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Pour rappel, on utilise le formalisme micro-canonique lorsque le systéme étudié est isolé (c’est-a-dire que
E,V, N sont fixés).

A travers ce chapitre, nous nous donnons comme objectif d’établir le formalisme le plus utile pour décrire un
systeme macroscopique avec les outils de la physique statistique. En effet, I’hypothese du systéme isolé n’est
pas souvent vérifiée. En revanche, nombreux sont les systémes qui sont en contact thermique avec I’extérieur,
par exemple I’atmosphere, et donc peuvent échanger de I’énergie E. Un état d’équilibre s’établit, pour lequel
la loi de probabilité sur les configurations microscopiques prend une forme bien spécifique, appelée ensemble
canonique. Cet ensemble statistique permet d’étudier I’état d’équilibre d’un systeme du moment qu’il est
couplé a un grand systeme jouant le role de thermostat, c’est-a-dire permettant des échanges d’énergie a
température fixée.

4.1 Dérivation

Dans la description canonique, la température T' est imposée par le thermostat avec lequel le systéeme est en
contact. Deux méthodes sont proposées pour dériver le formalisme canonique. La premiere consiste a étudier
un systeme considéré comme petit au sein d’un plus grand systéme noté ’réservoir’. La seconde méthode
consiste a étudier 'entropie selon la théorie de I'information.

4.1.1 Le thermostat

Considérons & nouveau un systeme isolé dont ’énergie totale
est F, que nous appelons le ”grand systéme” (voir Fig.4.1).
Ce systeme est suffisamment vaste pour obéir au formalisme
microcanonique, ol toutes les configurations accessibles a
énergie constante sont équiprobables. Cependant, pour in-
troduire le formalisme canonique, nous imaginons que ce
grand systeme est composé de deux sous-systemes : un petit
systéme d’intérét et un réservoir thermique (ou thermostat) €
qui englobe le reste du grand systeme. Le petit systeme
peut échanger de I’énergie avec le réservoir, tout en main-
tenant une température constante, définie par le réservoir.
L’énergie totale F du grand systeme reste fixe, mais ’énergie
du petit systeme ¢, elle, peut fluctuer. Le réservoir, étant
beaucoup plus grand, sert a stabiliser la température, per- Figure 4.1: Tlustration du grand systéme
mettant ainsi d’appliquer le formalisme canonique au petit (thermostat) d’énergie E ainsi que d’un
systeme. plus petit sous-systeme d’énergie €.
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A T'intérieur, on regarde un sous-systeme a l’équilibre avec le grand systeme. On se demande quelle est la
probabilité que la petite boite ait une énergie ¢, c’est-a-dire

petite boite
[ (Epetite boite — 5) =T syst (5) -

4.1
nombre total de configurations du grand systéme (4.1)

En définissant le systeme perpendiculaire 1 comme le grand systéme privé du petit systeéme et en supposant
que le grand systéme soit extensif (c’est-a-dire S = Sgs(E) = Ns (%)) on obtient
Qsyst (€)QL(E —¢) - stst(g)elog Q| (BE—¢)

Qiot(E) (4.2)

o stst@)e%&@—s) o stst(e)e%S(E_s)

Psyst(5) =

En développant en série de Taylor, on obtient que

2
1 S(E)isasus)iﬁo S(E) }
kB [ OFE 2 9E2 |E
Poysi(e) x Qgyse(e)e

OCstst(é?)@ kT~ 2kp, 0E2

S(E) ~
Le facteur e 5 étant une constante, il a été omis en deuxieéme ligne, et F € [E, E + €]. L’extensivité du
grand systeme implique que

9?8 N32S (%) 1 &s(e) (4.4)

OFE? OE2 N Qe?
8%s

Mais, N est égal au nombre de particules dans le grand systeme, ¢a implique que 57 — 0. Par conséquent,

Psyst(g) X stst(g)e_kBLT (45)

On appelle eiks%T, le facteur de Boltzmann. Pour se débarrasser des symboles de proportionnalité, on peut
normaliser la probabilité, pour pouvoir avoir une égalité, ce qui donne :

Poyo = 7y €T = el (4.6)

Fonction de partition Le facteur de renormalisation, Z, est la fonction de partition canonique du systeme,

définie comme :
7Z = Z Qe)e P = Z e Pe(état) (4.7)
e états

Si un systéme qui peut étre dans un certain nombre d’états est mis en contact avec un bain thermique, alors
ce systeme n’est plus limité aux états a un niveau d’énergie donnée.

Remarques :

1. Un grand systéme jouant le réle de thermostat (réservoir de chaleur) ne perd pas d’énergie de maniére
significative lorsqu’il échange de 1’énergie avec un petit systeme.

2. Notons que dans I’équation (4.7), nous avons donné deux expressions de la fonction de partition. Dans
la premiere écriture, la somme porte sur les valeurs des énergies accessibles et il faut alors tenir compte
de la dégénérescence de chaque niveau. Dans la seconde, la somme porte sur tous les micro-états
individuels.

3. La probabilité de trouver le systéeme dans un micro-état quelconque m est alors donnée par le poids de

Boltzmann :

1 _ 1 _
Pm = —¢ Em/kpT — ¢ BEm (4.8)
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Quelle est ’énergie moyenne ?

N N E-e_kliiiT
<E>canonique(T) = Z E'LP’L = Z W (49)
config i=1 config i=1

Dans le formalisme canonique, c’est la température T qui est fixée. L’énergie E est une variable aléatoire.
Remarques :

1. la fonction de partition s’exprime pour des niveaux d’énergie continus comme:

ANGANG i
Z(T,V,N) = / 7(h‘)1DNp ¢~ BHIE7] (4.10)

v

Avec ¢, p' les vecteurs donnant les coordonnées et impulsions généralisées de chaque particule, D le
nombre de degrés de liberté de chaque particule et H|[q, p] ’hamiltonien associé.

2. Nous allons découvrir que la connaissance de la fonction de partition permet d’accéder aux quantités
thermodynamiques telles que 1’énergie interne, ’entropie, 1’énergie libre, etc.

4.1.2 Théorie de ’information

Il est possible de dériver I'expression du facteur de Boltzmann en utilisant le principe de maximisation de
I’entropie.

Considérons un systeme pouvant se trouver dans N états d’énergie différents, dont la probabilité d’occupation
pour chacun est p; (i =1, ..., N). Fixons alors l’énergie moyenne:

N
(E) =Y piEi (4.11)
=1

Notons que ’on ne peut pas fixer ’énergie exacte du systeme, comme celle-ci est une variable aléatoire
dans le formalisme canonique. On cherche alors & trouver la distribution de probabilités {p;}~; qui
maximise 'entropie du systéme. L’entropie de Gibbs reliée & la distribution {p;}¥, s'écrit:

N
S=—kp Y pin(p;) (4.12)
=1

On cherche alors a maximiser S sous deux contraintes: la somme des probabilités doit valoir 1, et la
valeur moyenne de 1’énergie E doit étre fixée. Pour cela, on peut utiliser les multiplicateurs de Lagrange,
et I'on s’intéresse alors a la fonction:

L({p}i A B) =— Zpiln(pz‘) —A (Z Di — 1) - B (ZP’LEZ - <E>> (4.13)

Ou l’on a omis le facteur kg > 0 devant I’entropie car les parametres maximisant celle-ci ne dépendent
pas d’une constante de multiplication. Chaque dérivée partielle doit s’annuler, et, comme d’habitude, les
dérivées par rapport aux parametres A\ et 5 donnent les contraintes. La dérivée par rapport a p; donne:
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oL
Op;

= —ln(pi) —1-X- BEZ (414)
En égalisant cette dérivée a 0, on obtient le résultat suivant:

pi = e~ (N e=BE: (4.15)

On voit donc que le choix du nom du parametre 3 n’a pas été laissé au hasard. En faisant le lien avec

la section précédente, on remarque donc le facteur de Boltzmann, et 'on peut associer le facteur e~ (112
& la fonction de partition: e~ (1Y = ﬁ

Récrivons donc I'entropie canonique de Gibbs comme

N
Se(B) = —kp Y _ piln(pi) (4.16)
i=1
Avec
pi = Z(lﬁ)e_ﬂE" Vi=1,..,.N (4.17)

Insérant les équations (4.17) dans (4.16), on obtient

N
S.(B) = —kp Zpi [~In[Z(B)] — BE;] (4.18)

Il est alors possible de simplifier la formule, en se souvenant du fait que les probabilités somment a 1 et
que lon a fixé Iénergie moyenne (F) du systéme:

Se = kpIn[Z(B)] + kB B(E)p (4.19)

Ou l'indice B est apposé pour nous rappeler que I’énergie moyenne du systéeme dépend de 8. En écrivant
8= ka% et en réarrangeant I’équation, on obtient finalement:

F(T,V,N) := —kgT[Z(T)] = (E)p — TS.(T) (4.20)

Ou l'on a défini la fonction énergie libre F(T,V, N).

Nous intéressons maintenant a la distribution qui maximise ’entropie lorsque la moyenne et la variance
” . 2 N S .
sont fixés. L’entropie de Shannon est donnée par — ) ."; p;log(p;), que I'on cherche donc & maximiser
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sous les contraintes suivantes :
> pi=1, (4.21)
i=1
> piEi,=p (4.22)
i=1
n
Zpi(Ei —p)? =0 (4.23)
i=1

qui correspondent respectivement a la contrainte de normalisation, a la moyenne de la distribution et a
sa variance. Pour résoudre ce probleme, on utilise la méthode des multiplicateurs de Lagrange, et on
cherche donc & maximiser I’expression suivante :

L(p, Ao, A1, A2) = —sz‘ log p; + Ao (sz = 1) + A1 <ZP1E1 = M) + A2 <sz(Ez —p)? - 02> .
i=1 =1l i=1 =1

(4.24)
On dérive donc la Lagrangienne et on obtient :
oL 9
oo~ logp; — 1+ Ao + M E; + Ao (E; — p)” =0, (4.25)
2
et donc
logp; = Ao — 1+ M E; + Xa(E; — p)?. (4.26)
A partir de cette expression, on peut isoler p; et on obtient alors :
pi = Aexp (M E; + Xo(E; — p)?), (4.27)

ot A = exp(Aog — 1) est une constante de normalisation. On retrouve alors la forme générale d’une
distribution gaussienne dans le cas discret, et le cas continu peut d’ailleurs se dériver par un raisonnement
similaire. Les constantes A, A1 et A\ peuvent étre déterminées a partir des contraintes 4.21, 4.22 et 4.23
et on obtient ainsi que la contrainte sur A est explicitement donnée par la normalisation :
A= 1 (4.28)
Yo exp Mz + Ao (2 — p)?)’ '

les contraintes sur A\; et Ay sont implicitement données et peuvent étre résolues numériquement :

S ziexp (Mz; + Aoz — p)?) y
> e exp (Aizi + Ao (x: — p)?) ’

S (@i — p)? exp (Arz; + Ao (w; — p)?) — 52 (4.30)
S exp (A + Aa(m; — p)?) . .

(4.29)

4.2 Propriétés

Nous nous intéressons maintenant aux propriétés qui découlent de la fonction de partition et de ses dérivées.
La connaissance de la fonction de partition canonique permet en général de calculer toutes les valeurs
moyennes d’observables a ’équilibre.
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4.2.1 La fonction de partition, en tant que fonction génératrice des cumulants
de I’énergie

La fonction de partition Z(3) (ou plutdt son logarithme) se comporte comme la fonction génératrice des
cumulants de I’énergie. Une fonction génératrice des cumulants se définit comme :

K1)

K, (t) = logE[e™] K, = 5 (4.31)

On peut maintenant déterminer les dérivées de la fonction de partition Z(5) en fonction de 1’énergie libre

F(p) :

Z(B)=e "0 =>log(Z(B)) = —BF(B) (4.32)
N N e~ BE;
dslog Z(B) = dslog <; eﬁEi> = %
X0 () - Be (4.33)
Z(B) Z(p)

N
= E Eipi = —(E)
i=1
La premiere dérivée donne la moyenne de I’énergie, au signe pres.

htog 2(9) =0, (Z0)) = L2 (2 )

Z(5) 22(5)
_Z2'B) (2B T B (4.34)
= Z0) (Zm) =20 E)

f

Le résultat suivant définit la ”chaleur spécifique a volume constant” Cy . 11 ne faut pas oublier que dans
cette partie, les dérivées en (8 et T sont prises a volume V et nombre de moles N constants, un systeme ne
pouvant échanger que de I’énergie avec 'extérieur.

1
I CV = 8T<E>T|V,N: wVar(E) (435)

Cette relation est aussi appelée relation de ”fluctuation-dissipation”, car elle relie une dissipation de
chaleur (Cy) a une fluctuation de énergie (Var(E)). Prouvons maintenant la deuxiéme égalité dans
I’équation 4.35.

En utilisant les identités dplogZ(8) = —(E)s et 93logZ(B) = Var(E)s comme vu en partie 4.2.1, on
obtient:

—9(E) = Var(E) (4.36)

On peut également dériver par rapport a T, selon le changement de variables suivant:
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o T a9 9 (1) 0
ar or

0
_ T2
98 9BOT 9B \kpp = (4.87)

En insérant ce résultat dans ’équation (4.36), on obtient alors I’équation (4.35).

Une autre formule peut également étre trouvée pour Cy :

En effet, il est possible de partir de I’expression de ’énergie libre en (4.20), multipliée par §:

8F(B) = piE)s - 22 = 105 2(9). (4.39)

En dérivant la deuxieme égalité de chaque c6té par rapport a 3, on obtient:
1
(E)g + BOs(E)s — Eaﬂs(ﬂ) =(E)g (4.40)

Finalement, en soustrayant (E)s & chaque coté et en utilisant le changement de variables donné en
(4.37), on obtient ’équation (4.38).

Il est maintenant possible de montrer que:
OrF(T,V,N)|ly,n= —S(T,V,N) (4.41)

En partant de la définition de I’énergie libre en (4.20) et en dérivant par rapport & T, on obtient:

OrF(T,V,N)|lv.n=0r(E)r|v,Nn—Sc(T) — TOrSc(T)|v,n (4.42)

Or on reconnait ci-dessus deux expressions pour la chaleur spécifique a volume et nombre de moles
constants: en effet, on a Cy = 9p(E)r|y,n= TOrS(T)|v,n. Les premier et troisieme termes s’annulent,
et 'on obtient alors I’équation (4.41).

4.2.2 Découplage de la fonction de partition canonique

Si la fonction de partition s’établie pour un systeme sans interaction, c’est a dire que les nombres quantiques
m; peuvent étre choisis de maniere indépendante pour les différentes particules ou le niveau d’énergie du
systeme complet & N particules est noté :

N
Eml,...,mN = ZE%{ (443)
=1
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Ou l'on note 55,11 le niveau d’énergie de la particule i et m; 'ensemble des nombres quantiques nécessaires

pour spécifier I’état quantique de cette particule. La fonction de partition peut alors s’écrire :

N .
Z= 3 e PEmemy <[ e (4.44)

mi,...,,mN =1 m;

Cela permet enfin d’écrire que :
N
_Be®
Z =]z z=y e o (4.45)
1=1 my

Ou l'on note z; la fonction de partition partielle correspondant a ’espace des phases de la particule i, qui
ne dépend pas du nombre de particule N. On peut ainsi mentionner I’expression de la limite classique de la
fonction de partition canonique pour N particules indiscernables en 3 dimensions:

1 _ .
Thoso = N7V /quidpie AH{aspi}] (4.46)

A noter que le préfacteur 1 /N! tient compte de I'indiscernabilité des particules.

4.3 Applications

4.3.1 1 Oscillateur Harmonique Classique

En guise d’exemple, considérons d’abord un seul oscillateur harmonique. Son hamiltonien est donné par :

1
H= +§qik; (4.47)

s
2m
avec k la constante de rappel. La fonction de partition peut étre ainsi calculée en utilisant la formule
gausienne:

dqdp dqdp pp® _ P’k
7 = 5 SXP (=BH(q,p)) = 5 P (_Qm 2 )
| Bak 8P L fm [1_ 1 o
:h</dqexp<— 5 )/dpeXp(_Zm>>:h\/;\/ﬁ::h&‘)

onlw =4/ % est la pulsation de l'oscillateur harmonique. On obtient alors la fonction de partition en fonction

de la température :

 kgT

— Z(T) =~ (4.49)

4.3.2 N Oscillateurs Harmoniques Classiques non couplés

Maintenant, considérons N oscillateurs harmoniques non couplés. La fonction de partition devient alors :

N

N 3. N N
2) = [ A= exw (-6 1) =[] [ dadpeso (-5 (ai.p0) (4.50)

i=1
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Ainsi grace au formalisme canonique lorsque les systémes ne sont pas couplés, la fonction de partition pour
N systemes peut s’écrire :

v (ksT\"
Zn(B) =127 = | 5~ (4.51)
w
11 est intéressant de remarquer que la quantité log Z(T) = N log L est extensive. L’énergie moyenne peut
alors étre calculée :

(E) = —Ndglog —— 5/“1 = NB™' = NkpT (4.52)

Un résultat important en est déduit :

1

(E) = ikBT x Nombre de termes quadratiques dans H (4.53)

Ce résultat correspond au ”théoreme d’équipartition de I’énergie”. En effet, chaque terme quadratique dans
I’hamiltonien donne une contribution identique a 1’énergie interne E égale a %kBT. De plus, cela implique
une contribution identique dans la capacité thermique égale a %sz.

4.3.3 N Oscillateurs Harmoniques Quantiques

1 Oscillateur harmonique quantique Afin de simplifier les calculs, nous considérons initialement un
oscillateur quantique. Nous savons que 1’énergie de 1’état ¢ est donné par :

1
E; = hw < + z) Li=1,2,... (4.54)

Ainsi, nous avons que la fonction de partition Z(8) est donnée par :

oo

Z —Bhw(5+i) _ e_BFLTW i (e_m“")i (4.55)
i=0

=0

Comme fhw > 0 = ’e_ﬁh“" < 1 et donc nous avons une série géometrique convergente. Ainsi,
—Bhw

i i) pp— ) S (4.56)

1 — e fhw 1 — e Phw
1=0

N oscillateurs non-couplés Comme nous considérons des oscillateur non-couplés, 1’énergie totale est
donnée par la somme des énergies de chaque oscillateur:

B = hw Z< +zk> (4.57)

La fonction de partition est donné par la somme sur tout les états possibles, c¢’est-a-dire :

oo o N N oo
Z Z —Bhw SN ($+ik) Z Z H —Bhw(3 +ik):HZ ~Bhw(5+i) (4.58)
1=0 iny=0k=1 k=1i,=0

i1=0 in=0

Z(B)
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Ainsi, comme dans le cas classique, la fonction de partition pour N oscillateurs est donnée par [Z(S )]N et
donc, en utilisant ’équation (4.56) :

—ghw N
Zn(B) = 12(B)]" = (1;_550 (4.59)

Nous pouvons maintenant calculer 'énergie moyenne par oscillateur (e) = + (E) :

lniN =In(2) = — <5Z°’ +In (1 eﬁh“)> (4.60)
R N e e Caa). (461)

N , -1 . ’ . . ’
ol nous avons posé (n) = (eﬁh“ — 1) le niveau d’énergie moyen d’un oscillateur. Comparons ces résultats
avec le cas classique en prenant d’abord la limite de T grand c’est-a-dire § < 1. Nous avons que :

o1\ 2
> ~ = kBT = <e>classique (462)

eﬁhwzl—&-ﬁho.)é(e):hw(-i-

Ainsi, pour T grand, les cas classique et quantique s’accordent. Considérons maintenant 7" petit, i.e. 8> 1

1 1\ 22w
— - ~ —Bhw .
(e) = hw (2 + e 1) S + hwe # (€)classique (4.63)

Les résultats ne s’accordent donc pas pour des petites températures. De plus, considérons chaleur spécifique
_ 9e) : ; _
a volume constant ¢y = Z7-. Dans le cas classique, nous obtenons simplement ¢y = kg, cependant, dans le

cas quantique, nous avons :

N [(hw)? e*BT
A7) (e

Examinons maintenant le comportement asymptotique de cy . Pour faciliter cela, définissons la température
_ _hw
d’Einstein, T donnée par kgTg = hiw. Powr T < Tg,ona (e) = hw (% + e‘ﬁhw) = cp & kZ“;ﬂ e T — (),
lorsque T — 0. Cela montre a nouveau que le comportement differe entre les cas quantiques et classiques
pour des faibles températures. Néanmoins, pour T > Tg, on a (e) =~ hiw (% + kBT) ~ kT = cy = kp et

hw
on retrouve donc le cas classique. Un plot illustrant ce comportement est donné en Fig.4.2.
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Figure 4.2: Plot de ¢y en fonction de kT pour N oscillateurs harmoniques quantiques en noir, et classique
en rouge. Température d’Einstein, T, en bleu. Parametres utilisés : h =w = kg = 1.

4.4 (Gaz parfaits

4.4.1 Gaz parfaits monoatomiques

Un gaz monoatomique dilué se comporte comme un gaz parfait car les interactions intermoléculaires peuvent
étre négligées, mettant ’énergie potentielle a zéro. En N dimensions, un gaz parfait a 3N degrés de liberté
quadratique dans son Hamiltonien :

2
H:@_’_piy_"_pzzz

2m  2m = 2m (4.65)

La chaleur spécifique d’un gaz parfait se trouve a 'aide du théoréme de l’équipartition de l’énergie (77)
sachant qu’un gaz parfait présente 3N degrés de liberté quadratique. L’énergie interne U n’est composé que
de I’énergie cinétique car comme précisé précédemment 1’énergie potentielle est nulle :
U  NkT 3
Cp=—=—2—"=C"Nk 4.66
VT 5T 27" (4.66)
A Téchelle des particules on utilise la constante de Boltzmann kp. Cependant & I’échelle d’'un nombre de
moles n, il est plus facile de travailler avec la constante des gazs parfaits R = N k. Le nombre d’Avogadro
N4 est relié a la dimension N par la relation N = nN4. La chaleur spécifique peut alors s’écrire

Cy = ;HR (4.67)

A noter que pour simplifier on pose souvent n = 1, la formule est alors valable pour une mole.
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4.4.2 Gaz parfaits biatomiques

Les molécules d’un gaz biatomique sont faites de deux atomes semblables ou differents qui sont liés. On note
a la constante de rappel entre ces deux atomes :

N )
H=> e 4.68
2 om +og - tga | g1 — a2 || (4.68)

Cette configuration leur confere des degrés de liberté supplémentaires par rapport aux gaz monoatomiques,
en rotation et vibration. En tout, le gaz biatomique a 7 degrés de liberté : 3 de translation, 2 de vibration et
2 de rotation. Les énergies de vibration et rotation sont respectivement données par hw, et hw,, avec w, et
wy- les fréquences de vibration et de rotation. Il existe un phénomene appelé ”gel des degrés de liberté” qui
est provoqué par une basse température. Si kT < hw; pour i € {v,r}, énergie disponible est inférieure &
Iénergie requise pour un mouvement de rotation ou vibration. Alors, ces degrés de libertés sont considérés
gelés car ils ne sont plus excités et ne sont pas modifiables avec I'énergie actuelle du gaz.

4.5 Grands systemes

Lorsque nous étudions des systemes thermodynamiques, il est crucial de comprendre comment les propriétés
de ces systemes évoluent avec leur taille. Dans la limite des grands systemes, ol le nombre de particules
N tend vers l'infini, nous commencons par examiner les dérivées du logarithme de la fonction de partition
Z(B). Dans ce contexte, I’énergie F, I’énergie libre F', et 'énergie normalisée e sont des variables aléatoires.
Nous notons les variables aléatoires normalisées par le nombre de particules N en lettres minuscules.

De plus, nous nous attendons a ce que 1’énergie libre satisfasse ’extensivité, ce qui nous permet de poser :
F(T)=Nf(T) et F(B)=Nf(p) (4.69)
En utilisant ces relations, nous pouvons écrire :

9plog (2(B)) = —(E) = 95 (=BF(B)) = NOs (—Bf(B)) = O(N) (4.70)

et
93 log (Z(B)) = (E?) — (E)* = 05 (=BF(8)) = O(N) (4.71)

Les dérivées du logarithme de la fonction de partition Z(8) nous permettent donc de montrer que la moyenne
de Iénergie (E) ainsi que la variance de ’énergie var(E) sont d’ordre O(N).

Nous savons également que la moyenne de 1’énergie normalisée par le nombre de particules {e) peut s’établir
comme suit :

1

(6) = 1 (B) = 505 log (2(5) (172)

On remarque que (e) € O(n). Cela nous permet également d’exprimer la variance de 1’énergie en fonction
de la variance de I’énergie normalisée :

(E?) — (E)? = ((Ne)?) — (Ne)? = N?var(e) (4.73)

Ainsi, nous avons montré que dans la limite des grands systémes, les propriétés thermodynamiques telles que
I’énergie et sa variance se comportent de maniere prévisible et extensible. On sait que la variance de ’énergie
est d’ordre O(N), ce qui implique que la variance de I’énergie normalisée est d’ordre O(1/N). L’énergie totale
du systeme FE présente une fluctuation d’ordre O(\/N ), et I’énergie par particule e présente une fluctuation
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d’ordre O(1/+/N). Cela signifie que, dans un grand systéme, 1’énergie normalisée tend en probabilité vers sa
valeur moyenne :

EN—0o = (€) (4.74)

La distribution de Iénergie normalisée e tend asymptotiquement vers la moyenne (e}, et lorsque le systeme
est suffisamment grand, la distribution se comporte comme un delta de dirac (e —(e)). La Figure 4.3 illustre
I’évolution de la probabilité en fonction de I’énergie lorsque la taille du systeme N augmente.

N=1 N=100 x10’3N=100°0
04 0.04 3.99
03 3.985
0.035
_ _ 398
w w w
T 02 T T
0.03 3.975
01 3.97
0 0.028 3.965
-10 0 10 -10 0 10 -10 0 10
E E E
N=1 N=100 N = 10000
0.4 4 40
0.3 3 30
< © <
T 0.2 T 2 T 20
0.1 1 10
0 0 0
-10 0 10 -10 0 10 -10 0 10
e e e

Figure 4.3: Tlustration des densités d’énergie P(E) et P(e) en fonction de I’énergie E et de 1’énergie nor-
malisée e. Notons que (E) est d’ordre O (N) et que (e) est d’ordre O(1). Ici, les graphes ont été recentrés
pour montrer seulement les fluctuations autour des valeurs moyennes.

Dans un grand systéme, en supposant que ’énergie libre F' soit extensive, les variables thermodynamiques

(T,P,e) deviennent intensives et déterministes. Cela signifie qu’elles ne sont plus des variables aléatoires.
En d’autres termes, le systéme se comporte globalement comme si toutes les densités d’énergie étaient
équivalentes, les fluctuations deviennent négligeables par rapport a la taille du systeme, et les variables
thermodynamiques peuvent étre traitées comme des constantes.
Un autre aspect important a noter est I’équivalence des ensembles micro-canonique et canonique dans la limite
des grands systémes (propriété développée dans le Chapitre 5). Le formalisme micro-canonique suppose une
énergie F fixée, tandis que le formalisme canonique suppose une température T fixée. Dans la limite ou
N tend vers l'infini, ces deux formalismes deviennent équivalents. Cette propriété, connue sous le nom
d’équivalence des ensembles, sera développée dans une prochaine partie.
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4.6 Maximisation de ’énergie libre

On rappelle que I'on peut écrire ’énergie en fonction de I'entropie :
E(S,V,N), dE =TdS — PdV + udN (4.75)

Cette équation, nommeée équation thermodynamique fondamentale, dicte comment varie ’énergie si ’on fait
varier I’entropie S, le volume V ou le nombre de particules N (trois quantités extensives). Néanmoins,
cette équation n’est pas pratique car I’entropie n’est pas controlée par I’expérimentateur, qui contrdle plutot
la température T' qui correspond a un équilibre canonique. Il est alors préférable de définir 1’énergie libre
(appelée aussi potentiel de Helmhotz) comme :

F(T,V,N)=E —TS(T,V,N), dE = —SdT — PdV + pdN (4.76)

L’énergie libre peut alors étre interprétée comme 1’énergie disponible pour étre convertie en travail. De plus,
on peut noter que ’énergie libre apparait naturellement dans le formalisme canonique a travers la relation
entre énergie libre F' et la fonction de répartition canonique :

F = —kgTn(Z) (4.77)

L’énergie libre F' permet donc de décrire un systeme thermodynamique dont la température est fixée, c’est-
a~dire qu’elle est minimale a 1’équilibre canonique. De plus, on peut exprimer les relations suivantes :

oBF _ p_poL g (4.78)

E= 9B T T

Soit un systéme pouvant occuper différentes configurations et différents niveaux d’énergie, en contact
avec un thermostat a température T'. Le volume et le nombre de moles du systeme restant constant, nous
les ommettrons dans la suite. La fonction de partition canonique peut s’exprimer par une somme sur les
configurations ou sur les énergies:

Z(B) =Y e Pleomis =N "Q(E)e PP (4.79)

config E

La probabilité que le systeme ait une énergie E est alors:

PUE) = e (4:80)

Ou S, (E) est I'entropie microcanonique du systeme & ’énergie E.

Montrons la formule en équation (4.80). Tout d’abord, on rappelle I'expression de l'entropie micro-
canonique:

Su(E) = kpln [Q(E)] (4.81)
De facon équivalente, on peut écrire:
Su(E,V,N)
QE,V,N)=e *s (4.82)

De plus, I’équation (4.79) nous indique que la probabilité que le systéme ait ’énergie E vaut:
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P(E) = -222° % (4.83)
Ainsi, en insérant I’équation (4.82) dans I’équation (4.83), on retrouve le résultat présenté en (4.80).

Remarque: expression (4.80) traduit la compétition entre ’énergie et l'entropie microcanonique du
systeme. ”L’arbitre” est ici la température: en effet, pour de grandes températures, I’entropie I’emporte
tandis que 1’énergie prend le dessus pour de basses températures.

On s’intéresse maintenant a l'influence d’une observable notée O sur le systeme, 1ié au parametre o. La
fonction de partition peut alors s’exprimer comme la somme de fonctions de partition différentes, chacune
représentant une situation ou o est fixé.

ZB)= Y. Z(B,o) (4.84)

o possible

Or, en utilisant la définition de ’énergie libre (donnée en (4.20), la fonction de partition peut alors étre
récrite comme

Z(p) = Z e BFO) — ¢=AF (4.85)

o possible

En faisant une approximation classique, c’est-a-dire en supposant que le parametre o varie de fagon
quasi-continue, on peut remplacer la somme en équation (4.85) par une intégrale:

e PF = /doe_'@F(o) (4.86)

Prenons le logarithme de ’équation et divisons par —8N. On obtient alors I’équation suivante:

F 1
N = f = —ﬁ—N]n/doefﬁNf(o) (487)

Or la méthode de Laplace nous indique que l'intégrale en (4.87) tend, lorsque N devient trés grand, vers
min, f(0). Cela est trés intéressant et nous indique qu’un parameétre libre d’un systéme thermodynamique
a température constante tend a minimiser 1’énergie libre par particule. Ceci est a mettre en parallele avec le
formalisme microcanonique, ou ’on cherche & maximiser ’entropie & énergie fixée.

4.7 Energie libre et dérivées partielles

Le formalisme canonique permet de caractériser le systeme étudié a ’aide des différentes dérivées partielles
de V’énergie libre. La premiere, par rapport a 7', a déja été calculée et est donnée en équation (4.41).
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4.7.1 pression statistique

L’extensivité de I’énergie libre nous permet de considérer
que I’énergie libre totale du systéeme, composé de deux sous-
systemes, est la somme des énergies libres de chacun d’eux.
En minimisant cette énergie libre totale par rapport a un
parametre, tel que le volume V; du premier sous-systeme,
tout en conservant 1’égalité des volumes totaux V = Vi + Vs,
nous obtenons une condition d’équilibre thermodynamique
entre les deux sous-systemes. Cette condition s’écrit :

Foyst(T,V,N) = Hxl/iH[F1(T17 Vi, N1) + Fy (T3, Va, Ny)]

(4.88)
Cette minimisation implique que les variations de 1’énergie
libre avec le volume doivent étre égales entre les deux sous-
systemes pour maintenir 1’équilibre. Mathématiquement,
cela se traduit par I’égalité des dérivées partielles de F et
Fy par rapport & leurs volumes respectifs : Figure 4.4: Tllustration d’un systeme com-

posé avec paroi imperméable et mobile
F F:
(31> <82> = —P (4.89)
Wi T1,N1 Vs T2,N2

ou P est la pression commune a travers les deux sous-systémes, notée pression statistique. Cette égalité
résulte du fait que, pour un équilibre mécanique, la pression exercée par chaque sous-systeme doit étre la
méme. Ainsi, a ’équilibre, la pression est définie par la dérivée de ’énergie libre de Helmholtz par rapport
au volume, ce qui permet d’exprimer la pression interne du systeme a température constante.

Vi 14

4.7.2 potentiel chimique

De la méme maniere que I'équilibre mécanique impose
I’égalité des pressions dans les sous-systemes, 1’équilibre
chimique entre deux sous-systemes implique que leurs po-
tentiels chimiques doivent étre égaux. Cette condition
découle de I'extensivité de ’énergie libre de Helmholtz, qui

permet de décrire I'interaction entre sous-systemes a travers ! 2
les variables thermodynamiques. Pour un systeme composé
de deux sous-systemes, on écrit I’énergie libre totale comme
Foyst (T, V, N) = min[F1(T1, Vi, Nv) + F5(T3, Va, N2
1 N, N,

(4.90)
ou N = Ny + N5 est le nombre total de particules dans le
systeme. Pour minimiser ’énergie libre par rapport a Ny,
il faut que les dérivées de Fi et Fy par rapport a Ni et No
soient égales. Cela signifie que : Figure 4.5: Illustration d’'un systeme com-

posé avec paroi perméable et fixe
F F:
(81) :(82) =y (4.91)
ONv ) 1, v, ON, Ty .V
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Cette relation exprime 1’égalité des potentiels chimiques p dans les deux sous-systeémes. Le potentiel chimique,
défini comme la variation de 1’énergie libre en fonction du nombre de particules a température et volume
constants, est une grandeur clé qui régit I’équilibre chimique. Pour qu’il y ait un équilibre dans ’échange
de particules entre les deux sous-systémes, leurs potentiels chimiques doivent étre égaux. Autrement dit, &
I’équilibre, I'ajout ou la suppression d’une particule dans 1'un des sous-systémes doit avoir le méme effet sur
I’énergie libre que dans 'autre.

4.7.3 Différentielle de I’énergie libre

En utilisant les résultats obtenus en (4.41), (4.89) et (4.91), la formule de la différentielle de 1’énergie libre,
décrite dans le formalisme canonique, peut alors s’établir telle que :

dF(T,V,N) = —-SdT — PdV + udN (4.92)
On rappelle alors la formule différentielle de I’entropie d’un systéme d’apres le formalisme micro-canonique
1 P m
EV,N)=—=dE+ —=dV — =dN 4.
S(E,V,N) Td +TdV Td (4.93)

Lorsque le systéme devient grand, on cherche dans le formalisme canonique & minimiser ’énergie libre

F(T,V,N)aT,V,N fixés, tandis que dans le formalisme microcanonique, on cherche & maximiser entropie
S(E,V,N) a E,V,N fixés.



