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3.1 Les Fondamentaux

Ce cours porte sur porte sur les systemes isolés, contenant N particules dans un volume V', ayant une
énergie totale E. Tous les raisonnements qui suivent sont basés sur '’hypothése ergodique, fondamentale
en physique statistique. Cette derniére consiste & supposer que tous les micro-états compatibles avec un
macro-état sont équiprobables sur une période suffisamment longue.

Le principe est de calculer des moyennes sur les micro-états compatibles avec E. Avec 2 micro-états
équiprobables, chaque micro-états ¢ a une probabilité p; = % Q) désigne un nombre dans le domaine
discret et un volume de le domaine du continu.

Definition 3.1 On définit l’entropie de Boltzmann ou entropie micro-canonique par :

avec kg = 1.38 - 1023 J. K~ la constante de Boltzmann.

Cette expression de I’entropie est un cas particulier de I’entropie de Gibbs-Shannon H, définie dans la Lecture
1. Dans notre cas, pour des micro-états équiprobables:

vie{l,... Q) piZ% done H({pi}):%Zlog(Q)zleg(Q)ocS(N,V,E) (3.2)

La constante kp a été introduite pour des raisons principalement physique - le logarithme étant une
quantité sans dimension et la relation thermodynamique U = T'S obligent & rajouter une constante
ayant la dimension d’une énergie par une température.

Pour calculer le nombre de micro-états €2, il est possible de passer par I’espace de phases & 2N D dimensions
(N particules, D positions et quantités de mouvement). L’espace des phases étant continu, cela n’a pas
vraiment de sens de calculer un nombre, §2 correspond plutét a un volume. En revanche, si on integre sur ¢
et p alors Q a la dimension d’une action ([E][T]). Cependant, le logarithme doit étre appliqué & un nombre
sans dimension. On normalise donc €2 par la plus petite action que ’on connaisse, la constante de Planck
h =6.62-1073* J.s. La constante de Planck réduite h est liée & h par 2wh = h.

En intégrant dans ’espace de phase, on obtient I’expression suivante pour le nombre de micro-états :
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NN L N
Q(E,N,V) = /qudehN—Dd(H —E)(geV)= /qude <
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3.2 Entropie et température statistique

On considere deux systémes thermodynamiques (E1, V1, N1) et (Eq, Vo, N3), initialement isolés. Leur entropie
est respectivement S1(FE7) et So(FEs).

Les systémes sont par la suite mis en contact et forment le systeme isolé (E,V, N). Le volume V; et le nombre
de particules N; de chaque sous systeéme est fixe. Seul les transferts d’énergie sont possibles a travers la paroi
(voir Fig.3.1).
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Figure 3.1: Systémes thermodynamiques (F;, Vi, N;) a V;, N; fixés, avant et apres la mise en contact

Par extensivité de ’énergie E et de I’entropie S, ces grandeurs s’expriment comme
E=F+F, (3.4)

S = 51(E1) + So(E2) = S1(E1) + S2(F — Ey) (3.5)

On fait ici 'hypothese que I’entropie est extensive, ce qui est généralement vrai pour des systéemes tres
grands avec un grand nombre de particules N et dont les probléemes liés aux bords du domaine sont
négligés.

D’apres le principe d’entropie maximale, a 1’équilibre thermodynamique, le systeme adopte 1’état macro-
scopique qui correspond au plus grand nombre de micro-états accessibles. En effet si on cherche la probabilité
d’étre dans un macro-état =, on obtient :

— x 3@, (3.6)

avec §2(z) le nombre de micro-états correspondant a ’état x et Qo le nombre total de micro-états possibles.
Cette probabilité sera ensuite dominée par le terme exponentiel maximal (grandes déviations).

Ainsi, par 3.1, ce principe assure que I'entropie S du systéme total est maximale & I’équilibre. La condition
d’équilibre s’écrit alors, avec (3.5),

05 051 0B, 0% 05 08 95 _ 05 57
 9FE, OF, OE,0E, 0OE, OF, OFE, OFEs )

Definition 3.2 On définit alors la température statistique T' comme:

1 8s
= (3.8)

et 3.7 s’écrit comme T; = T, & 1'équilibre, ol T; est la température du sous systeme i € {1,2}.
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Definition 3.3 On définit également l'inverse de la température

1 dlog Q
8= W~ 0B (3.9)
La fonction entropie étant une fonction croissante du temps (% > 0), il vient
d E E 1 0(F 10FE—-FE 1 1 E
EZ%Q_F%&:ia( 1)+76( 1): - = &20 (3.10)
dt O0F; Ot 0F, Ot Ty ot T ot n Ty) Ot

e Si Ty > 1Ty, 8(551 < 0 ce qui correspond a un transfert d’énergie du systeme 1 vers 2, c’est a dire du

systeme chaud vers le systeme froid.

o SiTy < Ty, % > 0, ce qui correspond a un transfert d’énergie du systeme 2 vers 1, c’est a dire du
systeme chaud vers le systeme froid.

Ces observations sont cohérentes avec le second principe de la thermodynamique.

3.3 Entropie et pression statistique

On consideére les méme systémes initiaux que dans le paragraphe précédent, (E1, Vi, N1) et (Eq, Vo, No). Les
systémes sont mis également mis en contact mais la paroi du systéme isolé (E, V, N) est mobile (voir Fig.3.2).
Chaque sous-systeme est fermé donc le nombre de particules N; de chaque sous systéme est fixe tandis que
leur volume V; varie.

E1 Vi Ny E> Vo Ny E1Vi Ny Eo Vo Ny
<>

N, E, fixes N> Fs fixes

Figure 3.2: Systeémes thermodynamiques (E;, Vi, N;) a E;, N; fixés, avant et aprés la mise en contact

L’entropie satisfait ’équation (3.5) mais dans ce cas la variable du probléme est le volume. L’expression de
I’entropie s’écrit ainsi:

S(V) = 51(V1) + S2(Va) = S1(V1) + S2(V — W) (3.11)

car par extensivité du volume on a V = V; + V5.
A Téquilibre, d’apres le second principe de la thermodynamique, entropie S du systéme est maximale. La
condition d’équilibre s’écrit

,_ 08 _ 95 050Vs _9S _ 05 951 09,

= —= — 4+ — = _— = 12
v, oV, Tewov,  ov, oV, . oV oV, (3.12)
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Definition 3.4 La pression micro-canonique P est alors définie comme

aS(V)
P=T——>= 3.13
ov ( )
Ainsi on peut réécrire 1’équation (3.12) comme —];1 = %2, ou T est la température du grand systeme a

Iéquilibre.
Ainsi, la différentielle de I’entropie pour un systéme dépendant de 1’énergie interne F et du volume V peut
s’écrire de la maniére suivante:
oS as 1 P
dS(E, V)= —=| dE+ —| dV = =dE+ =dV dE =TdS — PdV = AQ — AW 3.14
(E,V) OE v + oV g Tt T @ (3.14)

En réarrangeant cette expression, on obtient la forme du premier principe de la thermodynamique pour un
systeme fermé :

dE = TdS — PdV = 6Q — §W, (3.15)

ou Q) représente la quantité de chaleur échangée avec le milieu extérieur au systéme et §W le travail des
forces non conservatives du milieu extérieur sur le systeme. Cette relation traduit le premier principe de la
thermodynamique, qui énonce que, pour un systeme fermé, toute variation de son énergie interne dFE est
égale a la somme des énergies échangées avec le milieu extérieur sous forme de chaleur et de travail.

3.4 Entropie et potentiel chimique statistique

On s’intéresse enfin au cas ot lorsque les deux sous systeémes (E1, Vi, N1) et (E2, Va, Na) sont mis en contact,
la paroi entre les deux permet des échanges de matiere (voir Fig.3.3).
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Figure 3.3: Systeémes thermodynamiques (E;, V;, N;) & E;, V; fixés, avant et apres la mise en contact

Ainsi a I’équilibre entre les deux sous systemes il vient :

9S  9S,  0S, N, 9S, 95, 89S, 95,
= = = — _ = —= 1
0=3N, “an, T an,aN, ~aN,  aN,  ON,  oN, (3.16)

Definition 3.5 On définit alors le potentiel chimique p comme

oS

donc a I’équilibre, 3.16 s’écrit comme Ty = Tous ou 71 = To =T et ainsi p; = po.
Par ailleurs la différentielle de I’entropie pour un systéme ouvert se réécrit :

1 P
dS(E,V.N) = ZdE + —dV — %dN (3.18)
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3.5 Quelques exemples
Example 1 (N particules sans interactions) "

e Cas d’un systeme quantique de NN particules : voir série 3 exercice 3
e Cas d'un gaz parfait classique a I’équilibre (systeme de N particules de masse m enfermées dans une
enceinte de volume V' et d’énergie totale E) : voir série 4 exercice 1

Example 2 (N oscillateurs harmoniques indépendants) [

Cas classique

Soit un systéme composé de N oscillateurs harmoniques en une dimension, indépendants de masse m et
de constante de raideur k. Dans l'espace de phase, on a 'ensemble {p;,q;}i=1,.. N avec p; la quantité de
M€ oscillateur et ¢; sa coordonnée. L’énergie totale du systeme H est donc :

mouvement du 7
N
H=>
i=1

2
p; E 2
om T 2%

® Il aurait pu étre toute a fait possible de considérer des oscillateurs dépendants. En effet, I’équation de
mouvement des oscillateurs s’écrit comme :

#(t) = —w’r(t) (3.19)

Avec 7 le vecteur position des ressorts et w? la matrice des pulsations naturelles. En diagonalisant
cette matrice, on peut alors se rapporter a I’équation de N oscillateurs indépendants.

En utilisant lexpression (3.3), le nombre de micro-états du systeme Q(N, E) est ici donné par :
1
QN E)= | —— dpVdg"s(H - E
(N, E) /(QWFL)NP ¢ 6(H - E)

Cependant, il est ici plus judicieux de calculer une autre quantité, ®(N, E). Cette derniére représente le
nombre de micro-états du systeme ayant une énergie H < FE.

N
H dg;dp; (3.20)

=1

1 1
(N, E) =  aNddN = /
( ) /H<E (QWh)N b (QWh)N H<E

Ces deux objets sont reliés par la relation Q(N,E) = g%éE. On peut intuitivement se représenter cette
relation qui est I’analogue du lien entre une aire et un volume. La dérivée de ce dernier par rapport au rayon
équivaut a laire.

Afin de calculer l'expression (3.20) on effectue le changement de variable suivant pour chacune des variables

pi et q; :
Di \/?
Ti = i =\ 549
o Y 2(]
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Le jacobien J de cette transformation est alors :

Opi  Opi V2m 0 2
J=det | Jz Bu | =det S =2,/ ==
dz; Oy 0 \/; k w

Ot on a défini w = y/k/m. En appliquant ce changement de variable & ®(N, E) 'expression (3.20) devient :

1 \Y N 1 \Y ENY 1
®(N,E) = ol dx;dy; = ol Ey=(—] = (321
.5) = (3 /N+EH sy = () 2 Ve VE) = () 5y ()

i

Avec Vo (VE) le volume de ’hypersphére en 2N dimensions de rayon v/E. Grace a 'expression (3.21) il est
possible, comme on I’a vu, de trouver le nombre de micro-états du systeme Q(N, E) avec la formule suivante

QN E) = %w (3.22)

Comme N est grand, on obtient, avec I’approximation de Stirling (N!~ N), que

ENYTU 1 ENYTY  nes1 1 ENY  stiting /B \Y
QIN,E)=N [ = —E=—— (= B~ — (=) sg"R" (=) sE
(N, E) (hw) N! (N =1)! (hw) N! <hw> (th)
(3.23)

L’entropie pour un systeme composé de N oscillateurs harmoniques peut s’écrire, en utilisant que JE est
petit :

E E
S(N,E) = kplog(?) = Nkplog <th> +1log(dF) =~ Nkplog <th> (3.24)

avec E l'énergie du systeme. On remarque donc que l'entropie est extensive, elle grandit avec le systeme
(N).

Il est possible de tirer des relations thermodynamiques de cette équation comme par exemple 1’énergie du
systeme a une température 7.

En effet, I'inverse de la température est la dérivé partielle de I’entropie par rapport a E :

1 8s 5 _ Nkp
— =22 _ NgpNw _ 128 E = NkgT 2
F= 5% b g 5 © B (3.25)

Théoréme d’équipartition de 1’énergie par degré de liberté quadratique

L’Eq.3.25 est un exemple du théoreme d’équipartition de I'énergie par degré de liberté quadratique (la
preuve sera présentée plus tard dans le cours) qui nous informe que si un systéme posséde un Hamiltonien
de la forme:

H= f(zl,z27...)+2aizi2 (3.26)

avec f(z;) une fonction arbitraire des degrés de liberté et une dépendance quadratique de certaines variables,
alors la partie de ’énergie qui correspond aux termes quadratiques >, ;2?2 va contribuer & I'énergie totale
comme %kBT pour chacun des termes quadratiques.
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Energie d’un oscillateur harmonique

2 2
Ainsi, pour un systeme composé de N oscillateurs harmoniques I’Hamiltonien s’écrit H = Zivzl 2pm + %k
Il est possible d’identifier deux dépendance quadratique des degrés de liberté du systeme. Ces deux termes
étant N fois dans la somme ainsi la contribution est de 2N.
L’énergie du systéme est donc donnée par ' = NkgT avec N le nombre d’oscillateurs harmoniques.

Energie d’un gaz parfait

La seule énergie d'un gaz parfait vient de ’énergie cinétique des particules. L’Hamiltonien s’écrit donc

o N p?m p?y p?z . . 5 < , < 1% . .. 32 . 2 . 2
H=>,15%+ 5%+ 5= Ainsi, d’apres le théoreme d’équipartition de I'énergie par degré de liberté

quadratique 1’énergie E du systeme est donnée par F = %N kpT.

Cas quantique

Dans le cas de 'oscillateur quantique, ’énergie d’une particule soumise a un potentiel harmonique est donnée
par B, = hw(nJr%). Ainsi, le systeme formé de N oscillateurs harmoniques posséde une énergie totale donnée
par

al 1 hw al hw
Etot—;hw(Q—f—nl)— 5 N—i—hw;nl— 5 N+ hwM (3.27)
avec n; € [0, 00[ le nombre quantique.

Afin de calculer 'entropie d’un tel systeme il faut trouver une expression de Q(N, E) qui représente le nombre
de fagon de choisir les n; qui constitue un systéme avec une énergie E. C’est la qu'un probleme combinatoire
intervient car le nombre quantique n dépend de chaque oscillateur et donc plusieurs configurations possibles
menent au méme niveau d’énergie.

Par exemple, si on veut que la somme totale des n; soit égale & 4 (M = 4) et que le systeme possede 4
oscillateurs harmoniques (N = 4), alors il faut prendre en compte toutes les combinaisons (4, 0, 0, 0);(0, 4,
0, 0);(0, 0, 4, 0);(0, 0, 0, 4);(1,3,0,0);(3,1,0,0)... Pour M =2 et N = 3, on peut illustrer les combinaisons de
la maniere suivante :

[ (n1,m2) [ (30) [ (0,3) | (21) [ (1,2) |

Figure 3.4: Ensemble des combinaisons pour N =2 et M =3

On se pose donc la question suivant : Comment compter le nombre fagon de choisir, parmi N oscillateurs,
le nombre de combinaisons des n; ou leur total est M 7

Pour cela, on représente le probleme de maniére graphique. On imagine une boite composée de N — 1
séparateurs et dans laquelle on met M boules. De cette maniére, nous obtenons un total de N boites plus

petites et les M boules sont réparties selon la valeur des n;. Le nombre de combinaisons correspond donc
au nombre de dessins possibles. La Fig.3.5 illustre le dessin dans le cas (ny = 1,n9 = 2,n3 = 1,n4 = 0).

Figure 3.5: Illustration de 'image dans le cas (1,2, 1,0)
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Les bords ne bougent jamais. Par conséquent, on doit disposer M boules et N — 1 séparateurs. On a donc
M + N —1 objets a disposer, ce qui fait (M + N —1)! possibilités de placements. Cependant, on compte trop
de possibilités car les boules et les séparateurs sont indiscernables respectivement. L’ordre de placement des
boules n’est pas importants, il faut donc diviser par M!. L’ordre de placement des séparateurs ne ’est pas
non plus, on divise par (N — 1)l

L’expression de (N, E) est donc la suivante :

(M + N —1)!

N E) = TN

(3.28)
Afin de retrouver le résultat dérivé dans le cas classique, on va se placer dans le cas des énergies grandes.
Cela revient a dire que M > N. En regardant ’Eq.3.27 on remarque donc que la quantification en Aw sur M
ne va pas compter dans les calculs. C’est pour cela que nous pouvons nous attendre a voir que la physique
quantique et la physique classique donnent le méme résultat pour des grandes énergies. Cependant, cela ne
devrait pas étre vrai pour des énergies de 'ordre de hw.

En reprenant 'Eq.3.28 :

N—1 termes
— — — N-1
QN, B) = (M+N-1)(M+ N(N2i(i\;[! ;\&—4{\/’ 3)---(M+1)M! M>N (j\vi_ = (3.20)

Finalement, on trouve une expression de M, dans la limite ou les énergies sont tres grandes devant NV, a

I’aide de 'Eq.3.27 :
E N pesN E

w2 " hw (3:30)
Ce qui permet de réécrire I'Eq.3.29 :
N-1
1 E

On retrouve bien le cas classique !

Cependant, il n’y a aucune garantie que nous retrouvions bien I’Eq.3.25 dans le cas d’une basse température
et énergie. Cela montre que le théoreme d’équipartition de I’énergie est vrai dans le cas classique mais semble
faux dans le cas quantique (pour des énergies de l'ordre de F = fiw).

3.6 Résumé micro-canonique

Les systemes étudiés doivent étre isolés donc I’énergie E, le nombre de particules NV, le volume V', etc, sont
conservés. Toute la physique semble étre déductible de la connaissance du nombre de micro-états €2, dont le
calcul représente toute la difficulté du probleme. Plus précisément, elle se calcule comme suit :

cas discret : Q(N,V, E) = # de micro-états qui correspondent & un macro-état (N,V, E) (3.32)

1
cas continu : Q(N,V, E) ~ 2rh)ND /qude S(H(p,q) — E). (3.33)

A partir de I'expression de 2, I’entropie S est donnée par :
S(N,V, E) = kp log(), (3.34)

a partir de laquelle les grandeurs physiques suivantes peuvent étre obtenues :

oS 1
OEINnv — T’ (3.35)
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oS P

oVlien T’ (3.36)
oS R
ONlgv T’ (3:37)

ou T est la température, P la pression et u le potentiel chimique. Le modele du gaz parfait a N particules
sans interaction, celui des N oscillateurs harmoniques et le modele des N spins indépendants aident & bien
assimiler la matiere du cours.

Pour terminer, il convient de préter attention a la réelle ergodicité des systemes. Dans le cas ou par exemple
on considere 2 oscillateurs completement indépendants, 'amplitude de leurs oscillations doit rester constante
au cours du temps et donc les oscillateurs ne visitent pas tous les états possibles. On peut néanmoins con-
sidérer que si les systemes ne sont pas completement indépendants, on peut les considérer comme ergodiques.
Etant donné la complexité des calculs combinatoires et de la difficulté a penser en terme de systeme isolé, le
formalisme canonique est introduit.



