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3.1 Les Fondamentaux

Ce cours porte sur porte sur les systèmes isolés, contenant N particules dans un volume V , ayant une
énergie totale E. Tous les raisonnements qui suivent sont basés sur l’hypothèse ergodique, fondamentale
en physique statistique. Cette dernière consiste à supposer que tous les micro-états compatibles avec un
macro-état sont équiprobables sur une période suffisamment longue.

Le principe est de calculer des moyennes sur les micro-états compatibles avec E. Avec Ω micro-états
équiprobables, chaque micro-états i a une probabilité pi = 1

Ω . Ω désigne un nombre dans le domaine
discret et un volume de le domaine du continu.

Definition 3.1 On définit l’entropie de Boltzmann ou entropie micro-canonique par :

S(N,V,E) = kB log (Ω(N,V,E)) (3.1)

avec kB = 1.38 · 1023 J.K−1 la constante de Boltzmann.

Cette expression de l’entropie est un cas particulier de l’entropie de Gibbs-ShannonH, définie dans la Lecture
1. Dans notre cas, pour des micro-états équiprobables:

∀i ∈ {1, . . . ,Ω}, pi =
1

Ω
donc H({pi}) =

1

Ω

∑
i

log(Ω) = log(Ω) ∝ S(N,V,E) (3.2)

R La constante kB a été introduite pour des raisons principalement physique - le logarithme étant une
quantité sans dimension et la relation thermodynamique U = TS obligent à rajouter une constante
ayant la dimension d’une énergie par une température.

Pour calculer le nombre de micro-états Ω, il est possible de passer par l’espace de phases à 2ND dimensions
(N particules, D positions et quantités de mouvement). L’espace des phases étant continu, cela n’a pas
vraiment de sens de calculer un nombre, Ω correspond plutôt à un volume. En revanche, si on intègre sur q⃗
et p⃗ alors Ω a la dimension d’une action ([E][T]). Cependant, le logarithme doit être appliqué à un nombre
sans dimension. On normalise donc Ω par la plus petite action que l’on connaisse, la constante de Planck
h = 6.62 · 10−34 J.s. La constante de Planck réduite h̄ est liée à h par 2πh̄ = h.

En intégrant dans l’espace de phase, on obtient l’expression suivante pour le nombre de micro-états :

Ω(E,N, V ) =

∫
dq⃗Ndp⃗N

1

hND
δ(H− E)δ(q ∈ V ) =

∫
dq⃗Ndp⃗N

(
1

h̄2π

)ND

δ(H− E)δ(q ∈ V ) (3.3)
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3.2 Entropie et température statistique

On considère deux systèmes thermodynamiques (E1, V1, N1) et (E2, V2, N2), initialement isolés. Leur entropie
est respectivement S1(E1) et S2(E2).
Les systèmes sont par la suite mis en contact et forment le système isolé (E, V,N). Le volume Vi et le nombre
de particules Ni de chaque sous système est fixe. Seul les transferts d’énergie sont possibles à travers la paroi
(voir Fig.3.1).

Figure 3.1: Systèmes thermodynamiques (Ei, Vi, Ni) à Vi, Ni fixés, avant et après la mise en contact

Par extensivité de l’énergie E et de l’entropie S, ces grandeurs s’expriment comme

E = E1 + E2 (3.4)

S = S1(E1) + S2(E2) = S1(E1) + S2(E − E1) (3.5)

R On fait ici l’hypothèse que l’entropie est extensive, ce qui est généralement vrai pour des systèmes très
grands avec un grand nombre de particules N et dont les problèmes liés aux bords du domaine sont
négligés.

D’après le principe d’entropie maximale, à l’équilibre thermodynamique, le système adopte l’état macro-
scopique qui correspond au plus grand nombre de micro-états accessibles. En effet si on cherche la probabilité
d’être dans un macro-état x, on obtient :

P (x) =
Ω(x)

Ωtot
∝ eS(x), (3.6)

avec Ω(x) le nombre de micro-états correspondant à l’état x et Ωtot le nombre total de micro-états possibles.
Cette probabilité sera ensuite dominée par le terme exponentiel maximal (grandes déviations).
Ainsi, par 3.1, ce principe assure que l’entropie S du système total est maximale à l’équilibre. La condition
d’équilibre s’écrit alors, avec (3.5),

0 =
∂S

∂E1
=

∂S1

∂E1
+

∂E2

∂E1

∂S2

∂E2
=

∂S1

∂E1
− ∂S2

∂E2
⇒ ∂S1

∂E1
=

∂S2

∂E2
(3.7)

Definition 3.2 On définit alors la température statistique T comme:

1

T
=

∂S

∂E
(3.8)

et 3.7 s’écrit comme T1 = T2 à l’équilibre, où Ti est la température du sous système i ∈ {1, 2}.
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Definition 3.3 On définit également l’inverse de la température

β =
1

kBT
=

∂ log Ω

∂E
. (3.9)

La fonction entropie étant une fonction croissante du temps (dSdt ≥ 0), il vient

dS

dt
=

∂S1

∂E1

∂E1

∂t
+

∂S2

∂E2

∂E2

∂t
=

1

T1

∂(E1)

∂t
+

1

T2

∂(E − E1)

∂t
=

(
1

T1
− 1

T2

)
∂E1

∂t
≥ 0 (3.10)

• Si T1 ≥ T2,
∂E1

∂t ≤ 0 ce qui correspond à un transfert d’énergie du système 1 vers 2, c’est à dire du
système chaud vers le système froid.

• Si T1 ≤ T2,
∂E1

∂t ≥ 0, ce qui correspond à un transfert d’énergie du système 2 vers 1, c’est à dire du
système chaud vers le système froid.

Ces observations sont cohérentes avec le second principe de la thermodynamique.

3.3 Entropie et pression statistique

On considère les même systèmes initiaux que dans le paragraphe précédent, (E1, V1, N1) et (E2, V2, N2). Les
systèmes sont mis également mis en contact mais la paroi du système isolé (E, V,N) est mobile (voir Fig.3.2).
Chaque sous-système est fermé donc le nombre de particules Ni de chaque sous système est fixe tandis que
leur volume Vi varie.

Figure 3.2: Systèmes thermodynamiques (Ei, Vi, Ni) à Ei, Ni fixés, avant et après la mise en contact

L’entropie satisfait l’équation (3.5) mais dans ce cas la variable du problème est le volume. L’expression de
l’entropie s’écrit ainsi:

S(V ) = S1(V1) + S2(V2) = S1(V1) + S2(V − V1) (3.11)

car par extensivité du volume on a V = V1 + V2.
A l’équilibre, d’après le second principe de la thermodynamique, l’entropie S du système est maximale. La
condition d’équilibre s’écrit

0 =
∂S

∂V1
=

∂S1

∂V1
+

∂S2

∂V2

∂V2

∂V1
=

∂S1

∂V1
− ∂S2

∂V2
⇒ ∂S1

∂V1
=

∂S2

∂V2
(3.12)
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Definition 3.4 La pression micro-canonique P est alors définie comme

P = T
∂S(V )

∂V
(3.13)

Ainsi on peut réécrire l’équation (3.12) comme P1

T = P2

T , où T est la température du grand système à
l’équilibre.
Ainsi, la différentielle de l’entropie pour un système dépendant de l’énergie interne E et du volume V peut
s’écrire de la manière suivante:

dS(E, V ) =
∂S

∂E

∣∣∣
V
dE +

∂S

∂V

∣∣∣
E
dV =

1

T
dE +

P

T
dV dE = TdS − PdV = ∆Q−∆W (3.14)

En réarrangeant cette expression, on obtient la forme du premier principe de la thermodynamique pour un
système fermé :

dE = TdS − PdV = δQ− δW, (3.15)

où δQ représente la quantité de chaleur échangée avec le milieu extérieur au système et δW le travail des
forces non conservatives du milieu extérieur sur le système. Cette relation traduit le premier principe de la
thermodynamique, qui énonce que, pour un système fermé, toute variation de son énergie interne dE est
égale à la somme des énergies échangées avec le milieu extérieur sous forme de chaleur et de travail.

3.4 Entropie et potentiel chimique statistique

On s’intéresse enfin au cas où lorsque les deux sous systèmes (E1, V1, N1) et (E2, V2, N2) sont mis en contact,
la paroi entre les deux permet des échanges de matière (voir Fig.3.3).

Figure 3.3: Systèmes thermodynamiques (Ei, Vi, Ni) à Ei, Vi fixés, avant et après la mise en contact

Ainsi à l’équilibre entre les deux sous systèmes il vient :

0 =
∂S

∂N1
=

∂S1

∂N1
+

∂S2

∂N2

∂N2

∂N1
=

∂S1

∂N1
− ∂S2

∂N2
⇒ ∂S1

∂N1
=

∂S2

∂N2
(3.16)

Definition 3.5 On définit alors le potentiel chimique µ comme

µ = −T
∂S

∂N
(3.17)

donc à l’équilibre, 3.16 s’écrit comme T1µ1 = T2µ2 où T1 = T2 = T et ainsi µ1 = µ2.
Par ailleurs la différentielle de l’entropie pour un système ouvert se réécrit :

dS(E, V,N) =
1

T
dE +

P

T
dV − µ

T
dN (3.18)
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3.5 Quelques exemples

Example 1 (N particules sans interactions) ■

• Cas d’un système quantique de N particules : voir série 3 exercice 3

• Cas d’un gaz parfait classique à l’équilibre (système de N particules de masse m enfermées dans une
enceinte de volume V et d’énergie totale E) : voir série 4 exercice 1

Example 2 (N oscillateurs harmoniques indépendants) ■

Cas classique

Soit un système composé de N oscillateurs harmoniques en une dimension, indépendants de masse m et
de constante de raideur k. Dans l’espace de phase, on a l’ensemble {pi, qi}i=1,...,N avec pi la quantité de
mouvement du ieme oscillateur et qi sa coordonnée. L’énergie totale du système H est donc :

H =

N∑
i=1

p2i
2m

+
k

2
q2i

R Il aurait pu être toute à fait possible de considérer des oscillateurs dépendants. En effet, l’équation de
mouvement des oscillateurs s’écrit comme :

r̈(t) = −ω2r(t) (3.19)

Avec r le vecteur position des ressorts et ω2 la matrice des pulsations naturelles. En diagonalisant
cette matrice, on peut alors se rapporter à l’équation de N oscillateurs indépendants.

En utilisant l’expression (3.3), le nombre de micro-états du système Ω(N,E) est ici donné par :

Ω(N,E) =

∫
1

(2πh̄)N
dpNdqNδ(H− E)

Cependant, il est ici plus judicieux de calculer une autre quantité, Φ(N,E). Cette dernière représente le
nombre de micro-états du système ayant une énergie H ≤ E.

Φ(N,E) =

∫
H≤E

1

(2πh̄)N
dpNdqN =

1

(2πh̄)N

∫
H≤E

N∏
i=1

dqidpi (3.20)

Ces deux objets sont reliés par la relation Ω(N,E) = ∂Φ
∂E δE. On peut intuitivement se représenter cette

relation qui est l’analogue du lien entre une aire et un volume. La dérivée de ce dernier par rapport au rayon
équivaut à l’aire.
Afin de calculer l’expression (3.20) on effectue le changement de variable suivant pour chacune des variables
pi et qi :

xi =
pi√
2m

yi =

√
k

2
qi
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Le jacobien J de cette transformation est alors :

J = det

(
∂pi

∂xi

∂pi

∂yi
∂qi
∂xi

∂qi
∂yi

)
= det

(√
2m 0

0
√

2
k

)
= 2

√
m

k
=

2

ω

Où on a défini ω =
√
k/m. En appliquant ce changement de variable à Φ(N,E) l’expression (3.20) devient :

Φ(N,E) =

(
1

2πh̄ω

)N

· 2N
∫
∑N

i=1 x2
i+y2

i≤E

N∏
i=1

dxidyi =

(
1

2πh̄ω

)N

· 2N · V2N (
√
E) =

(
E

h̄ω

)N

· 1

N !
(3.21)

Avec V2N (
√
E) le volume de l’hypersphère en 2N dimensions de rayon

√
E. Grâce à l’expression (3.21) il est

possible, comme on l’a vu, de trouver le nombre de micro-états du système Ω(N,E) avec la formule suivante
:

Ω(N,E) =
∂Φ

∂E
δE (3.22)

Comme N est grand, on obtient, avec l’approximation de Stirling (N !≈ NN ), que

Ω(N,E) = N

(
E

h̄ω

)N−1
1

N !
δE =

1

(N − 1)!

(
E

h̄ω

)N−1

δE
N>>1
≈ 1

N !

(
E

h̄ω

)N

δE
Stirling

≈
(

E

Nh̄ω

)N

δE

(3.23)

L’entropie pour un système composé de N oscillateurs harmoniques peut s’écrire, en utilisant que δE est
petit :

S(N,E) = kB log(Ω) = NkB log

(
E

Nh̄ω

)
+ log(δE) ≈ NkB log

(
E

Nh̄ω

)
(3.24)

avec E l’énergie du système. On remarque donc que l’entropie est extensive, elle grandit avec le système
(N).
Il est possible de tirer des relations thermodynamiques de cette équation comme par exemple l’énergie du
système à une température T .
En effet, l’inverse de la température est la dérivé partielle de l’entropie par rapport à E :

1

T
=

∂S

∂E
= NkB

1
Nh̄ω
E

Nh̄ω

=
NkB
E

⇔ E = NkBT (3.25)

Théorème d’équipartition de l’énergie par degré de liberté quadratique

L’Eq.3.25 est un exemple du théorème d’équipartition de l’énergie par degré de liberté quadratique (la
preuve sera présentée plus tard dans le cours) qui nous informe que si un système possède un Hamiltonien
de la forme:

H = f(z1, z2, ...) +
∑
i

αiz
2
i (3.26)

avec f(zi) une fonction arbitraire des degrés de liberté et une dépendance quadratique de certaines variables,
alors la partie de l’énergie qui correspond aux termes quadratiques

∑
i αiz

2
i va contribuer à l’énergie totale

comme 1
2kBT pour chacun des termes quadratiques.
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Énergie d’un oscillateur harmonique

Ainsi, pour un système composé de N oscillateurs harmoniques l’Hamiltonien s’écrit H =
∑N

i=1
p2
i

2m +
q2i
2 k.

Il est possible d’identifier deux dépendance quadratique des degrés de liberté du système. Ces deux termes
étant N fois dans la somme ainsi la contribution est de 2N .
L’énergie du système est donc donnée par E = NkBT avec N le nombre d’oscillateurs harmoniques.

Énergie d’un gaz parfait

La seule énergie d’un gaz parfait vient de l’énergie cinétique des particules. L’Hamiltonien s’écrit donc

H =
∑N

i=1
p2
ix

2m +
p2
iy

2m +
p2
iz

2m . Ainsi, d’après le théorème d’équipartition de l’énergie par degré de liberté
quadratique l’énergie E du système est donnée par E = 3

2NkBT .

Cas quantique

Dans le cas de l’oscillateur quantique, l’énergie d’une particule soumise à un potentiel harmonique est donnée
par En = h̄ω(n+ 1

2 ). Ainsi, le système formé de N oscillateurs harmoniques possède une énergie totale donnée
par

Etot =

N∑
i=1

h̄ω(
1

2
+ ni) =

h̄ω

2
N + h̄ω

N∑
i=1

ni =
h̄ω

2
N + h̄ωM (3.27)

avec ni ∈ [0,∞[ le nombre quantique.
Afin de calculer l’entropie d’un tel système il faut trouver une expression de Ω(N,E) qui représente le nombre
de façon de choisir les ni qui constitue un système avec une énergie E. C’est là qu’un problème combinatoire
intervient car le nombre quantique n dépend de chaque oscillateur et donc plusieurs configurations possibles
mènent au même niveau d’énergie.
Par exemple, si on veut que la somme totale des ni soit égale à 4 (M = 4) et que le système possède 4
oscillateurs harmoniques (N = 4), alors il faut prendre en compte toutes les combinaisons (4, 0, 0, 0);(0, 4,
0, 0);(0, 0, 4, 0);(0, 0, 0, 4);(1,3,0,0);(3,1,0,0)... Pour M = 2 et N = 3, on peut illustrer les combinaisons de
la manière suivante :

(n1, n2) (3,0) (0,3) (2,1) (1,2)

Figure 3.4: Ensemble des combinaisons pour N = 2 et M = 3

On se pose donc la question suivant : Comment compter le nombre façon de choisir, parmi N oscillateurs,
le nombre de combinaisons des ni où leur total est M ?

Pour cela, on représente le problème de manière graphique. On imagine une boite composée de N − 1
séparateurs et dans laquelle on met M boules. De cette manière, nous obtenons un total de N boites plus
petites et les M boules sont réparties selon la valeur des ni. Le nombre de combinaisons correspond donc
au nombre de dessins possibles. La Fig.3.5 illustre le dessin dans le cas (n1 = 1, n2 = 2, n3 = 1, n4 = 0).

Figure 3.5: Illustration de l’image dans le cas (1, 2, 1, 0)
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Les bords ne bougent jamais. Par conséquent, on doit disposer M boules et N − 1 séparateurs. On a donc
M +N −1 objets à disposer, ce qui fait (M +N −1)! possibilités de placements. Cependant, on compte trop
de possibilités car les boules et les séparateurs sont indiscernables respectivement. L’ordre de placement des
boules n’est pas importants, il faut donc diviser par M !. L’ordre de placement des séparateurs ne l’est pas
non plus, on divise par (N − 1)!.
L’expression de Ω(N,E) est donc la suivante :

Ω(N,E) =
(M +N − 1)!

M ! (N − 1)!
(3.28)

Afin de retrouver le résultat dérivé dans le cas classique, on va se placer dans le cas des énergies grandes.
Cela revient à dire que M ≫ N . En regardant l’Eq.3.27 on remarque donc que la quantification en h̄ω sur M
ne va pas compter dans les calculs. C’est pour cela que nous pouvons nous attendre à voir que la physique
quantique et la physique classique donnent le même résultat pour des grandes énergies. Cependant, cela ne
devrait pas être vrai pour des énergies de l’ordre de h̄ω.
En reprenant l’Eq.3.28 :

Ω(N,E) =

N−1 termes︷ ︸︸ ︷
(M +N − 1)(M +N − 2)(M +N − 3) · · · (M + 1)M !

(N − 1)!M !

M≫N
≈ MN−1

(N − 1)!
(3.29)

Finalement, on trouve une expression de M , dans la limite ou les énergies sont très grandes devant N , à
l’aide de l’Eq.3.27 :

M =
E

h̄ω
− N

2

E≫N
≈ E

h̄ω
(3.30)

Ce qui permet de réécrire l’Eq.3.29 :

Ω(N,E) =
1

(N − 1)!

(
E

h̄ω

)N−1

(3.31)

On retrouve bien le cas classique !
Cependant, il n’y a aucune garantie que nous retrouvions bien l’Eq.3.25 dans le cas d’une basse température
et énergie. Cela montre que le théorème d’équipartition de l’énergie est vrai dans le cas classique mais semble
faux dans le cas quantique (pour des énergies de l’ordre de E = h̄ω).

3.6 Résumé micro-canonique

Les systèmes étudiés doivent être isolés donc l’énergie E, le nombre de particules N , le volume V , etc, sont
conservés. Toute la physique semble être déductible de la connaissance du nombre de micro-états Ω, dont le
calcul représente toute la difficulté du problème. Plus précisément, elle se calcule comme suit :

cas discret : Ω(N,V,E) = # de micro-états qui correspondent à un macro-état (N,V,E) (3.32)

cas continu : Ω(N,V,E) ≃ 1

(2πh̄)ND

∫
dqNdpN δ(H(p, q)− E). (3.33)

A partir de l’expression de Ω, l’entropie S est donnée par :

S(N,V,E) = kB log(Ω), (3.34)

à partir de laquelle les grandeurs physiques suivantes peuvent être obtenues :

∂S

∂E

∣∣∣
N,V

=
1

T
, (3.35)
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∂S

∂V

∣∣∣
E,N

=
P

T
, (3.36)

∂S

∂N

∣∣∣
E,V

= −µ

T
, (3.37)

où T est la température, P la pression et µ le potentiel chimique. Le modèle du gaz parfait à N particules
sans interaction, celui des N oscillateurs harmoniques et le modèle des N spins indépendants aident à bien
assimiler la matière du cours.

Pour terminer, il convient de prêter attention à la réelle ergodicité des systèmes. Dans le cas où par exemple
on considère 2 oscillateurs complètement indépendants, l’amplitude de leurs oscillations doit rester constante
au cours du temps et donc les oscillateurs ne visitent pas tous les états possibles. On peut néanmoins con-
sidérer que si les systèmes ne sont pas complètement indépendants, on peut les considérer comme ergodiques.
Étant donné la complexité des calculs combinatoires et de la difficulté à penser en terme de système isolé, le
formalisme canonique est introduit.


