropie du système. L’entropie de Gibbs reliée à la distribution {pi}Ni=1 s’écrit:

S = −kB

N∑
i=1

piln(pi) (4.12)

On cherche alors à maximiser S sous deux contraintes: la somme des probabilités doit valoir 1, et la
valeur moyenne de l’énergie E doit être fixée. Pour cela, on peut utiliser les multiplicateurs de Lagrange,
et l’on s’intéresse alors à la fonction:

L
(
{pi}Ni=1, λ, β

)
= −

∑
i

piln(pi)− λ

(∑
i

pi − 1

)
− β

(∑
i

piEi − ⟨E⟩

)
(4.13)

Où l’on a omis le facteur kB > 0 devant l’entropie car les paramètres maximisant celle-ci ne dépendent
pas d’une constante de multiplication. Chaque dérivée partielle doit s’annuler, et, comme d’habitude, les
dérivées par rapport aux paramètres λ et β donnent les contraintes. La dérivée par rapport à pi donne:
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∂L
∂pi

= −ln(pi)− 1− λ− βEi (4.14)

En égalisant cette dérivée à 0, on obtient le résultat suivant:

pi = e−(1+λ)e−βEi (4.15)

On voit donc que le choix du nom du paramètre β n’a pas été laissé au hasard. En faisant le lien avec
la section précédente, on remarque donc le facteur de Boltzmann, et l’on peut associer le facteur e−(1+λ)

à la fonction de partition: e−(1+λ) = 1
Z(β) .

Récrivons donc l’entropie canonique de Gibbs comme

Sc(β) = −kB

N∑
i=1

piln(pi) (4.16)

Avec

pi =
1

Z(β)
e−βEi ∀i = 1, ..., N (4.17)

Insérant les équations (4.17) dans (4.16), on obtient

Sc(β) = −kB

N∑
i=1

pi [−ln [Z(β)]− βEi] (4.18)

Il est alors possible de simplifier la formule, en se souvenant du fait que les probabilités somment à 1 et
que l’on a fixé l’énergie moyenne ⟨E⟩ du système:

Sc = kB ln[Z(β)] + kBβ⟨E⟩β (4.19)

Où l’indice β est apposé pour nous rappeler que l’énergie moyenne du système dépend de β. En écrivant
β = 1

kBT et en réarrangeant l’équation, on obtient finalement:

F (T, V,N) := −kBT ln[Z(T )] = ⟨E⟩T − TSc(T ) (4.20)

Où l’on a défini la fonction énergie libre F (T, V,N).

Nous intéressons maintenant à la distribution qui maximise l’entropie lorsque la moyenne et la variance
sont fixés. L’entropie de Shannon est donnée par −

∑N
i=1 pi log(pi), que l’on cherche donc à maximiser
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sous les contraintes suivantes :

n∑
i=1

pi = 1, (4.21)

n∑
i=1

piEi,= µ (4.22)

n∑
i=1

pi(Ei − µ)2 = σ2, (4.23)

qui correspondent respectivement à la contrainte de normalisation, à la moyenne de la distribution et à
sa variance. Pour résoudre ce problème, on utilise la méthode des multiplicateurs de Lagrange, et on
cherche donc à maximiser l’expression suivante :

L(p, λ0, λ1, λ2) = −
n∑

i=1

pi log pi + λ0

(
n∑

i=1

pi − 1

)
+ λ1

(
n∑

i=1

piEi − µ

)
+ λ2

(
n∑

i=1

pi(Ei − µ)2 − σ2

)
.

(4.24)
On dérive donc la Lagrangienne et on obtient :

∂L
∂pi

= − log pi − 1 + λ0 + λ1Ei + λ2(Ei − µ)2 = 0, (4.25)

et donc
log pi = λ0 − 1 + λ1Ei + λ2(Ei − µ)2. (4.26)

A partir de cette expression, on peut isoler pi et on obtient alors :

pi = A exp
(
λ1Ei + λ2(Ei − µ)2

)
, (4.27)

où A = exp(λ0 − 1) est une constante de normalisation. On retrouve alors la forme générale d’une
distribution gaussienne dans le cas discret, et le cas continu peut d’ailleurs se dériver par un raisonnement
similaire. Les constantes A, λ1 et λ2 peuvent être déterminées à partir des contraintes 4.21, 4.22 et 4.23
et on obtient ainsi que la contrainte sur A est explicitement donnée par la normalisation :

A =
1∑n

i=1 exp (λ1xi + λ2(xi − µ)2)
, (4.28)

les contraintes sur λ1 et λ2 sont implicitement données et peuvent être résolues numériquement :∑n
i=1 xi exp

(
λ1xi + λ2(xi − µ)2

)∑n
i=1 exp (λ1xi + λ2(xi − µ)2)

= µ, (4.29)

∑n
i=1(xi − µ)2 exp

(
λ1xi + λ2(xi − µ)2

)∑n
i=1 exp (λ1xi + λ2(xi − µ)2)

= σ2. (4.30)

4.2 Propriétés

Nous nous intéressons maintenant aux propriétés qui découlent de la fonction de partition et de ses dérivées.
La connaissance de la fonction de partition canonique permet en général de calculer toutes les valeurs
moyennes d’observables à l’équilibre.
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4.2.1 La fonction de partition, en tant que fonction génératrice des cumulants
de l’énergie

La fonction de partition Z(β) (ou plutôt son logarithme) se comporte comme la fonction génératrice des
cumulants de l’énergie. Une fonction génératrice des cumulants se définit comme :

Kx(t) = logE[etx] Kn =
∂nKx(t)

∂tn
(4.31)

On peut maintenant déterminer les dérivées de la fonction de partition Z(β) en fonction de l’énergie libre
F (β) :

Z(β) = e−βF (β) => log(Z(β)) = −βF (β) (4.32)

∂β logZ(β) = ∂β log

(
N∑
i=1

e−βEi

)
=

∂β
∑N

i=1 e
−βEi

Z(β)

=

∑N
i=1 ∂β

(
e−βEi

)
Z(β)

=
−
∑N

i=1 Eie
−βEi

Z(β)

=

N∑
i=1

Eipi = −⟨E⟩

(4.33)

La première dérivée donne la moyenne de l’énergie, au signe près.

∂2
β logZ(β) = ∂β

(
Z ′(β)

Z(β)

)
=

Z ′′(β)Z(β)− (Z ′(β))
2

Z2(β)

=
Z ′′(β)

Z(β)
−
(
Z ′(β)

Z(β)

)2

=

∑N
i=1 E

2
i e

−βEi

Z(β)
− ⟨E⟩2

= ⟨E2⟩ − ⟨E⟩2 = var(E)

(4.34)

f

Le résultat suivant définit la ”chaleur spécifique à volume constant” CV . Il ne faut pas oublier que dans
cette partie, les dérivées en β et T sont prises à volume V et nombre de moles N constants, un système ne
pouvant échanger que de l’énergie avec l’extérieur.

CV := ∂T ⟨E⟩T |V,N=
1

kBT 2
Var(E) (4.35)

Cette relation est aussi appelée relation de ”fluctuation-dissipation”, car elle relie une dissipation de
chaleur (CV ) à une fluctuation de l’énergie (Var(E)). Prouvons maintenant la deuxième égalité dans
l’équation 4.35.

En utilisant les identités ∂β logZ(β) = −⟨E⟩β et ∂2
β logZ(β) = Var(E)β comme vu en partie 4.2.1, on

obtient:

−∂β⟨E⟩ = Var(E) (4.36)

On peut également dériver par rapport à T, selon le changement de variables suivant:
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∂

∂β
=

∂T

∂β

∂

∂T
=

∂

∂β

(
1

kBβ

)
∂

∂T
= −kBT

2 ∂

∂T
(4.37)

En insérant ce résultat dans l’équation (4.36), on obtient alors l’équation (4.35).

Une autre formule peut également être trouvée pour CV :

CV = ∂T ⟨E⟩T |V,N= T∂TS(T )|V,N (4.38)

En effet, il est possible de partir de l’expression de l’énergie libre en (4.20), multipliée par β:

βF (β) = β⟨E⟩β − S(β)

kB
= −logZ(β). (4.39)

En dérivant la deuxième égalité de chaque côté par rapport à β, on obtient:

⟨E⟩β + β∂β⟨E⟩β − 1

kB
∂βS(β) = ⟨E⟩β (4.40)

Finalement, en soustrayant ⟨E⟩β à chaque côté et en utilisant le changement de variables donné en
(4.37), on obtient l’équation (4.38).

Il est maintenant possible de montrer que:

∂TF (T, V,N)|V,N= −S(T, V,N) (4.41)

En partant de la définition de l’énergie libre en (4.20) et en dérivant par rapport à T, on obtient:

∂TF (T, V,N)|V,N= ∂T ⟨E⟩T |V,N−Sc(T )− T∂TSc(T )|V,N (4.42)

Or on reconnâıt ci-dessus deux expressions pour la chaleur spécifique à volume et nombre de moles
constants: en effet, on a CV = ∂T ⟨E⟩T |V,N= T∂TS(T )|V,N . Les premier et troisième termes s’annulent,
et l’on obtient alors l’équation (4.41).

4.2.2 Découplage de la fonction de partition canonique

Si la fonction de partition s’établie pour un système sans interaction, c’est à dire que les nombres quantiques
mi peuvent être choisis de manière indépendante pour les différentes particules où le niveau d’énergie du
système complet à N particules est noté :

Em1,...,mN
=

N∑
i=1

ε(i)mi
(4.43)
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Où l’on note ε
(i)
mi le niveau d’énergie de la particule i et mi l’ensemble des nombres quantiques nécessaires

pour spécifier l’état quantique de cette particule. La fonction de partition peut alors s’écrire :

Z =
∑

m1,...,mN

e−βEm1,...,mN =

N∏
i=1

∑
mi

e−βε(i)mi (4.44)

Cela permet enfin d’écrire que :

Z =

N∏
i=1

zi zi =
∑
mi

e−βε(i)mi (4.45)

Où l’on note zi la fonction de partition partielle correspondant à l’espace des phases de la particule i, qui
ne dépend pas du nombre de particule N . On peut ainsi mentionner l’expression de la limite classique de la
fonction de partition canonique pour N particules indiscernables en 3 dimensions:

Zh→0 ≈ 1

N !h3N

∫ ∏
i

dqidpie
−βH[{qi,pi}] (4.46)

À noter que le préfacteur 1/N ! tient compte de l’indiscernabilité des particules.

4.3 Applications

4.3.1 1 Oscillateur Harmonique Classique

En guise d’exemple, considérons d’abord un seul oscillateur harmonique. Son hamiltonien est donné par :

H =
p2x
2m

+
1

2
q2xk (4.47)

avec k la constante de rappel. La fonction de partition peut être ainsi calculée en utilisant la formule
gausienne:

Z =

∫
dqdp

h
exp (−βH(q, p)) =

∫
dqdp

h
exp

(
−βp2

2m
− βq2k

2

)
=

1

h

(∫
dq exp

(
−βq2k

2

)∫
dp exp

(
−βp2

2m

))
=

1

h̄

√
m

β

√
1

βk
=

1

h̄βω

(4.48)

où ω =
√

k
m est la pulsation de l’oscillateur harmonique. On obtient alors la fonction de partition en fonction

de la température :

=⇒ Z(T ) =
kBT

h̄ω
(4.49)

4.3.2 N Oscillateurs Harmoniques Classiques non couplés

Maintenant, considérons N oscillateurs harmoniques non couplés. La fonction de partition devient alors :

Z(β) =

∫
dqNdpN

hN
exp (−β

N∑
i=1

Hi) =

N∏
i=1

∫
dqdp exp (−βH(qi, pi)) (4.50)
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Ainsi grâce au formalisme canonique lorsque les systèmes ne sont pas couplés, la fonction de partition pour
N systèmes peut s’écrire :

ZN (β) = [Z(β)]N =

(
kBT

h̄ω

)N

(4.51)

Il est intéressant de remarquer que la quantité logZ(T ) = N log kBT
h̄ω est extensive. L’énergie moyenne peut

alors être calculée :

⟨E⟩ = −N∂β log
1

βh̄ω
= Nβ−1 = NkBT (4.52)

Un résultat important en est déduit :

⟨E⟩ = 1

2
kBT × Nombre de termes quadratiques dans H (4.53)

Ce résultat correspond au ”théorème d’équipartition de l’énergie”. En effet, chaque terme quadratique dans
l’hamiltonien donne une contribution identique à l’énergie interne E égale à 1

2kBT . De plus, cela implique
une contribution identique dans la capacité thermique égale à 1

2kB .

4.3.3 N Oscillateurs Harmoniques Quantiques

1 Oscillateur harmonique quantique Afin de simplifier les calculs, nous considérons initialement un
oscillateur quantique. Nous savons que l’énergie de l’état i est donné par :

Ei = h̄ω

(
1

2
+ i

)
, i = 1, 2, ... (4.54)

Ainsi, nous avons que la fonction de partition Z(β) est donnée par :

Z(β) =

∞∑
i=0

e−βh̄ω( 1
2+i) = e−

βh̄ω
2

∞∑
i=0

(
e−βh̄ω

)i
(4.55)

Comme βh̄ω > 0 ⇒
∣∣e−βh̄ω

∣∣ < 1 et donc nous avons une série géometrique convergente. Ainsi,

∞∑
i=0

(
e−βh̄ω

)i
=

1

1− e−βh̄ω
⇒ Z(β) =

e
−βh̄ω

2

1− e−βh̄ω
(4.56)

N oscillateurs non-couplés Comme nous considérons des oscillateur non-couplés, l’énergie totale est
donnée par la somme des énergies de chaque oscillateur:

Etot
N = h̄ω

N∑
k=1

(
1

2
+ ik

)
(4.57)

La fonction de partition est donné par la somme sur tout les états possibles, c’est-à-dire :

ZN (β) =

∞∑
i1=0

...

∞∑
iN=0

e−βh̄ω
∑N

k=1( 1
2+ik) =

∞∑
i1=0

...

∞∑
iN=0

N∏
k=1

e−βh̄ω( 1
2+ik) =

N∏
k=1

∞∑
ik=0

e−βh̄ω( 1
2+i)

︸ ︷︷ ︸
Z(β)

(4.58)
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Ainsi, comme dans le cas classique, la fonction de partition pour N oscillateurs est donnée par [Z(β)]
N

et
donc, en utilisant l’équation (4.56) :

ZN (β) = [Z(β)]
N

=

(
e

−βh̄ω
2

1− e−βh̄ω

)N

(4.59)

Nous pouvons maintenant calculer l’énergie moyenne par oscillateur ⟨e⟩ = 1
N ⟨E⟩ :

lnZN

N
= ln(Z) = −

(
βh̄ω

2
+ ln

(
1− e−βh̄ω

))
(4.60)

⇒ ⟨e⟩ = −∂ ln(Z)

∂β
= h̄ω

(
1

2
+

1

eβh̄ω − 1

)
= h̄ω

(
1

2
+ ⟨n⟩

)
(4.61)

où nous avons posé ⟨n⟩ =
(
eβh̄ω − 1

)−1
le niveau d’énergie moyen d’un oscillateur. Comparons ces résultats

avec le cas classique en prenant d’abord la limite de T grand c’est-à-dire β ≪ 1. Nous avons que :

eβh̄ω ≃ 1 + βh̄ω ⇒ ⟨e⟩ ≃ h̄ω

(
1

2
+

1

βh̄ω

) β≪1︷︸︸︷
≈ 1

β
= kBT = ⟨e⟩classique (4.62)

Ainsi, pour T grand, les cas classique et quantique s’accordent. Considérons maintenant T petit, i.e. β ≫ 1
:

⟨e⟩ = h̄ω

(
1

2
+

1

eβh̄ω − 1

) eβh̄ω≫1︷︸︸︷
≈ h̄ω

2
+ h̄ωe−βh̄ω ̸= ⟨e⟩classique (4.63)

Les résultats ne s’accordent donc pas pour des petites températures. De plus, considérons chaleur spécifique

a volume constant cV = ∂⟨e⟩
∂T . Dans le cas classique, nous obtenons simplement cV = kB , cependant, dans le

cas quantique, nous avons :

cV =
N

kB

(
h̄ω

T

)2
e

h̄ω
kBT(

e
h̄ω

kBT − 1
)2 (4.64)

Examinons maintenant le comportement asymptotique de cV . Pour faciliter cela, définissons la température

d’Einstein, TE donnée par kBTE = h̄ω. Pour T ≪ TE , on a ⟨e⟩ ≈ h̄ω
(
1
2 + e−βh̄ω

)
⇒ cV ≈ h̄ω

kBT 2 e
− h̄ω

kBT → 0,
lorsque T → 0. Cela montre à nouveau que le comportement diffère entre les cas quantiques et classiques
pour des faibles températures. Néanmoins, pour T ≫ TE , on a ⟨e⟩ ≈ h̄ω

(
1
2 + kBT

h̄ω

)
≈ kBT ⇒ cV ≈ kB et

on retrouve donc le cas classique. Un plot illustrant ce comportement est donné en Fig.4.2.
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Figure 4.2: Plot de cV en fonction de kBT pour N oscillateurs harmoniques quantiques en noir, et classique
en rouge. Température d’Einstein, TE , en bleu. Paramètres utilisés : h̄ = ω = kB = 1.

4.4 Gaz parfaits

4.4.1 Gaz parfaits monoatomiques

Un gaz monoatomique dilué se comporte comme un gaz parfait car les interactions intermoléculaires peuvent
être négligées, mettant l’énergie potentielle à zéro. En N dimensions, un gaz parfait a 3N degrés de liberté
quadratique dans son Hamiltonien :

H =
p2ix
2m

+
p2iy
2m

+
p2iz
2m

(4.65)

La châleur spécifique d’un gaz parfait se trouve à l’aide du théorème de l’équipartition de l’énergie (??)
sachant qu’un gaz parfait présente 3N degrés de liberté quadratique. L’énergie interne U n’est composé que
de l’énergie cinétique car comme précisé précédemment l’énergie potentielle est nulle :

Cv =
δU

δT
=

δ 3N
2 kbT

δT
=

3

2
Nkb (4.66)

À l’échelle des particules on utilise la constante de Boltzmann kB . Cependant à l’échelle d’un nombre de
moles n, il est plus facile de travailler avec la constante des gazs parfaits R = NAkb. Le nombre d’Avogadro
NA est relié à la dimension N par la relation N = nNA. La chaleur spécifique peut alors s’écrire

CV =
3

2
nR (4.67)

À noter que pour simplifier on pose souvent n = 1, la formule est alors valable pour une mole.
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4.4.2 Gaz parfaits biatomiques

Les molécules d’un gaz biatomique sont faites de deux atomes semblables ou differents qui sont liés. On note
α la constante de rappel entre ces deux atomes :

H =

n∑
i=1

⃗∥ pn1 ∥22
2m

+
⃗∥ pn2 ∥22
2m

+
1

2
α ∥ qi1 − qi2 ∥2 (4.68)

Cette configuration leur confère des degrés de liberté supplémentaires par rapport aux gaz monoatomiques,
en rotation et vibration. En tout, le gaz biatomique a 7 degrés de liberté : 3 de translation, 2 de vibration et
2 de rotation. Les énergies de vibration et rotation sont respectivement données par h̄ωv et h̄ωr, avec ωv et
ωr les fréquences de vibration et de rotation. Il existe un phénomène appelé ”gel des degrés de liberté” qui
est provoqué par une basse température. Si kBT < h̄ωi pour i ∈ {v, r}, l’énergie disponible est inférieure à
l’énergie requise pour un mouvement de rotation ou vibration. Alors, ces degrés de libertés sont considérés
gelés car ils ne sont plus excités et ne sont pas modifiables avec l’énergie actuelle du gaz.

4.5 Grands systèmes

Lorsque nous étudions des systèmes thermodynamiques, il est crucial de comprendre comment les propriétés
de ces systèmes évoluent avec leur taille. Dans la limite des grands systèmes, où le nombre de particules
N tend vers l’infini, nous commençons par examiner les dérivées du logarithme de la fonction de partition
Z(β). Dans ce contexte, l’énergie E, l’énergie libre F , et l’énergie normalisée e sont des variables aléatoires.
Nous notons les variables aléatoires normalisées par le nombre de particules N en lettres minuscules.

De plus, nous nous attendons à ce que l’énergie libre satisfasse l’extensivité, ce qui nous permet de poser :

F (T ) = Nf(T ) et F (β) = Nf(β) (4.69)

En utilisant ces relations, nous pouvons écrire :

∂β log (Z(β)) = −⟨E⟩ = ∂β (−βF (β)) = N∂β (−βf(β)) = O(N) (4.70)

et
∂2
β log (Z(β)) = ⟨E2⟩ − ⟨E⟩2 = ∂2

β (−βF (β)) = O(N) (4.71)

Les dérivées du logarithme de la fonction de partition Z(β) nous permettent donc de montrer que la moyenne
de l’énergie ⟨E⟩ ainsi que la variance de l’énergie var(E) sont d’ordre O(N).
Nous savons également que la moyenne de l’énergie normalisée par le nombre de particules ⟨e⟩ peut s’établir
comme suit :

⟨e⟩ = 1

N
⟨E⟩ = 1

N
∂β log (Z(β)) (4.72)

On remarque que ⟨e⟩ ∈ O(n). Cela nous permet également d’exprimer la variance de l’énergie en fonction
de la variance de l’énergie normalisée :

⟨E2⟩ − ⟨E⟩2 = ⟨(Ne)2⟩ − ⟨Ne⟩2 = N2var(e) (4.73)

Ainsi, nous avons montré que dans la limite des grands systèmes, les propriétés thermodynamiques telles que
l’énergie et sa variance se comportent de manière prévisible et extensible. On sait que la variance de l’énergie
est d’ordre O(N), ce qui implique que la variance de l’énergie normalisée est d’ordre O(1/N). L’énergie totale
du système E présente une fluctuation d’ordre O(

√
N), et l’énergie par particule e présente une fluctuation
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d’ordre O(1/
√
N). Cela signifie que, dans un grand système, l’énergie normalisée tend en probabilité vers sa

valeur moyenne :

eN→∞ = ⟨e⟩ (4.74)

La distribution de l’énergie normalisée e tend asymptotiquement vers la moyenne ⟨e⟩, et lorsque le système
est suffisamment grand, la distribution se comporte comme un delta de dirac δ(e−⟨e⟩). La Figure 4.3 illustre
l’évolution de la probabilité en fonction de l’énergie lorsque la taille du système N augmente.

Figure 4.3: Illustration des densités d’énergie P (E) et P (e) en fonction de l’énergie E et de l’énergie nor-
malisée e. Notons que ⟨E⟩ est d’ordre O (N) et que ⟨e⟩ est d’ordre O(1). Ici, les graphes ont été recentrés
pour montrer seulement les fluctuations autour des valeurs moyennes.

Dans un grand système, en supposant que l’énergie libre F soit extensive, les variables thermodynamiques
(T ,P ,e) deviennent intensives et déterministes. Cela signifie qu’elles ne sont plus des variables aléatoires.
En d’autres termes, le système se comporte globalement comme si toutes les densités d’énergie étaient
équivalentes, les fluctuations deviennent négligeables par rapport à la taille du système, et les variables
thermodynamiques peuvent être traitées comme des constantes.
Un autre aspect important à noter est l’équivalence des ensembles micro-canonique et canonique dans la limite
des grands systèmes (propriété développée dans le Chapitre 5). Le formalisme micro-canonique suppose une
énergie E fixée, tandis que le formalisme canonique suppose une température T fixée. Dans la limite où
N tend vers l’infini, ces deux formalismes deviennent équivalents. Cette propriété, connue sous le nom
d’équivalence des ensembles, sera développée dans une prochaine partie.
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4.6 Maximisation de l’énergie libre

On rappelle que l’on peut écrire l’énergie en fonction de l’entropie :

E(S, V,N), dE = TdS − PdV + µdN (4.75)

Cette équation, nommée équation thermodynamique fondamentale, dicte comment varie l’énergie si l’on fait
varier l’entropie S, le volume V ou le nombre de particules N (trois quantités extensives). Néanmoins,
cette équation n’est pas pratique car l’entropie n’est pas contrôlée par l’expérimentateur, qui contrôle plutôt
la température T qui correspond à un équilibre canonique. Il est alors préférable de définir l’énergie libre
(appelée aussi potentiel de Helmhotz) comme :

F (T, V,N) = E − TS(T, V,N), dE = −SdT − PdV + µdN (4.76)

L’énergie libre peut alors être interprétée comme l’énergie disponible pour être convertie en travail. De plus,
on peut noter que l’énergie libre apparâıt naturellement dans le formalisme canonique à travers la relation
entre énergie libre F et la fonction de répartition canonique :

F = −kBT ln(Z) (4.77)

L’énergie libre F permet donc de décrire un système thermodynamique dont la température est fixée, c’est-
à-dire qu’elle est minimale à l’équilibre canonique. De plus, on peut exprimer les relations suivantes :

E =
∂βF

∂β
= F − T

∂F

∂T
S = −∂F

∂T
(4.78)

Soit un système pouvant occuper différentes configurations et différents niveaux d’énergie, en contact
avec un thermostat à température T . Le volume et le nombre de moles du système restant constant, nous
les ommettrons dans la suite. La fonction de partition canonique peut s’exprimer par une somme sur les
configurations ou sur les énergies:

Z(β) =
∑
config

e−βEconfig =
∑
E

Ω(E)e−βE (4.79)

La probabilité que le système ait une énergie E est alors:

P(E) =
1

Z(T )
e

1
kB

[Sµ(E)−E
T ] (4.80)

Où Sµ(E) est l’entropie microcanonique du système à l’énergie E.

Montrons la formule en équation (4.80). Tout d’abord, on rappelle l’expression de l’entropie micro-
canonique:

Sµ(E) = kB ln [Ω(E)] (4.81)

De façon équivalente, on peut écrire:

Ω(E, V,N) = e
Sµ(E,V,N)

kB (4.82)

De plus, l’équation (4.79) nous indique que la probabilité que le système ait l’énergie E vaut:
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P(E) =
Ω(E)e

− E
kBT

Z(β)
(4.83)

Ainsi, en insérant l’équation (4.82) dans l’équation (4.83), on retrouve le résultat présenté en (4.80).

Remarque: l’expression (4.80) traduit la compétition entre l’énergie et l’entropie microcanonique du
système. ”L’arbitre” est ici la température: en effet, pour de grandes températures, l’entropie l’emporte
tandis que l’énergie prend le dessus pour de basses températures.

On s’intéresse maintenant à l’influence d’une observable notée O sur le système, lié au paramètre o. La
fonction de partition peut alors s’exprimer comme la somme de fonctions de partition différentes, chacune
représentant une situation où o est fixé.

Z(β) =
∑

o possible

Z(β, o) (4.84)

Or, en utilisant la définition de l’énergie libre (donnée en (4.20), la fonction de partition peut alors être
récrite comme

Z(β) =
∑

o possible

e−βF (o) = e−βF (4.85)

En faisant une approximation classique, c’est-à-dire en supposant que le paramètre o varie de façon
quasi-continue, on peut remplacer la somme en équation (4.85) par une intégrale:

e−βF =

∫
do e−βF (o) (4.86)

Prenons le logarithme de l’équation et divisons par −βN . On obtient alors l’équation suivante:

F

N
= f = − 1

βN
ln

∫
do e−βNf(o) (4.87)

Or la méthode de Laplace nous indique que l’intégrale en (4.87) tend, lorsque N devient très grand, vers
mino f(o). Cela est très intéressant et nous indique qu’un paramètre libre d’un système thermodynamique
à température constante tend à minimiser l’énergie libre par particule. Ceci est à mettre en parallèle avec le
formalisme microcanonique, où l’on cherche à maximiser l’entropie à énergie fixée.

4.7 Énergie libre et dérivées partielles

Le formalisme canonique permet de caractériser le système étudié à l’aide des différentes dérivées partielles
de l’énergie libre. La première, par rapport à T , a déjà été calculée et est donnée en équation (4.41).
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4.7.1 pression statistique

L’extensivité de l’énergie libre nous permet de considérer
que l’énergie libre totale du système, composé de deux sous-
systèmes, est la somme des énergies libres de chacun d’eux.
En minimisant cette énergie libre totale par rapport à un
paramètre, tel que le volume V1 du premier sous-système,
tout en conservant l’égalité des volumes totaux V = V1+V2,
nous obtenons une condition d’équilibre thermodynamique
entre les deux sous-systèmes. Cette condition s’écrit :

Fsyst(T, V,N) = min
V1

[F1(T1, V1, N1) + F2(T2, V2, N2)]

(4.88)
Cette minimisation implique que les variations de l’énergie
libre avec le volume doivent être égales entre les deux sous-
systèmes pour maintenir l’équilibre. Mathématiquement,
cela se traduit par l’égalité des dérivées partielles de F1 et
F2 par rapport à leurs volumes respectifs :(

∂F1

∂V1

)
T1,N1

=

(
∂F2

∂V2

)
T2,N2

:= −P (4.89)

Figure 4.4: Illustration d’un système com-
posé avec paroi imperméable et mobile

où P est la pression commune à travers les deux sous-systèmes, notée pression statistique. Cette égalité
résulte du fait que, pour un équilibre mécanique, la pression exercée par chaque sous-système doit être la
même. Ainsi, à l’équilibre, la pression est définie par la dérivée de l’énergie libre de Helmholtz par rapport
au volume, ce qui permet d’exprimer la pression interne du système à température constante.

4.7.2 potentiel chimique

De la même manière que l’équilibre mécanique impose
l’égalité des pressions dans les sous-systèmes, l’équilibre
chimique entre deux sous-systèmes implique que leurs po-
tentiels chimiques doivent être égaux. Cette condition
découle de l’extensivité de l’énergie libre de Helmholtz, qui
permet de décrire l’interaction entre sous-systèmes à travers
les variables thermodynamiques. Pour un système composé
de deux sous-systèmes, on écrit l’énergie libre totale comme
:

Fsyst(T, V,N) = min
N1

[F1(T1, V1, N1) + F2(T2, V2, N2)]

(4.90)
où N = N1 + N2 est le nombre total de particules dans le
système. Pour minimiser l’énergie libre par rapport à N1,
il faut que les dérivées de F1 et F2 par rapport à N1 et N2

soient égales. Cela signifie que :(
∂F1

∂N1

)
T1,V1

=

(
∂F2

∂N2

)
T2,V2

:= µ (4.91)

Figure 4.5: Illustration d’un système com-
posé avec paroi perméable et fixe
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Cette relation exprime l’égalité des potentiels chimiques µ dans les deux sous-systèmes. Le potentiel chimique,
défini comme la variation de l’énergie libre en fonction du nombre de particules à température et volume
constants, est une grandeur clé qui régit l’équilibre chimique. Pour qu’il y ait un équilibre dans l’échange
de particules entre les deux sous-systèmes, leurs potentiels chimiques doivent être égaux. Autrement dit, à
l’équilibre, l’ajout ou la suppression d’une particule dans l’un des sous-systèmes doit avoir le même effet sur
l’énergie libre que dans l’autre.

4.7.3 Différentielle de l’énergie libre

En utilisant les résultats obtenus en (4.41), (4.89) et (4.91), la formule de la différentielle de l’énergie libre,
décrite dans le formalisme canonique, peut alors s’établir telle que :

dF (T, V,N) = −SdT − PdV + µdN (4.92)

On rappelle alors la formule différentielle de l’entropie d’un système d’après le formalisme micro-canonique
:

S(E, V,N) =
1

T
dE +

P

T
dV − µ

T
dN (4.93)

Lorsque le système devient grand, on cherche dans le formalisme canonique à minimiser l’énergie libre
F (T, V,N) à T, V,N fixés, tandis que dans le formalisme microcanonique, on cherche à maximiser l’entropie
S(E, V,N) à E, V,N fixés.


